Search results for: accurate planning of production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12568

Search results for: accurate planning of production

3178 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study

Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi

Abstract:

Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.

Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant

Procedia PDF Downloads 113
3177 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets

Authors: Toka M. Abufarag

Abstract:

This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.

Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo

Procedia PDF Downloads 120
3176 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays

Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova

Abstract:

Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.

Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS

Procedia PDF Downloads 105
3175 Co-Participation: Towards the Sustainable Micro-Rural Complex in China

Authors: Danhua Xu, Zhenlan Qian, Zhu Wang, Jiayan Fu, Ling Wang

Abstract:

A new business mode called rural complex is proposed by the China’s government to promote the development the economy in the rural area. However, for the sake of current national conditions including the great number of labor farmers owning the small scale farmlands and the uncertain enthusiasm from the enterprises, it is challenging to develop the big scale rural complex. To react to the dilemmas, this paper puts forward the micro-rural complex to boost the small scale farms by co-participation from a bottom-up mode. By analyzing the potential opportunities to find the suitable mode, exploring the interdisciplinary and interdepartmental co-participation way beyond architecture design and spatial planning between different actors, the paper tries to find a complete process towards the sustainable micro-rural complex and conducts an ongoing practice to optimize it, to bring new insights and reference to the rural development. According to the transformation of the economy, the micro-rural complex will develop into two phases, both of which can be discussed in three parts, the economic mode, the spatial support, and the Cooperating mechanism. The first stage is the agriculture co-participation based on the rise of Community supported agriculture (CSA) in which the consumers buy the products planted in an organic way from the farmers directly with a higher price to support the small-scale agriculture and overcome the food safety issues. The following stage sets up the agritourism catering the citizens with the restaurants, inns and other tourist service facilities to be planned and designed. In the whole process, the interdisciplinary co-participation will play an important role to provide the guidelines and consultation from the agronomists, architects and rural planners to the farmers. This mode has been applied to an on-going farm project, from which to explore the mode in a more practical way. In conclusion, the micro-rural complex aims at creating a balanced urban-rural relationship by co-participation taking advantage of the different actors. The spatial development is considered from the economic mode and social organization. The integration of the mode based on the small-scale agriculture will contribute to a sustainable growth and realize the long run development in the rural area.

Keywords: micro-rural complex, co-participation, sustainable development, China

Procedia PDF Downloads 258
3174 Assessing Transition to Renewable Energy for Transportation in Indonesia through Drop-in Biofuel Utilization

Authors: Maslan Lamria, Ralph E. H. Sims, Tatang H. Soerawidjaja

Abstract:

In increasing its self-sufficiency on transportation fuel, Indonesia is currently developing commercial production and use of drop-in biofuel (DBF) from vegetable oil. To maximize the level of success, it is necessary to get insights on how the implementation would develop as well as any important factors. This study assessed the dynamics of transition from existing fossil fuel system to a renewable fuel system, which involves the transition from existing biodiesel to projected DBF. A systems dynamics approach was applied and a model developed to simulate the dynamics of liquid biofuel transition. The use of palm oil feedstock was taken as a case study to assess the projected DBF implementation by 2045. The set of model indicators include liquid fuel self-sufficiency, liquid biofuel share, foreign exchange savings and green-house gas emissions reduction. The model outputs showed that supports on DBF investment and use play an important role in the transition progress. Given assumptions which include application of a maximum level of supports over time, liquid fuel self-sufficiency would be still unfulfilled in which palm biofuel contribution is 0.2. Thus, other types of feedstock such as algae and oil feedstock from marginal lands need to be developed synergically. Regarding support on DBF use, this study recommended that removal of fossil subsidy would be necessary prior to applying a carbon tax policy effectively.

Keywords: biofuel, drop-in biofuel, energy transition, liquid fuel

Procedia PDF Downloads 135
3173 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance

Authors: Yasser Aldali

Abstract:

The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.

Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact

Procedia PDF Downloads 445
3172 Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana

Authors: Marriette Sakah, Christoph Kuhn, Samuel Gyamfi

Abstract:

Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries.

Keywords: energy efficiency, energy saving potential, renewable energy integration, residential buildings, urban Africa

Procedia PDF Downloads 282
3171 Identification and Characterization of Genes Expressed in Diseased Condition Silkworms (Bombyx mori): A Systematic Investigation

Authors: Siddharth Soni, Gourav Kumar Pandey, Sneha Kumari, Dev Mani Pandey, Koel Mukherjee

Abstract:

The silkworm Bombyx mori is a commercially important insect, but a major roadblock in silk production are silkworm diseases. Flacherie is one of the diseases of the silkworm, that affects the midgut of the 4th and 5th instar larvae and eventually makes them lethargic, stop feeding and finally result in their death. The concerned disease is a result of bacterial and viral infection and in some instances a combination of both. The present study aims to identify and study the expression level of genes in the flacherie condition. For the said work, total RNA was isolated from the infected larvae at their most probable infectious instar and cDNA was synthesized using Reverse Transcriptase PCR (RT-PCR). This cDNA was then used to amplify disease relalted genes whose expression levels were checked using quantitaive PCR (qPCR) using the double delta Ct method. Cry toxin receptors like APN and BtR-175, ROS mediator Dual Oxidase are few proteins whose genes were overexpressed. Interestingly, pattern recognition receptors (PRRs) C-type lectins' genes were found to be downregulated. The results explain about the strong expression of genes that can distinguish the concerned protein in the midgut of diseased silkworm and thereby aiding knowledge in the field of inhibitor designing research.

Keywords: Bombyx mori, flacherie disease, inhibitor designing, up and down regulation

Procedia PDF Downloads 281
3170 Overcoming Challenges of Teaching English as a Foreign Language in Technical Classrooms: A Case Study at TVTC College of Technology

Authors: Sreekanth Reddy Ballarapu

Abstract:

The perception of the whole process of teaching and learning is undergoing a drastic and radical change. More and more student-centered, pragmatic, and flexible approaches are gradually replacing teacher-centered lecturing and structural-syllabus instruction. The issue of teaching English as a Foreign language is no exception in this regard. The traditional Present-Practice-Produce (P-P-P) method of teaching English is overtaken by Task-Based Teaching which is a subsidiary branch of Communicative Language Teaching. At this juncture this article strongly tries to convey that - Task-based learning, has an advantage over other traditional methods of teaching. All teachers of English must try to customize their texts into productive tasks, apply them, and evaluate the students as well as themselves. Task Based Learning is a double edged tool which can enhance the performance of both the teacher and the taught. The sample for this case study is a class of 35 students from Semester III - Network branch at TVTC College of Technology, Adhum - Kingdom of Saudi Arabia. The students are high school passed out and aged between 19-21years.For the present study the prescribed textbook Technical English 1 by David Bonamy was used and a number of language tasks were chalked out during the pre- task stage and the learners were made to participate voluntarily and actively. The Action Research methodology was adopted within the dual framework of Communicative Language Teaching and Task-Based Learning. The different tools such as questionnaires, feedback and interviews were used to collect data. This study provides information about various techniques of Communicative Language Teaching and Task Based Learning and focuses primarily on the advantages of using a Task Based Learning approach. This article presents in detail the objectives of the study, the planning and implementation of the action research, the challenges encountered during the execution of the plan, and the pedagogical outcome of this project. These research findings serve two purposes: first, it evaluates the effectiveness of Task Based Learning and, second, it empowers the teacher's professionalism in designing and implementing the tasks. In the end, the possibility of scope for further research is presented in brief.

Keywords: action research, communicative language teaching, task based learning, perception

Procedia PDF Downloads 236
3169 Sustainable Integrated Waste Management System

Authors: Lidia Lombardi

Abstract:

Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.

Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste

Procedia PDF Downloads 55
3168 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection

Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi

Abstract:

There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.

Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA

Procedia PDF Downloads 367
3167 Stability of Novel Peptides (Linusorbs) in Flaxseed Meal Fortified Gluten-Free Bread

Authors: Youn Young Shim, Martin J. T. Reaney

Abstract:

Flaxseed meal is rich in water-soluble gums and, as such, can improve texture in gluten-free products. Flaxseed bioactive-antioxidant peptides, linusorbs (LOs, a.k.a. cyclolinopeptides), are a class of molecules that may contribute health-promoting effects. The effects of dough preparation, baking, and storage on flaxseed-derived LOs stability in doughs and baked products are un-known. Gluten-free (GF) bread dough and bread were prepared with flaxseed meal and the LO content was determined in the flaxseed meal, bread flour containing the flaxseed meal, bread dough, and bread. The LO contents during storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were determined by high-performance liquid chromatog-raphy-diode array detection (HPLC-DAD). The content of oxidized LOs like [1–9-NαC],[1(Rs, Ss)-MetO]-linusorb B2 (LO14) were substantially constant in flaxseed meal and flour produced from flaxseed meal under all conditions for up to 4 weeks. However, during GF-bread production LOs decreased. Due to microbial contamination dough could not be stored at either 4 or 21°C, and bread could only be stored for one week at 21°C. Up to 4 weeks storage was possible for bread and dough at −18 °C and bread at 4 °C without the loss of LOs. The LOs change mostly from processing and less so from storage. The concentration of reduced LOs in flour and meal were much higher than measured in dough and bread. There was not a corre-sponding increase in oxidized LOs. The LOs in flaxseed meal-fortified bread were stable for products stored at low temperatures. This study is the first of the impact of baking conditions on LO content and quality.

Keywords: flaxseed, stability, gluten-free, antioxidant

Procedia PDF Downloads 83
3166 Sustainable Management of Gastronomy Experiences as a Mechanism to Promote the Local Economy

Authors: Marianys Fernandez

Abstract:

Gastronomic experiences generate a positive impact on the dynamization of the economy when they are managed in a sustainable manner, given that they value the identity of the destination, strengthen cooperation between stakeholders in the sector, contribute to the preservation of gastronomic heritage, and encourage the implementation of competitive and sustainable public policies. Having as its main aim the analysis of sustainable management of gastronomic experiences, this study analyses different elements associated with the promotion of the local economy. For this purpose, a systematic literature review was carried out to identify, select, synthesise, and evaluate the studies that respond to the research objectives in order to select more reliable articles for research and reduce the potential for bias within the review of literature. To obtain reliable, updated and relevant sources for scientific research, the Web of Science and Scopus databases were used, taking into account the following key words: (1) experiential tourism, (2) gastronomy experience, (3) sustainable destination management, (4) sustainable gastronomy, (5) sustainable economy, in which we obtained a final list of 76 articles. The analysis of the literature allowed us to identify the most pertinent elements referring to the objective of the study: (a) need for competitive policies in the gastronomic sector to promote sustainable local economic development, (b) incentive for cooperation between stakeholders in the gastronomic sector, to guarantee the competitiveness of the destination, (c) propose sustainable standards in the gastronomic tourism sector that link the local economy. Gastronomic experiences constitute a dynamic element of the local economy and promote sustainable tourism. We can highlight that sustainability is a mechanism for the preservation of regional identity in the gastronomic sector through the valuation of the attributes of gastronomy, promotion of the local economy, strengthening of strategic alliances between the stakeholders of the gastronomic sector and its relevant contribution to the competitiveness of the destination. The theoretical implications of the study are focused on suggesting planning, management, and policy criteria to promote the sustainable management of gastronomic experiences in order to promote the local economy. In the practical context, research integrates different approaches, tools, and methods to encourage the active participation of local actors in the promotion of the local economy through the sustainable management of gastronomic tourism.

Keywords: experiential tourism, gastronomy experience, sustainable destination management, sustainable economy, sustainable gastronomy

Procedia PDF Downloads 68
3165 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy

Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket

Abstract:

Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.

Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety

Procedia PDF Downloads 146
3164 Outwrestling Cataclysmic Tsunamis at Hilo, Hawaii: Using Technical Developments of the past 50 Years to Improve Performance

Authors: Mark White

Abstract:

The best practices for owners and urban planners to manage tsunami risk have evolved during the last fifty years, and related technical advances have created opportunities for them to obtain better performance than in earlier cataclysmic tsunami inundations. This basic pattern is illustrated at Hilo Bay, the waterfront area of Hilo, Hawaii, an urban seaport which faces the most severe tsunami hazard of the Hawaiian archipelago. Since April 1, 1946, Hilo Bay has endured tsunami waves with a maximum water height exceeding 2.5 meters following four severe earthquakes: Unimak Island (Mw 8.6, 6.1 m) in 1946; Valdiva (Mw 9.5, the largest earthquake of the 20th century, 10.6 m) in 1960; William Prince Sound (Mw 9.2, 3.8 m) in 1964; and Kalapana (Mw 7.7, the largest earthquake in Hawaii since 1868, 2.6 m) in 1975. Ignoring numerous smaller tsunamis during the same time frame, these four cataclysmic tsunamis have caused property losses in Hilo to exceed $1.25 billion and more than 150 deaths. It is reasonable to foresee another cataclysmic tsunami inundating the urban core of Hilo in the next 50 years, which, if unchecked, could cause additional deaths and losses in the hundreds of millions of dollars. Urban planners and individual owners are now in a position to reduce these losses in the next foreseeable tsunami that generates maximum water heights between 2.5 and 10 meters in Hilo Bay. Since 1946, Hilo planners and individual owners have already created buffer zones between the shoreline and its historic downtown area. As these stakeholders make inevitable improvements to the built environment along and adjacent to the shoreline, they should incorporate new methods for better managing the obvious tsunami risk at Hilo. At the planning level, new manmade land forms, such as tsunami parks and inundation reservoirs, should be developed. Individual owners should require their design professionals to include sacrificial seismic and tsunami fuses that will perform well in foreseeable severe events and that can be easily repaired in the immediate aftermath. These investments before the next cataclysmic tsunami at Hilo will yield substantial reductions in property losses and fatalities.

Keywords: hilo, tsunami parks, reservoirs, fuse systems, risk managment

Procedia PDF Downloads 162
3163 Development IoT System for Smart Maize Production in Nigeria

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Luka

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. In this research, an Internet of Things test kit was developed to fill in the gaps created by wet soil analysis. The kit comprises components that were used to measure Nitrogen, Phosphorous and potassium (N, P, K) soil content, soil temperature and soil moisture at a series of intervals. In this implementation, the fieldwork was carried out within 0.2 hectares of land divided into smaller plots. Nitrogen values from the three reps range from 14.8 – 15mg/kg, Phosphorous 20.2-21.4 mg/kg, and Potassium 50.2-53 mg/kg. This information with soil moisture information obtained enabled the farmers to make informed and precise decisions on fertilizer applications, and wastage was avoided.

Keywords: internet of things, soil Nutrients, test kit, soil temperature

Procedia PDF Downloads 58
3162 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia

Authors: Valentina Adduci

Abstract:

The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.

Keywords: bioclimatic devices, farmstead, rural landscape, sustainability

Procedia PDF Downloads 381
3161 Assessment of the Physico-Chemical Parameters and Heavy Metal Concentration in Water and Callinectes amnicola (Swimming Crab) in a Crude Oil Exposed Community (Bodo Creek), Rivers State, Nigeria

Authors: Ehiedu Philomina Kika, Jessica Chinonso Ehilegbu

Abstract:

The exploration and production of fossil fuel particularly crude oil has led to some serious environmental damage in some oil producing communities like the Bodo Community who rely heavily on their aquatic environment for food and water. This study was therefore carried out to investigate the level of some heavy metals in water and Callinectes amnicola (Swimming Crab) in the month of August, September and October from Bodo creek, Rivers State, Nigeria. The physico-chemical parameters of the water were also analyzed in-situ. The levels of heavy metals, Lead (Pb), Cadmium (Cd), Chromium (Cr), Zinc (Zn), Copper (Cu) were analyzed in water and in Callinectes amnicola (Swimming Crab), using Atomic Absorption Spectrophotometer (AAS) after acid digestion. For the concentration of heavy metals in water, Pb ranged from 0.103 - 0.791 mg/l, Zn 0.0025 - 0.342 mg/l, Cr < 0.001 - 0.304 mg/l, Cd 0.011 - 0.116 mg/l and Cu <0.001 - 0.079 mg/l. For the concentration of heavy metals in Callinectes amnicola (Swimming Crab), the level of Pb ranged from 0.359 - 0.849 mg/l, Zn 0.134 - 0.342 mg/l, Cd 0.053 - 0.103 mg/l, Cr < 0.001 - <0.001 mg/l, Cu < 0.001 - 0.131 mg/l. The concentrations of Pb, Cd and Cr for all water and crab samples collected from the various stations were higher than permissible level suggesting serious anthropogenic influence. Thus, precaution needs to be taken to prevent further contamination and adequate purification measures need to be put in place. Therefore, there should be periodic environmental pollution monitoring, for assessment and awareness especially with regards heavy metal.

Keywords: Bodo creek, crude oil, heavy metal, swimming crab

Procedia PDF Downloads 159
3160 Evaluation of Groundwater Quality and Contamination Sources Using Geostatistical Methods and GIS in Miryang City, Korea

Authors: H. E. Elzain, S. Y. Chung, V. Senapathi, Kye-Hun Park

Abstract:

Groundwater is considered a significant source for drinking and irrigation purposes in Miryang city, and it is attributed to a limited number of a surface water reservoirs and high seasonal variations in precipitation. Population growth in addition to the expansion of agricultural land uses and industrial development may affect the quality and management of groundwater. This research utilized multidisciplinary approaches of geostatistics such as multivariate statistics, factor analysis, cluster analysis and kriging technique in order to identify the hydrogeochemical process and characterizing the control factors of the groundwater geochemistry distribution for developing risk maps, exploiting data obtained from chemical investigation of groundwater samples under the area of study. A total of 79 samples have been collected and analyzed using atomic absorption spectrometer (AAS) for major and trace elements. Chemical maps using 2-D spatial Geographic Information System (GIS) of groundwater provided a powerful tool for detecting the possible potential sites of groundwater that involve the threat of contamination. GIS computer based map exhibited that the higher rate of contamination observed in the central and southern area with relatively less extent in the northern and southwestern parts. It could be attributed to the effect of irrigation, residual saline water, municipal sewage and livestock wastes. At wells elevation over than 85m, the scatter diagram represents that the groundwater of the research area was mainly influenced by saline water and NO3. Level of pH measurement revealed low acidic condition due to dissolved atmospheric CO2 in the soil, while the saline water had a major impact on the higher values of TDS and EC. Based on the cluster analysis results, the groundwater has been categorized into three group includes the CaHCO3 type of the fresh water, NaHCO3 type slightly influenced by sea water and Ca-Cl, Na-Cl types which are heavily affected by saline water. The most predominant water type was CaHCO3 in the study area. Contamination sources and chemical characteristics were identified from factor analysis interrelationship and cluster analysis. The chemical elements that belong to factor 1 analysis were related to the effect of sea water while the elements of factor 2 associated with agricultural fertilizers. The degree level, distribution, and location of groundwater contamination have been generated by using Kriging methods. Thus, geostatistics model provided more accurate results for identifying the source of contamination and evaluating the groundwater quality. GIS was also a creative tool to visualize and analyze the issues affecting water quality in the Miryang city.

Keywords: groundwater characteristics, GIS chemical maps, factor analysis, cluster analysis, Kriging techniques

Procedia PDF Downloads 165
3159 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 68
3158 Protection of Patients and Staff in External Beam Radiotherapy Using Linac in Kenya

Authors: Calvince Okome Odeny

Abstract:

There is a current action to increase radiotherapy services in Kenya. The National government of Kenya, in collaboration with the county governments, has embarked on building radiotherapy centers in all 47 regions of the country. As these new centers are established in Kenya, it has to be ensured that minimum radiation safety standards are in place prior to operation. For full implementation of this, it is imperative that more Research and training for regulators are done on radiation protection, and safety and national regulatory infrastructure is geared towards ensuring radiation protection and safety in all aspects of the use of external radiotherapy practices. The present work aims at reviewing the level of protection and safety for patients and staff during external beam radiotherapy using Linac in Kenya and provides relevant guidance to improve protection and safety. A retrospective evaluation was done to verify whether those occupationally exposed workers and patients are adequately protected from the harmful effect of radiation exposure during the treatment procedures using Linac. The project was experimental Research, also including an analysis of resource documents obtained from the literature and international organizations. The critical findings of the work revealed that the key elements of protection of occupationally exposed workers and patients include a comprehensive quality Management system governing all planned activities from siting, safety, and design of the Facility, construction, acceptance testing, commissioning, operation, and decommissioning of the Facility; Government empowering the Regulatory Authority to license Medical Linear facilities and to enforce the applicable regulations to ensure adequate protection; A comprehensive Radiation Protection and Safety program must be established to ensure adequate safety and protection of workers and patients during treatment planning and treatment delivery of patients and categories of staff associated with the Facility must be well educated and trained to perform professionally with a commitment to sound safety culture. Relevant recommendations from the findings are shared with the Medical Linear Accelerator facilities and the regulatory authority to provide guidance and continuous improvement of protection and safety to improve regulatory oversight.

Keywords: oncology, radiotherapy, protection, staff

Procedia PDF Downloads 72
3157 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 275
3156 The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease

Authors: Francesca La Rosa , Marina Saresella, Mario Clerici, Michael Heneka

Abstract:

Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease.

Keywords: Alzheimer disease, innate immunity, neuroinflammation, NLRP3

Procedia PDF Downloads 451
3155 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology

Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi

Abstract:

This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.

Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance

Procedia PDF Downloads 120
3154 Isolation and Identification of Novel Escherichia Marmotae Spp.: Their Enzymatic Biodegradation of Zearalenone and Deep-oxidation of Deoxynivalenol

Authors: Bilal Murtaza, Xiaoyu Li, Liming Dong, Muhammad Kashif Saleemi, Gen Li, Bowen Jin, Lili Wang, Yongping Xu

Abstract:

Fusarium spp. produce numerous mycotoxins, such as zearalenone (ZEN), deoxynivalenol (DON), and its acetylated compounds, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) (15-ADON). In a co-culture system, the soil-derived Escherichia marmotae strain degrades ZEN and DON into 3-keto-DON and DOM-1 via enzymatic deep-oxidation. When pure mycotoxins were subjected to Escherichia marmotae in culture flasks, degradation, and detoxification were also attained. DON and ZEN concentrations, ambient pH, incubation temperatures, bacterium concentrations, and the impact of acid treatment on degradation were all evaluated. The results of the ELISA and high-performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) tests demonstrated that the concentration of mycotoxins exposed to Escherichia marmotae was significantly lower than the control. ZEN levels were reduced by 43.9%, while zearalenone sulfate ([M/z 397.1052 C18H21O8S1) was discovered as a derivative of ZEN converted by microbes to a less toxic molecule. Furthermore, Escherichia marmotae appeared to metabolize DON 35.10% into less toxic derivatives (DOM-1 at m/z 281 of [DON - O]+ and 3-keto-DON at m/z 295 of [DON - 2H]+). These results show that Escherichia marmotae can reduce Fusarium mycotoxins production, degrade pure mycotoxins, and convert them to less harmful compounds, opening up new possibilities for study and innovation in mycotoxin detoxification.

Keywords: mycotoxins, zearalenone, deoxynivalenol, bacterial degradation

Procedia PDF Downloads 91
3153 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs

Authors: Szymon Kowieski, Zygmunt Mikno

Abstract:

The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.

Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe

Procedia PDF Downloads 383
3152 Properties of Concrete with Wood Ashes in Construction Engineering

Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht

Abstract:

Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.

Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC

Procedia PDF Downloads 137
3151 Technical and Environmental Improvement of LNG Carrier's Propulsion Machinery by Using Jatropha Biao Diesel Fuel

Authors: E. H. Hegazy, M. A. Mosaad, A. A. Tawfik, A. A. Hassan, M. Abbas

Abstract:

The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation.

Keywords: dual fuel diesel engine, natural gas, Jatropha Methyl Easter, volumetric efficiency, emissions, CFD

Procedia PDF Downloads 661
3150 Determining Disparities in the Distribution of the Energy Efficiency Resource through the History of Michigan Policy

Authors: M. Benjamin Stacey

Abstract:

Energy efficiency has been increasingly recognized as a high value resource through state policies that require utility companies to implement efficiency programs. While policymakers have recognized the statewide economic, environmental, and health related value to residents who rely on this grid supplied resource, varying interests in energy efficiency between socioeconomic groups stands undifferentiated in most state legislation. Instead, the benefits are oftentimes assumed to be distributed equitably across these groups. Despite this fact, these policies are frequently sited by advocacy groups, regulatory bodies and utility companies for their ability to address the negative financial, health and other social impacts of energy poverty in low income communities. Yet, while most states like Michigan require programs that target low income consumers, oftentimes no requirements exist for the equitable investment and energy savings for low income consumers, nor does it stipulate minimal spending levels on low income programs. To further understand the impact of the absence of these factors in legislation, this study examines the distribution of program funds and energy efficiency savings to answer a fundamental energy justice concern; Are there disparities in the investment and benefits of energy efficiency programs between socioeconomic groups? This study compiles data covering the history of Michigan’s Energy Efficiency policy implementation from 2010-2016, analyzing the energy efficiency portfolios of Michigan’s two main energy providers. To make accurate comparisons between these two energy providers' investments and energy savings in low and non-low income programs, the socioeconomic variation for each utility coverage area was captured and accounted for using GIS and US Census data. Interestingly, this study found that both providers invested more equitably in natural gas efficiency programs, however, together these providers invested roughly three times less per household in low income electricity efficiency programs, which resulted in ten times less electricity savings per household. This study also compares variation in commission approved utility plans and actual spending and savings results, with varying patterns pointing to differing portfolio management strategies between companies. This study reveals that for the history of the implementation of Michigan’s Energy Efficiency Policy, that the 35% of Michigan’s population who qualify as low income have received substantially disproportionate funding and energy savings because of the policy. This study provides an overview of results from a social perspective, raises concerns about the impact on energy poverty and equity between consumer groups and is an applicable tool for law makers, regulatory agencies, utility portfolio managers, and advocacy groups concerned with addressing issues related to energy poverty.

Keywords: energy efficiency, energy justice, low income, state policy

Procedia PDF Downloads 184
3149 Effect of High Volume processed Fly Ash on Engineering Properties of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete.

Keywords: processed fly ash, engineering properties of concrete, pozzolanic, lime content

Procedia PDF Downloads 331