Search results for: Efficiency
5672 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section
Authors: Redouane Lombarkia
Abstract:
To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental resultsKeywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA
Procedia PDF Downloads 955671 Passive Aeration of Wastewater: Analytical Model
Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy
Abstract:
Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.Keywords: aeration, analytical, passive, wastewater
Procedia PDF Downloads 2095670 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 325669 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs
Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii
Abstract:
Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity
Procedia PDF Downloads 5215668 Numerical Study of Heat Transfer Nanofluid TiO₂ through a Solar Flat Plate Collector
Authors: A. Maouassi, A. Beghidja, S. Daoud, N. Zeraibi
Abstract:
This paper illustrates a practical application of nanoparticles (TiO₂) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary, is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 800. Results from the application of those nonfluids are obtained versus pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number.Keywords: CFD, forced convection, nanofluid, solar flat plate collector efficiency, TiO₂ nanoparticles
Procedia PDF Downloads 1605667 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames
Procedia PDF Downloads 3755666 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM
Procedia PDF Downloads 3875665 Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery
Authors: Raksit Nanthatanti, Jarruwat Charoensuk, S. Hirai, Manop Masomtop
Abstract:
In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configurationKeywords: cooling efficiency, channel count, lithium-ion battery, operating
Procedia PDF Downloads 1025664 Internal Capital Market Efficiency Study Based on Improved Cash Flow Sensitivity Coefficient - Take Tomorrow Group as an Example
Abstract:
Because of the difficulty of financing from the external capital market, the reorganization and merger of private enterprises have formed a family group, seeking the help of the internal capital market to alleviate the capital demand. However, the inefficiency of the internal capital market can damage the effect it should have played, and even hinder the development of enterprises. This paper takes the "Tomorrow Group" as the research object to carry on the case analysis. After using the improved cash flow sensitivity coefficient to measure the efficiency of the internal capital market of Tomorrow Group, the inefficiency phenomenon is found. Then the analysis reveals that the reasons for its inefficiency include that the pyramidal equity structure is conducive to control, the separation of cash flow rights and control rights, the concentration of equity leads to poor balance, the abandonment of real industries and information asymmetry.Keywords: tomorrow group, internal capital market, related-party transactions, Baotou tomorrow technology Co., LTD
Procedia PDF Downloads 1365663 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use
Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner
Abstract:
The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning
Procedia PDF Downloads 3615662 Non-thermal Plasma Promotes Boar Sperm Quality Through Increasing AMPK Methylation
Authors: Jiaojiao Zhang
Abstract:
Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing the exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality by reducing oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows great potential in assisted reproduction to solve the problem of male infertility.Keywords: non-thermal DBD plasma, sperm quality, AMPK methylation, energy metabolism, antioxidant capacity
Procedia PDF Downloads 95661 Assessment of the Two-Way Relationship between Capital Structure and Operation Performance of Listed Companies on Vietnam’s Stock
Authors: Uyen Tran Tu
Abstract:
The decision on capital structure is one of the most important and sophisticated decisions in financial management in order to improve firm performance. This article would study the two-way impact between capital structure and firm performance. The study use EVIEWS 6.0 software to determine a two-way relationship between the capital structure and firm performance based on two-stage regression (2SLS - Two-Stage Least Squares). The findings are: capital structure has the opposite effect on the business efficiency and vice versa, factors that effect on business efficiency include Size and Opportunities. Factors effects on the capital structure are size; liquidity. These factors also affect the ratio of capital structure (total debt/ total asset) of companies. In particular, liquidity has the opposite effect; and the size of the business has the same impact. The results of the study are in line with the theory and empirical studies presented, and the results of the study are unchanged for all three years 2015-2017.Keywords: capital structure, firm performance, factors, two-way relationship
Procedia PDF Downloads 1585660 Analysis of the Feasibility of Using a Solar Spiral Type Water Heater for Swimming Pool Application in Physiotherapy and Sports Centers
Authors: G. B. M. Carvalho, V. A. C. Vale, E. T. L. Cöuras Ford
Abstract:
A heated pool makes it possible to use it during all hours of the day and in the seasons, especially in physiotherapies and sports centers. However, the cost of installation, operation and maintenance often makes it difficult to deploy. In addition, the current global policy for the use of natural resources from energy sources contradicts the most common means of heating swimming pools, such as the use of gas (Natural Gas and Liquefied Petroleum Gas), the use of firewood or oil and the use of electricity (heat pumps and electrical resistances). In this sense, this work focuses on the use of solar water heaters to be used in swimming pools of physiotherapy centers, in order to analyze their viability for this purpose in view of the costs linked to the medium and/or long term heating. For this, materials of low cost, low weight, easy commercial acquisition were used besides easy manufacture. Parameters such as flow, temperature distribution, efficiency and technical-economic feasibility were evaluated.Keywords: heating, water, pool, solar energy, solar collectors, temperature, efficiency
Procedia PDF Downloads 1665659 Diagnostic Investigation of Aircraft Performance at Different Winglet Cant Angles
Authors: M. Dinesh, V. Kenny Mark, Dharni Vasudhevan Venkatesan, B. Santhosh Kumar, R. Sree Radesh, V. R. Sanal Kumar
Abstract:
Comprehensive numerical studies have been carried out to examine the best aerodynamic performance of subsonic aircraft at different winglet cant angles using a validated 3D k-ω SST model. In the parametric analytical studies, NACA series of airfoils are selected. Basic design of the winglet is selected from the literature and flow features of the entire wing including the winglet tip effects have been examined with different cant angles varying from 150 to 600 at different angles of attack up to 140. We have observed, among the cases considered in this study that a case with 150 cant angle the aerodynamics performance of the subsonic aircraft during takeoff was found better up to an angle of attack of 2.80 and further its performance got diminished at higher angles of attack. Analyses further revealed that increasing the winglet cant angle from 150 to 600 at higher angles of attack could negate the performance deterioration and additionally it could enhance the peak CL/CD on the order of 3.5%. The investigated concept of variable-cant-angle winglets appears to be a promising alternative for improving the aerodynamic efficiency of aircraft.Keywords: aerodynamic efficiency, cant angle, drag reduction, flexible winglets
Procedia PDF Downloads 5235658 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites
Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers
Abstract:
An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite
Procedia PDF Downloads 1625657 Institutional Superposition, over Management and Coastal Economic Development: Coastal Areas in China
Authors: Mingbao Chen, Mingli Zhao
Abstract:
The coastal zone is the intersection of land and sea system, and also is the connecting zone of the two economic systems of land and sea. In the world, all countries attach great importance to the coastal zone management and the coastal zone economy. In China, the government has developed a number of related coastal management policies and institutional, such as marine functional zoning, main function zoning, integrated coastal zone management, to ensure the sustainable utilization of the coastal zone and promote the development of coastal economic. However, in practice, the effect is not satisfactory. This paper analyses the coastal areas of coastal zone management on coastal economic growth contribution based on coastal areas economic development data with the 2007-2015 in China, which uses the method of the evaluation index system of coastal zone management institutional efficiency. The results show that the coastal zone management institutional objectives are not clear, and the institutional has high repeatability. At the same time, over management of coastal zone leads to low economic efficiency because the government management boundary is blurred.Keywords: institutional overlap, over management, coastal zone management, coastal zone economy
Procedia PDF Downloads 3935656 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes
Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft
Abstract:
Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization
Procedia PDF Downloads 1625655 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System
Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel
Abstract:
Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics
Procedia PDF Downloads 2595654 Inbreeding and Its Effect on Growth Performance in a Closed Herd of New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The influence of inbreeding on growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India was studied in a closed herd. Data were collected over a period of 15 years (1998 to 2012). The traits studied were body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing. The effects of inbreeding along with other non-genetic factors (sex of the kit, season and period of birth of the kit) were analyzed using least-squares method. The inbreeding (F) and equivalent inbreeding (EF) coefficients were taken as fixed classes as well as covariates in separate analyses. When taken as covariate, the effect was analyzed as partial regression of respective growth trait on individual inbreeding coefficient (F or EF). The mean body weights at weaning, post-weaning and marketing were 0.715, 1.276 and 2.187 kg, respectively. The maximum growth efficiency was noticed between weaning and post-weaning. Season and period had highly significant influence on all the growth parameters studied and sex of the kit had significant influence on certain growth efficiency traits only. The average coefficients of inbreeding and equivalent inbreeding in the population were 13.233 and 17.585 percent, respectively. About 11.17 percent of total matings were highly inbred in which full-sib, half-sib and parent-offspring matings were 1.20, 6.30 and 3.67 percent, respectively. The regression of body weight traits on F and EF showed negative effect whereas most of the growth efficiency traits showed positive effects. Significant inbreeding depression was observed in W42 and W70. The depression in W42 was 0.214 kg and 0.139 kg and in W70 was 0.269 kg and 0.172 kg for every one unit increase in F and EF, respectively. Though the trait W135 showed positive value and ADG1 showed depression, the effects of inbreeding and equivalent inbreeding were non-significant in these traits. Higher values of inbreeding depression could be due to more variance of F or EF in the population. The analysis of the effect of level of inbreeding on growth traits revealed that the inbreeding class was significant on W70, ADG2, RGR2 and KR2 while EF classes had significant influence only on ADG2, RGR2 and KR2. Obviously, inbreeding does not have a positive effect, therefore, these results suggest that inbreeding had no effect on these traits.Keywords: growth parameters, equivalent inbreeding, inbreeding effects, rabbit genetics
Procedia PDF Downloads 3665653 Acoustic and Thermal Compliance from the Execution Theory
Authors: Saou Mohamed Amine
Abstract:
The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. However, an overwhelming issue of existing non-energy efficient buildings which exceeds the number of new building could be ineffective if the buildings are not refurbished through the energy efficient measures. Thus, energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability that offers significant opportunities for reducing global energy consumption and greenhouse gas emissions. However, the quality of design team attributes and the characteristics of the refurbishment building projects have been argued to be the main factors that determine the energy efficiency performance of the building.Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics
Procedia PDF Downloads 3665652 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines
Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi
Abstract:
Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines.Keywords: beam deformation, EPS block, laboratory test, post-Beam system, soil surface settlement
Procedia PDF Downloads 2385651 Green Procedure for Energy and Emission Balancing of Alternative Scenario Improvements for Cogeneration System: A Case of Hardwood Lumber Manufacturing Process
Authors: Aldona Kluczek
Abstract:
Energy efficient process have become a pressing research field in manufacturing. The arguments for having an effective industrial energy efficiency processes are interacted with factors: economic and environmental impact, and energy security. Improvements in energy efficiency are most often achieved by implementation of more efficient technology or manufacturing process. Current processes of electricity production represents the biggest consumption of energy and the greatest amount of emissions to the environment. The goal of this study is to improve the potential energy-savings and reduce greenhouse emissions related to improvement scenarios for the treatment of hardwood lumber produced by an industrial plant operating in the U.S. through the application of green balancing procedure, in order to find the preferable efficient technology. The green procedure for energy is based on analysis of energy efficiency data. Three alternative scenarios of the cogeneration systems plant (CHP) construction are considered: generation of fresh steam, the purchase of a new boiler with the operating pressure 300 pounds per square inch gauge (PSIG), an installation of a new boiler with a 600 PSIG pressure. In this paper, the application of a bottom-down modelling for energy flow to devise a streamlined Energy and Emission Flow Analyze method for the technology of producing electricity is illustrated. It will identify efficiency or technology of a given process to be reached, through the effective use of energy, or energy management. Results have shown that the third scenario seem to be the efficient alternative scenario considered from the environmental and economic concerns for treating hardwood lumber. The energy conservation evaluation options could save an estimated 6,215.78 MMBtu/yr in each year, which represents 9.5% of the total annual energy usage. The total annual potential cost savings from all recommendations is $143,523/yr, which represents 30.1% of the total annual energy costs. Estimation have presented that energy cost savings are possible up to 43% (US$ 143,337.85), representing 18.6% of the total annual energy costs.Keywords: alternative scenario improvements, cogeneration system, energy and emission flow analyze, energy balancing, green procedure, hardwood lumber manufacturing process
Procedia PDF Downloads 2085650 Microalgae Bacteria Granules, an Alternative Technology to the Conventional Wastewater Treatment: Structural and Metabolic Characterization
Authors: M. Nita-Lazar, E. Manea, C. Bumbac, A. Banciu, C. Stoica
Abstract:
The population and economic growth have generated a significant new number of pollutant compounds which have to be degraded before reaching the environment. The wastewater treatment plants (WWTPs) have been the last barrier between the domestic and/or industrial wastewaters and the environment. At present, the conventional WWTPs have very high operational costs, most of them linked to the aeration process (60-65% from total energy costs related to wastewater treatment). In addition, they have had a low efficiency in pollutants removal such as pharmaceutical and other resilient anthropogenic compounds. In our study, we have been focused on new wastewater treatment strategies to enhance the efficiency of pollutants removal and decrease the wastewater treatment operational costs. The usage of mixed microalgae-bacteria granules technology generated high efficiency and low costs by a better harvesting and less expensive aeration. The intertrophic relationships between microalgae and bacteria have been characterized by the structure of the population community to their metabolic relationships. The results, obtained by microscopic studies, showed well-organized and stratified microalgae-bacteria granules where bacteria have been enveloped in the microalgal structures. Moreover, their population community structure has been modulated as well as their nitrification, denitrification processes (analysis based on qPCR genes expression) by the type of the pollutant compounds and amounts. In conclusion, the understanding and modulation of intertrophic relationships between microalgae and bacteria could be an economical and technological viable alternative to the conventional wastewater treatment. Acknowledgements: This research was supported by grant PN-III-P4-ID-PCE-2016-0865 from the Romanian National Authority for Scientific Research and Innovation CNCS/CCCDI-UEFISCDI.Keywords: activated sludge, bacteria, granules, microalgae
Procedia PDF Downloads 1235649 The Economics of Justice as Fairness
Authors: Antonio Abatemarco, Francesca Stroffolini
Abstract:
In the economic literature, Rawls’ Theory of Justice is usually interpreted in a two-stage setting, where a priority to the worst off individual is imposed as a distributive value judgment. In this paper, instead, we model Rawls’ Theory in a three-stage setting, that is, a separating line is drawn between the original position, the educational stage, and the working life. Hence, in this paper, we challenge the common interpretation of Rawls’ Theory of Justice as Fairness by showing that this Theory goes well beyond the definition of a distributive value judgment, in such a way as to embrace efficiency issues as well. In our model, inequalities are shown to be permitted as far as they stimulate a greater effort in education in the population, and so economic growth. To our knowledge, this is the only possibility for the inequality to be ‘bought’ by both the most-, and above all, the least-advantaged individual as suggested by the Difference Principle. Finally, by recalling the old tradition of ‘universal ex-post efficiency’, we show that a unique optimal social contract does not exist behind the veil of ignorance; more precisely, the sole set of potentially Rawls-optimal social contracts can be identified a priori, and partial justice orderings derived accordingly.Keywords: justice, Rawls, inequality, social contract
Procedia PDF Downloads 2225648 Possible Mechanism of DM2 Development in OSA Patients Mediated via Rev-Erb-Alpha and NPAS2 Proteins
Authors: Filip Franciszek Karuga, Szymon Turkiewicz, Marta Ditmer, Marcin Sochal, Piotr Białasiewicz, Agata Gabryelska
Abstract:
Circadian rhythm, an internal coordinator of physiological processes is composed of a set of semi-autonomous clocks. Clocks are regulated through the expression of circadian clock genes which form feedback loops, creating an oscillator. The primary loop consists of activators: CLOCK, BMAL1 and repressors: CRY, PER. CLOCK can be substituted by the Neuronal PAS Domain Protein 2 (NPAS2). Orphan nuclear receptor (REV-ERB-α) is a component of the secondary major loop, modulating the expression of BMAL1. Circadian clocks might be disrupted by the obstructive sleep apnea (OSA), which has also been associated with type II diabetes mellitus (DM2). Interestingly, studies suggest that dysregulation of NPAS2 and REV-ERB-α might contribute to the pathophysiology of DM2 as well. The goal of our study was to examine the role of NPAS2 and REV-ERB-α in DM2 in OSA patients. After examination of the clinical data, all participants underwent polysomnography (PSG) to assess their apnea-hypopnea index (AHI). Based on the acquired data participants were assigned to one of 3 groups: OSA (AHI>30, no DM2; n=17 for NPAS2 and 34 for REV-ERB-α), DM2 (AHI>30 + DM2; n=7 for NPAS2 and 15 for REV-ERB-α) and control group (AHI<5, no DM2; n=16 for NPAS2 and 31 for REV-ERB-α). ELISA immunoassay was performed to assess the serum protein level of REV-ERB-α and NPAS2. The only statistically significant difference between groups was observed in NPAS2 protein level (p=0.037). Post-hoc analysis showed significant differences between the OSA and the control group (p=0.017). AHI and NPAS2 level was significantly correlated (r=-0.478, p=0.002) in all groups. A significant correlation was observed between the REV-ERB-α level and sleep efficiency (r=0.617, p=0.005) as well as sleep maintenance efficiency (r=0.645, p=0.003) in the OSA group. We conclude, that NPAS2 is associated with OSA severity and might contribute to metabolic sequelae of this disease. REV-ERB-α on the other hand can influence sleep continuity and efficiency.Keywords: OSA, diabetes mellitus, endocrinology, chronobiology
Procedia PDF Downloads 1555647 Smart Production Planning: The Case of Aluminium Foundry
Authors: Samira Alvandi
Abstract:
In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries
Procedia PDF Downloads 765646 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities
Authors: Pedro Esteban
Abstract:
Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities
Procedia PDF Downloads 1125645 Fabrication of Cesium Iodide Columns by Rapid Heating Method
Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang
Abstract:
This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.Keywords: cesium iodide, high efficiency, vapor, rapid heating, crystal column
Procedia PDF Downloads 3735644 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization
Authors: Shahrukh Ahmad, Purnendu Bose
Abstract:
Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs
Procedia PDF Downloads 795643 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry
Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan
Abstract:
Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.Keywords: energy, renewable energy, selective surface, solar collector
Procedia PDF Downloads 207