Search results for: chitosan-gold nanoparticles
514 Optimizing the Effectiveness of Docetaxel with Solid Lipid Nanoparticles: Formulation, Characterization, in Vitro and in Vivo Assessment
Authors: Navid Mosallaei, Mahmoud Reza Jaafari, Mohammad Yahya Hanafi-Bojd, Shiva Golmohammadzadeh, Bizhan Malaekeh-Nikouei
Abstract:
Background: Docetaxel (DTX), a potent anticancer drug derived from the European yew tree, is effective against various human cancers by inhibiting microtubule depolymerization. Solid lipid nanoparticles (SLNs) have gained attention as drug carriers for enhancing drug effectiveness and safety. SLNs, submicron-sized lipid-based particles, can passively target tumors through the "enhanced permeability and retention" (EPR) effect, providing stability, drug protection, and controlled release while being biocompatible. Methods: The SLN formulation included biodegradable lipids (Compritol and Precirol), hydrogenated soy phosphatidylcholine (H-SPC) as a lipophilic co-surfactant, and Poloxamer 188 as a non-ionic polymeric stabilizer. Two SLN preparation techniques, probe sonication and microemulsion, were assessed. Characterization encompassed SLNs' morphology, particle size, zeta potential, matrix, and encapsulation efficacy. In-vitro cytotoxicity and cellular uptake studies were conducted using mouse colorectal (C-26) and human malignant melanoma (A-375) cell lines, comparing SLN-DTX with Taxotere®. In-vivo studies evaluated tumor inhibitory efficacy and survival in mice with colorectal (C-26) tumors, comparing SLNDTX withTaxotere®. Results: SLN-DTX demonstrated stability, with an average size of 180 nm and a low polydispersity index (PDI) of 0.2 and encapsulation efficacy of 98.0 ± 0.1%. Differential scanning calorimetry (DSC) suggested amorphous encapsulation of DTX within SLNs. In vitro studies revealed that SLN-DTX exhibited nearly equivalent cytotoxicity to Taxotere®, depending on concentration and exposure time. Cellular uptake studies demonstrated superior intracellular DTX accumulation with SLN-DTX. In a C-26 mouse model, SLN-DTX at 10 mg/kg outperformed Taxotere® at 10 and 20 mg/kg, with no significant differences in body weight changes and a remarkably high survival rate of 60%. Conclusion: This study concludes that SLN-DTX, prepared using the probe sonication, offers stability and enhanced therapeutic effects. It displayed almost same in vitro cytotoxicity to Taxotere® but showed superior cellular uptake. In a mouse model, SLN-DTX effectively inhibited tumor growth, with 10 mg/kg outperforming even 20 mg/kg of Taxotere®, without adverse body weight changes and with higher survival rates. This suggests that SLN-DTX has the potential to reduce adverse effects while maintaining or enhancing docetaxel's therapeutic profile, making it a promising drug delivery strategy suitable for industrialization.Keywords: docetaxel, Taxotere®, solid lipid nanoparticles, enhanced permeability and retention effect, drug delivery, cancer chemotherapy, cytotoxicity, cellular uptake, tumor inhibition
Procedia PDF Downloads 82513 Investigation of Mechanical Properties of Epoxy-Nanocomposite Reinforced with Copper Coated MWCNTs
Authors: M. Nazem Salimi, C. Abrinia, M. Baniassadi, M. Ehsani
Abstract:
Mechanical properties of epoxy based nanocomposites containing copper coated MWCNTs were investigated and a comparative study between nanocomposites containing functionalized MWCNTs and copper coated MWCNTs which are already functionalized was conducted. The MWCNTs was deposited with copper nanoparticles through electroless deposition process after accomplishment of "two-step" method as sensitization and activation procedures on oxidized MWCNTs. In addition, functionalization of MWCNTs was carried out through combination of two covalent and non-covalent funcionalization methods using HNO3 for acid solution of covalent treatment and Triton X100 as non-ionic surfactant of non-covalent treatment. The presence of functional groups and removal of impurities of MWCNTs were confirmed by FTIR and Raman spectroscopy, respectively. The layer of copper nanoparticles on the MWCNTs wall increasing its diameter was observed by SEM. Utilizing solution blending process, 0.1%, 0.5% and 1.5% wt loading of both copper coated MWCNTs and non-coated MWCNTs were used to prepare epoxy-based nanocomposites. The tensile, flexural and impact properties of nanocomposites were investigated. The results of tensile test demonstrated that nanocomposites containing copper coated MWCNTs exhibited brittle behavior compared to those reinforced with functionalized MWCNTs, whereas former one exhibited higher values of modulus than latter one for concentrations more than 0.4% wt. Presence of copper particles on MWCNTs surface decreased the tensile strength of nanocomposites. In comparison to pure epoxy, nanocomposites with treated-MWCNTs and Cu-MWCNTs loading of 0.1% wt showed an increase of 35% and 51.6% for flexural strength beside 20% and 30% increase in flexural modulus, respectively, whereas flexural properties of both naocomposites decreased with increasing of CNTs concentration. The results of impact strength of nanocomposites with Cu-CNTs demonstrated that impact properties decreased with increasing of filler content with a optimum value at 0.1% wt while in high concentrations impact properties of Cu-nanocomposites exhibited lower values than f-MWCNT nanocomposites.Keywords: epoxyresin, nanocomposite, functionalization, copper, electroless deposition process, mechanical properties
Procedia PDF Downloads 367512 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures
Authors: S. Mohajeri
Abstract:
Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating
Procedia PDF Downloads 249511 Is It Important to Measure the Volumetric Mass Density of Nanofluids?
Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui
Abstract:
The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one-step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55 g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability
Procedia PDF Downloads 401510 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts
Authors: Ewelina Grabowska, Martyna Marchelek
Abstract:
Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation
Procedia PDF Downloads 222509 Silver Nanoparticles Synthesized in Plant Extract Against Acute Hepatopancreatic Necrosis of Shrimp: Estimated By Multiple Models
Authors: Luz del Carmen Rubí Félix Peña, Jose Adan Felix-Ortiz, Ely Sara Lopez-Alvarez, Wenceslao Valenzuela-Quiñonez
Abstract:
On a global scale, Mexico is the sixth largest producer of farmed white shrimp (Penaeus vannamei). The activity suffered significant economic losses due to acute hepatopancreatic necrosis (AHPND) caused by a strain of Vibrio parahaemolyticus. For control, the first option is the application of antibiotics in food, causing changes in the environment and bacterial communities, which has produced greater virulence and resistance of pathogenic bacteria. An alternative treatment is silver nanoparticles (AgNPs) generated by green synthesis, which have shown an antibacterial capacity by destroying the cell membrane or denaturing the cell. However, the doses at which these are effective are still unknown. The aim is to calculate the minimum inhibitory concentration (MIC) using the Gompertz, Richard, and Logistic model of biosynthesized AgNPs against a strain of V. parahaemolyticus. Through the testing of different formulations of AgNPs synthesized from Euphorbia prostrate (Ep) extracts against V. parahaemolyticus causing AHPND in white shrimp. Aqueous and ethanol extracts were obtained, and the concentration of phenols and flavonoids was quantified. In the antibiograms, AgNPs were formulated in ethanol extracts of Ep (20 and 30%). The inhibition halo at well dilution test were 18±1.7 and 17.67±2.1 mm against V. parahaemolyticus. A broth microdilution was performed with the inhibitory agents (aqueous and ethanolic extracts and AgNPs) and 20 μL of the inoculum of V. parahaemolyticus. The MIC for AgNPs was 6.2-9.3 μg/mL and for ethanol extract of 49-73 mg/mL. The Akaike index (AIC) was used to choose the Gompertz model for ethanol extracts of Ep as the best data descriptor (AIC=204.8, 10%; 45.5, 20%, and 204.8, 30%). The Richards model was at AgNPs ethanol extract with AIC=-9.3 (10%), -17.5 (20 and 30%). The MIC calculated for EP extracts with the modified Gompertz model were 20 mg/mL (10% and 20% extract) and 40 mg/mL at 30%, while Richard was winner for AgNPs-synthesized it was 5 μg/mL (10% and 20%) and 8 μg/mL (30%). The solver tool Excel was used for the calculations of the models and inhibition curves against V.parahaemolyticus.Keywords: green synthesis, euphorbia prostata, phenols, flavonoids, bactericide
Procedia PDF Downloads 106508 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing
Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa
Abstract:
CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology
Procedia PDF Downloads 101507 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent
Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú
Abstract:
In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial
Procedia PDF Downloads 82506 Nanoparticles in Diagnosis and Treatment of Cancer, and Medical Imaging Techniques Using Nano-Technology
Authors: Rao Muhammad Afzal Khan
Abstract:
Nano technology is emerging as a useful technology in nearly all areas of Science and Technology. Its role in medical imaging is attracting the researchers towards existing and new imaging modalities and techniques. This presentation gives an overview of the development of the work done throughout the world. Furthermore, it lays an idea into the scope of the future use of this technology for diagnosing different diseases. A comparative analysis has also been discussed with an emphasis to detect diseases, in general, and cancer, in particular.Keywords: medical imaging, cancer detection, diagnosis, nano-imaging, nanotechnology
Procedia PDF Downloads 479505 Moringa olifera Curate The Toxic Potential of CuO Nanoparticles in Oreochromis mossambicus
Authors: Farhat Jabeen, Muhammad Asad
Abstract:
The study assessed the curative potential of Moringa olifera seeds against copper oxide nanoparticles induced toxicity in Oreochromis mossambicus. In order to investigate the curative potential of M. olifera seeds, firstly we examine its chemical composition, secondary metabolites, and bioactive compounds including hydroxyl-cinnamic acids, flavanols and hydroxybenzoic acids through standard methods and high performance liquid chromatography. In current study, the potential sub-lethal toxic dose of CuO-NPs (0.12 mg/l) was investigated through pilot experiment and three non-lethal doses (low=32, medium=48 and high=96 mg/l) of M. olifera were selected on the basis of its LC50 value for O. mossambicus. The experimental fish, O. mossambicus (n=100 of approximately 20 g each) were procured from Manawan Fisheries Complex, Lahore, and acclimatized for two weeks in glass aquaria. Experiment was conducted in accordance with the guidelines of Institutional Animal Ethics Committee, Government College University Faisalabad, Pakistan. During acclimatization and experimental period, fish received the commercial fish feed at 2.5% body weight daily. In order to assess the curative effect of M. olifera against CuO NPs induced toxicity, O. mossambicus were randomly divided into five groups and were designated as control (C) without any treatment, positive control (G*) exposed to potential toxic dose of CuO-NPs at 0.12 mg/l, and three treated groups namely G1, G2, and G3 co-treated with 0.12 mg/l of CuO-NPs plus different doses of M. olifera seed extract at 32, 48, and 96 mg/l, respectively for 56 days. Fish were exposed to waterborne CuO NPs and M. olifera seed extract. CuO-NPs treatment was ceased after 28 days but the doses of M. olifera were continued for 56 days. Blood was taken after 28 and 56 days through caudal venipuncture. Liver and intestine were taken for oxidative stress and histological studies after 56 days. In M. olifera seeds, moisture contents, crude protein, lipids, carbohydrates and ash were recorded as 3.8, 37.83, 32.52, 46.12, and 7.75%, respectively on dry weight basis. Total energy was recorded as 627.36 kcal/100g. Qualitative analysis of M. olifera seeds showed the presence of terpenoids, saponins, flavonoids, alkaloids and phenolics, while its quantitative analysis showed the considerable amount of total phenolics, flavonoids, saponins, and alkaloids as 134.75, 170.15, 1.57, and 0.4 µg/mg, respectively. Analysis of bioactive compounds in M. olifera seeds showed the presence of hydroxy-cinnamic acids (6.07 µg/ml), flavanols (71.72 µg/ml), and hydroxyl benzoic acids (97.82 µg/ml). The results showed that M. oliefera seed extract at 48 and 56 mg/l was able to cure against the toxic effects of CuO-NPs. The significant changes were observed in G* and G1 for sero-hepatic enzymes, anti-oxidants and histological profile. The investigations of this study showed that M. olifera is a good curative agent against potential induced toxicity of CuO-NPs in O. mossambicus. The curative effect of M. olifera is attributed to the presence of higher amount of secondary metabolites and bioactive compounds. This study suggested the use of M. olifera to curate different ailments in fish and other organisms.Keywords: CuO nanoparticles, curative, Moringa olifera, Oreochromis mossambicus
Procedia PDF Downloads 144504 Solid Lipid Nanoparticles of Levamisole Hydrochloride
Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud
Abstract:
Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences
Procedia PDF Downloads 431503 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites
Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy
Abstract:
Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements
Procedia PDF Downloads 264502 Properties of Hot-Pressed Alumina-Graphene Composites
Authors: P. Rutkowski, G. Górny, L. Stobierski, D. Zientara, W. Piekarczyk, K. Tran
Abstract:
The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before.Keywords: alumina, composite, hot-pressed, graphene, properties
Procedia PDF Downloads 273501 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy
Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour
Abstract:
Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle
Procedia PDF Downloads 74500 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination
Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz
Abstract:
Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.Keywords: crystalline TiO2, sonochemical mechanism, sol-gel reaction, XRD
Procedia PDF Downloads 456499 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification
Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado
Abstract:
DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles
Procedia PDF Downloads 245498 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 173497 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles
Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison
Abstract:
The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility
Procedia PDF Downloads 339496 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin
Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven
Abstract:
The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts
Procedia PDF Downloads 328495 Hybrid Nanostructures of Acrylonitrile Copolymers
Authors: A. Sezai Sarac
Abstract:
Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures
Procedia PDF Downloads 383494 Polymer Mediated Interaction between Grafted Nanosheets
Authors: Supriya Gupta, Paresh Chokshi
Abstract:
Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.Keywords: clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory
Procedia PDF Downloads 252493 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries
Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov
Abstract:
This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid
Procedia PDF Downloads 153492 Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting
Authors: J. E. Mendes, T. T. de Barros, O. B. G. de Assis, J. D. C. Pessoa
Abstract:
Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting.Keywords: chitosan microparticles, biomaterial, scaffold, bioprinting
Procedia PDF Downloads 322491 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 52490 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses
Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee
Abstract:
Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles
Procedia PDF Downloads 163489 Therapeutic Effects of Guar Gum Nanoparticles in Oxazolone-Induced Atopic Dermatitis
Authors: Nandita Ghosh, Shinjini Mitra, Ena Ray Banerjee
Abstract:
Atopic dermatitis (AD) is a chronic disease of the skin, involving itchy, reddish, and scaly lesions. It mainly affects children and has a high prevalence in developing countries. The AD may occur due to environmental or genetic factors. There is no permanent cure for the AD. Currently, all therapeutic strategies involve methods to simply alleviate the symptoms, and include lotions and corticosteroids, which have adverse effects. Use of phytochemicals and natural products has not yet been exploited fully. The particle used in this study is derived from Cyamopsis tetragonoloba, an edible polysaccharide with a galactomannan component. The mannose component mainly increases its specificity towards cellular uptake by mannose receptors, highly expressed by the macrophage. The aim of this study was to determine the therapeutic effect of guar gum nanoparticles (GN) in vitro and in vivo in the AD. To assess the wound healing capacity of the guar gum nanoparticle (GN), we first treated adherent NIH3T3 cells, with a scratch injury, with GN. GN successfully healed the wound caused by the scratch. In the in vivo experiment, Balb/c mice ear were topically treated with oxazolone (oxa) to induce AD and then were topically treated with GN. The ear thickness was increased significantly till day 28 on the treatment of Oxa. The GN application showed a significant decrease in the thickness as assessed on day 28. The total cell count of skin cells showed fold increase when treated with oxa, was again decreased on topical application of GN on the affected skin. The eosinophil count, as assessed by Giemsa staining was also increased when treated with oxa, GN application led to a significant decrease. The IgE level was assessed in the serum samples which showed that GN helped in restoring the alleviated IgE level. The T helper cells and the macrophage population showed increased percentage when treated with oxa, the GN application. This was examined by flow cytometry. The H&E staining of the ear tissue showed epidermal thickness in the oxa treated mice, GN application showed reduced cellular filtration followed by epidermal thickness. Thus our assays showed that GN was successful in alleviating the disease caused by Oxa when administered topically.Keywords: allergen, inflammation, nanodrug, wound
Procedia PDF Downloads 243488 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents
Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino
Abstract:
Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.Keywords: biopolymers, MRI, nanoparticles, contrast agent
Procedia PDF Downloads 149487 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 56486 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt
Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed
Abstract:
Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX
Procedia PDF Downloads 174485 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device
Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres
Abstract:
The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device
Procedia PDF Downloads 280