Search results for: plant cell walls
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7424

Search results for: plant cell walls

6524 COX-2 Inhibitor NS398 Counteracts Chemoresistance to Temozolomide in T98G Glioblastoma Cell Line

Authors: Francesca Lombardi, Francesca Rosaria Augello, Benedetta Cinque, Maria Grazia Cifone, Paola Palumbo

Abstract:

Glioblastoma multiforme (GBM) is a high-grade primary brain tumor refractory to current forms of treatment. The survival benefits of patients with GBM remain unsatisfactory due to the intrinsic or acquired resistance to temozolomide (TMZ), an alkylating agent, used as the first-line chemotherapeutic drug to treat GBM patients. Its cytotoxic effect is visualized by the induction of O6-methylguanine (O6MeG) within DNA. Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of GBM, its inhibition shows anticancer activities. In the present study, it was verified if the combination of a COX-2 selective inhibitor, NS398, with TMZ could counteract the TMZ resistance. In particular, the effect of NS398 mixed with TMZ was investigated in the GBM TMZ-resistant cell line, T98G. Cells were pretreated with NS398 (100µM, 24 hours) and then exposed to TMZ alone (200µM), NS398 alone, or both for 72 hours, after which cell growth rate and cycle phases, as well as apoptosis level, were evaluated. Coadministration of NS398 and TMZ caused a significant decrease in cell growth and a progressive increase of dead cells detected by trypan blue staining. Moreover, a significant level of apoptotic cell percentage and alteration of cell cycle phases were observed in T98G treated with TMZ-NS398 combination when compared to untreated cells or TMZ-treated cells. TMZ-resistant tumors, as GBM, express elevated levels of DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The mixture drastically reduced MGMT expression in the TMZ-resistant cell line T98G, known to express high levels of MGMT basically. Moreover, while TMZ alone did not influence the COX-2 protein expression, the combination successfully reduced it. In conclusion, these results demonstrated that NS398 enhanced the efficacy of TMZ through cell number reduction, apoptosis induction, and decreased MGMT levels, suggesting the ability of drug combination to reduce the chemoresistance. This drug combination deserves attention and could be considered as a promising therapeutic strategy for GBM patients.

Keywords: COX-2, COX-2 inhibitor, glioblastoma, NS398, T98G, temozolomide

Procedia PDF Downloads 136
6523 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study

Authors: M. Ali, K. Alam, E. Ohioma

Abstract:

This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.

Keywords: thermal, mechanical, composites, square tubes

Procedia PDF Downloads 372
6522 Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus

Authors: Ian Marc G. Cabugsa, Zarine M. Hermita

Abstract:

Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments.

Keywords: chelating agent EDTA, hyperaccumulator, phytoextraction, phytoremediation, terminalia catappa

Procedia PDF Downloads 375
6521 A Review on the Use of Herbal Alternatives to Antibiotics in Poultry Diets

Authors: Sasan Chalaki, Seyed Ali Mirgholange, Touba Nadri, Saman Chalaki

Abstract:

In the current world, proper poultry nutrition has garnered special attention as one of the fundamental factors for enhancing their health and performance. Concerns related to the excessive use of antibiotics in the poultry industry and their role in antibiotic resistance have transformed this issue into a global challenge in public health and the environment. On the other hand, poultry farming plays a vital role as a primary source of meat and eggs in human nutrition, and improving their health and performance is crucial. One effective approach to enhance poultry nutrition is the utilization of the antibiotic properties of plant-based ingredients. The use of plant-based alternatives as natural antibiotics in poultry nutrition not only aids in improving poultry health and performance but also plays a significant role in reducing the consumption of synthetic antibiotics and preventing antibiotic resistance-related issues. Plants contain various antibacterial compounds, such as flavonoids, tannins, and essential oils. These compounds are recognized as active agents in combating bacteria. Plant-based antibiotics are compounds extracted from plants with antibacterial properties. They are acknowledged as effective substitutes for chemical antibiotics in poultry diets. The advantages of plant-based antibiotics include reducing the risk of resistance to chemical antibiotics, increasing poultry growth performance, and lowering the risk of disease transmission.

Keywords: poultry, antibiotics, essential oils, plant-based

Procedia PDF Downloads 56
6520 Management and Evaluating Technologies of Tissue Engineering Various Fields of Bone

Authors: Arash Sepehri Bonab

Abstract:

Techniques to switch cells between development and differentiation, which tend to be commonly exclusive, are utilized in arrange to supply an expansive cell mass that can perform particular separated capacities required for the tissue to develop. Approaches to tissue engineering center on the have to give signals to cell populaces to advance cell multiplication and separation. Current tissue regenerative procedures depend primarily on tissue repair by transplantation of synthetic/natural inserts. In any case, restrictions on the existing procedures have expanded the request for tissue designing approaches. Tissue engineering innovation and stem cell investigation based on tissue building have made awesome advances in overcoming the issues of tissue and organ damage, useful loss, and surgical complications. Bone tissue has the capability to recover itself; in any case, surrenders of a basic estimate anticipate the bone from recovering and require extra support. The advancement of bone tissue building has been utilized to form useful options to recover the bone. This paper primarily portrays current advances in tissue engineering in different fields of bone and talks about the long-term trend of tissue designing innovation in the treatment of complex diseases.

Keywords: tissue engineering, bone, technologies, treatment

Procedia PDF Downloads 86
6519 Analysis of the Occurrence of Hydraulic Fracture Phenomena in Roudbar Lorestan Dam

Authors: Masoud Ghaemi, MohammadJafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

According to the statistics of the International Committee on Large Dams, internal erosion and piping (scour) are major causes of the destruction of earth-fill dams. If such dams are constructed in narrow valleys, the valley walls will increase the arching of the dam body due to the transfer of vertical and horizontal stresses, so the occurrence of hydraulic fracturing in these embankments is more likely. Roudbar Dam in Lorestan is a clay-core pebble earth-fill dam constructed in a relatively narrow valley in western Iran. Three years after the onset of impoundment, there has been a fall in dam behavior. Evaluation of the dam behavior based on the data recorded on the instruments installed inside the dam body and foundation confirms the occurrence of internal erosion in the lower and adjacent parts of the core on the left support (abutment). The phenomenon of hydraulic fracturing is one of the main causes of the onset of internal erosion in this dam. Accordingly, the main objective of this paper is to evaluate the validity of this hypothesis. To evaluate the validity of this hypothesis, the dam behavior during construction and impoundment has been first simulated with a three-dimensional numerical model. Then, using validated empirical equations, the safety factor of the occurrence of hydraulic fracturing phenomenon upstream of the dam score was calculated. Then, using the artificial neural network, the failure time of the given section was predicted based on the maximum stress trend created. The study results show that steep slopes of valley walls, sudden changes in coefficient, and differences in compressibility properties of dam body materials have caused considerable stress transfer from core to adjacent valley walls, especially at its lower levels. This has resulted in the coefficient of confidence of the occurrence of hydraulic fracturing in each of these areas being close to one in each of the empirical equations used.

Keywords: arching, artificial neural network, FLAC3D, hydraulic fracturing, internal erosion, pore water pressure

Procedia PDF Downloads 167
6518 Synthesis of [1-(Substituted-Sulfonyl)-Piperidin-4-yl]-(2,4-Difluoro-Phenyl)-Methanone Oximes and Their Biological Activity

Authors: L. Mallesha, C. S. Karthik, P. Mallu

Abstract:

A series of new [1-(substituted-benzoyl)-piperidin-4-yl]-(2,4-difluoro-phenyl)-methanone oxime derivatives, 3(a-f) were synthesized and characterized by different spectral studies. All compounds were evaluated for their in vitro antibacterial activity against bacterial strains. These compounds were screened for their antioxidant activity by DPPH• and Fe2+ chelating assay. Antiproliferative effects were evaluated using the MTT assay method against two human cancer cell lines and one astrocytoma brain tumor cell line. Compound 3b exhibited moderate antibacterial activity when compared with other compounds. All the compounds showed antioxidant activity, where compound 3f was the best radical scavenger and Fe2+ ion scavenger. Compounds, 3b, and 3d showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Piperidine, antibacterial, antioxidant, antiproliferative

Procedia PDF Downloads 399
6517 Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species

Authors: Jafar Ahmadi, Zhohreh Asiaban, Sedigheh Fabriki Ourang

Abstract:

Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max, and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.

Keywords: BES1/BZR1, brassinosteroids, phylogenetic analysis, transcription factor

Procedia PDF Downloads 326
6516 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section

Procedia PDF Downloads 315
6515 Management of Fungal Diseases of Onion (Allium cepa L.) by Using Plant Extracts

Authors: Shobha U. Jadhav, R. S. Saler

Abstract:

Onion is most Important Vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but the fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil borne pathogens of onion. Effect of three different plant extract (Datura metel, Pongamia pinnata, Ipomoea palmata) at five different concentration Viz, 10,25,50,75 and 100 percentage on these pathogens was studied by food poisoning techniquie. Detura metal gave 94.73% growth of Alternaria porri at 10% extract concentraton and 26.31% growth in 100% extract concentration. As compared to Fusarium oxysporium, and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Pongamia pinnata L. at 10% extract concentration 84.21% growth and at 100% extract concentration 36.84% growth of Stemphylium vesicarium was observed. Stemphylium vesicarium give good in inhibitory response as compared to Alternaria porri and Fusarium oxysporium. Ipomoea palmata in 10% extract concentration 92% growth and in 100% extract concentration 40% growth of Fusarium oxysporium was recorded. Fusarium oxysporium give good inhibitory response as compared to Alternaria porri and, Stemphylium vesicarium.

Keywords: pathogen, onion, plant extract, Allium cepa L.

Procedia PDF Downloads 453
6514 Prolonged Synthesis of Chitin Polysaccharide from Chlorovirus System

Authors: Numfon Rakkhumkaew, Takeru Kawasaki, Makoto Fujie, Takashi Yamada

Abstract:

Chlorella viruses or chloroviruses contain a gene that encodes a function for chitin synthesis, which is expressed early in viral infection to produce chitin polysaccharide, a polymer of β-1, 4-linked GlcNAc, on the outside of Chlorella cell wall. Interestingly, chlorovirus system is an eco-friendly system which converses CO2 and solar energy from the environment into useful materials. However, infected Chlorella cells are lysed at the final stage of viral infection, and this phenomenon is caused the breaking down of polysaccharide. To postpone the lysing period and prolong the synthesis of chitin polysaccharide on cells, the slow growing virus incorporated with aphidicolin treatment, an inhibitor of DNA synthesis, was investigated. In this study, a total of 25 virus isolates from water samples in Japan region were analyzed for CHS (the gene for CH synthase) gene by PCR (polymerase chain reaction). The accumulation and appearance of chitin polysaccharide on infected cells were detected by biotinylated chitin-binding proteins WGA (wheat germ agglutinin)-biotin for chitin in conjunction with avidin-Cy 2 or Cy 3 and investigated by fluorescence microscopy, observed as green or yellow fluorescence over the cell surface. Among all chlorovirus isolates, cells infected with CNF1 revealed the accumulation of chitin over the cell surface within 30 min p.i. and continued to accumulate on cells until 4 h p.i. before cell lyses which was 1.6 times longer accumulation period than cells infected with CVK2 (prototype virus). Furthermore, addition of aphidicolin could extend the chitin accumulation on cells infected with CNF1 until 8 h p.i. before cell lyses. Whereas, CVK2-infected cells treated with aphidicolin could prolong the chitin synthesis only for 6 h p.i. before cell lyses. Therefore, chitin synthesis by Chlorella-virus system could be prolonged by using slow-growing viral isolates and with aphidicolin.

Keywords: chitin, chlorovirus, Chlorella virus, aphidicolin

Procedia PDF Downloads 204
6513 Efficient Callus Induction and Plant Regeneration from Mature Embryo Culture of Barley (Hordeum vulgare L.) Genotypes

Authors: Münüre Tanur Erkoyuncu, Mustafa Yorgancılar

Abstract:

Crop improvement through genetic engineering depends on effective and reproducible plant regeneration systems. Immature embryos are the most widely used explant source for in vitro regeneration in barley (Hordeum vulgare L.). However, immature embryos require the continuous growth of donor plants and the suitable stage for their culture is also certainly limited. On the other hand, mature embryos can be procured and stored easily; they can be studied throughout the year. In this study, an effective callus induction and plant regeneration were aimed to develop from mature embryos of different barley genotypes. The effect of medium (MS1 and MS2), auxin type (2,4-D, dicamba, picloram and 2,4,5-T) and concentrations (2, 4, 6 mg/l) on callus formation and effect of cytokinin type (TDZ, BAP) and concentrations (0.2, 0.5, 1.0 mg/l) on green plant regeneration were evaluated in mature embryo culture of barley. Callus and shoot formation was successful for all genotypes. By depending on genotype, MS1 is the best medium, 4 mg/l dicamba is the best growth regulator in the callus induction and MS1 is the best medium, 1 mg/l BAP is the best growth regulator in the shoot formation were determined.

Keywords: barley, callus, embryo culture, mature embryo

Procedia PDF Downloads 317
6512 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 179
6511 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment

Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon

Abstract:

The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.

Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature

Procedia PDF Downloads 512
6510 Effects of New Anthraquinone Derivatives on Resistance Ovarian Cancer Cells and The Mechanism Investigation

Authors: Hui-Hsin Huang, Sheng-Tung Huang, Chi-Ming Lee, Chiao-Han Yen, Chun-Mao Lin

Abstract:

At initiation stage, there are no symptoms at initiation stage; however, at late stage, patients suffer symptoms as soon as ovarian cancer metastasis. Moreover, ovarian cancer cells are resistant to some anti-ovarian cancer drugs in clinical. Thus, it is very important to find an effective treatment for resistant ovarian cancer. Anthraquinone derivatives are able to induce DNA damage and lead to cell apoptosis, so several derivatives have been used for clinical application. Therefore, to explore more effective anti-ovarian cancer drugs, this study investigates the mechanism of three new anthraquinone compounds bearing different functional groups to camptothecin-resistance ovarian cell line A2780R2000. Cell viability was determined by MTT assay after treating A2780R2000 with the three new anthraquinone compounds. The results indicated that IC50 values are 33.44μM (Compound I), 25.77μM (Compound II) and 24.59μM (Compound III). Next, through cell cycle analysis, the results demonstrated that three new anthraquinone compounds not only induced A2780R2000 cell cycle arrest at early stage but also apoptosis at late stage. Besides, through apoptosis assay, the results indicated new anthraquinone compound induced apoptosis at late stage. Furthermore, the results of western blot show that the three new anthraquinone compounds lead to A2780R2000 apoptosis through intrinsic pathway. Theses results suggested that three new anthraquinone compounds may be potential new drugs for clinical cancer treatment in the future.

Keywords: anthraquinone, camptothecin, resistance, ovarian cancer

Procedia PDF Downloads 378
6509 Analysis of Behaviors of Single and Group Helical Piles in Sands from Experiment Results

Authors: Jongho Park, Junwon Lee, Byeonghyun Choi, Kicheol Lee, Dongwook Kim

Abstract:

The typically-used oil sand plant foundations are driven pile or drilled shaft. With more strict environmental regulations world widely, it became more important to completely remove the foundation during the stage of plant demolition. However, it is difficult to remove driven piles or drilled shafts that are installed at a deeper and stronger depth to gain more bearing pile capacity. The helical pile can be easily removed after its use and recycled; therefore it is suitable for oil sand plant foundation. This study analyzes the behavior of helical piles in sands. Axial pile load tests were carried out the varying spacing of helix plates (helices), rotation speed and weight of axial loading during pile installation. From the experiments, optimal helix plate spacing, rotation speed, axial loading during installation were determined. In addition, the behavior of helical pile groups was examined varying pile spacing. Finally, the behavior of single helical piles and that of group helical piles were compared.

Keywords: oil sand plant, pile load test, helical pile, group helical pile, behavior

Procedia PDF Downloads 152
6508 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 200-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence were obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption

Procedia PDF Downloads 485
6507 RNA Interference Technology as a Veritable Tool for Crop Improvement and Breeding for Biotic Stress Resistance

Authors: M. Yusuf

Abstract:

The recent discovery of the phenomenon of RNA interference has led to its application in various aspects of plant improvement. Crops can be modified by engineering novel RNA interference pathways that create small RNA molecules to alter gene expression in crops or plant pests. RNA interference can generate new crop quality traits or provide protection against insects, nematodes and pathogens without introducing new proteins into food and feed products. This is an advantage in contrast with conventional procedures of gene transfer. RNA interference has been used to develop crop varieties resistant to diseases, pathogens and insects. Male sterility has been engineered in plants using RNA interference. Better quality crops have been developed through the application of RNA interference etc. The objective of this paper is to highlight the application of RNA interference in crop improvement and to project its potential future use to solve problems of agricultural production in relation to plant breeding.

Keywords: RNA interference, application, crop Improvement, agricultural production

Procedia PDF Downloads 410
6506 Study of NGL Feed Price Calculation for a Typical NGL Fractionation Plant

Authors: Simin Eydivand, Ali Ghanadieslami, Reza Amiri

Abstract:

Natural gas liquids (NGLs) are light hydrocarbons that are dissolved in associated or non‐associated natural gas in a hydrocarbon reservoir and are produced within a gas stream. There are different ways to calculate the price of NGL. In this study, a spreadsheet calculation method is used for calculation of NGL price with an attractive economy of IRR 25%. For a typical NGL Plant with 3,200,000 t/y capacity of investment and operation of 90% capacity to have IRR 25%, the price of NGL is calculated 277 $/t.

Keywords: natural gas liquid, NGL, LPG, price, NGL fractionation, NF, investment, IRR, NPV

Procedia PDF Downloads 392
6505 Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada

Authors: J. Jayasuriya

Abstract:

In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site.

Keywords: solar efficiency, building sustainability, PV panel, solar energy

Procedia PDF Downloads 126
6504 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 199
6503 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 263
6502 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration

Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas

Abstract:

Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.

Keywords: dough, experimental, numerical, rupture

Procedia PDF Downloads 110
6501 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 152
6500 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 376
6499 Colonization of Embrionic Gonads of Nile Tilapia by Giant Gourami Testicular Germ Cells

Authors: Irma Andriani, Ita Djuwita, Komar Sumantadinata, Alimuddin

Abstract:

The recent study has been conducted to develop testicular germ cell transplantation as a tool for preservation and propagation of male germ-plasm from endangered fish species, as well as to produce surrogate broodstock of commercially valuable fish. Giant gourami testis had been used as a model for donor and Nile tilapia larvae as recipient. We developed testicular cell xenotransplantation by optimizing the timing of intraperitoneal cell transplantation to recipient larvae aged 1, 3, 5 and 7 days post hatching (dph). Freshly isolated testis of giant gourami weighing 600–800 g were minced in dissociation medium and then incubated for 3 hours in room temperature to collect monodisperce cell suspension. Donor cells labeled with PKH 26 were transplanted into the peritoneal cavity of Nile tilapia larvae using glass micropipettes. Parameters observed were survival rate of Nile tilapia larvae at 24 hours post transplantation (pt) and colonization efficiency of donor cells at 2 and 3 months pt. The incorporated donor cells were observed under fluorescent microscope. The result showed that the lowest survival rate at 24 hours pt was 1 dph larvae (82.74±6.76%) and the highest survival rate were 3 and 5 dph larvae (95.00±5.00% and 95.00±2.50%, respectively). The highest colonization efficiency was on 3 dph larvae (61.1±34.71%) and the lowest colonization efficiency was on 7 dph larvae (19.43±17.33%). In conclusion, 3 dph Nile tilapia larvae was the best recipient for giant gourami testicular germ cells xenotransplantation.

Keywords: xenotransplantation, testicular germ cell, giant gourami, Nile tilapia, colonization efficiency

Procedia PDF Downloads 573
6498 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 202
6497 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation

Authors: Ge Zheng, Jun Peng

Abstract:

Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.

Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient

Procedia PDF Downloads 155
6496 Cryptolepis sanguinolenta - A Medicinal Plant Used in the Treatment of Malaria, Cultivate It or Lose It

Authors: J. Naalamle Amissah, Dorcas Osei‐Safo, C. M. Asare, Benjamin Missah‐Assihene, Eric. Y. Danquah, Ivan Addae‐Mensah

Abstract:

Medicinal plants serve as a reservoir of active ingredients for the treatment of common ailments such as cancer, malaria and diabetes. With the recent wave of health consciousness and reliance on plant based medicines, the demand for medicinal plants has increased considerably. This surge in medicinal plant use has raised great concern amongst key players (herbalist, collectors, conservationist and researchers) along the value chain about the sustainability of the raw material. The over reliance on wild crafting as a means to obtain the raw material spells doom for several of Africa’s native medicinal plant species. In this study domestication protocols for the cultivation of Cryptolepis sanguinolenta (CS), a medicinal plant used in the treatment of malaria were developed. Initial surveys were conducted, using questionnaires comprising of open and close ended questions, to gather information that would inform the domestication and cultivation of the species. A field study was then conducted to determine the plant’s cropping cycle and the effect of staking and plant age on the active ingredient (cryptolepine) concentration in its roots. Results of the survey confirmed the demand for the raw material and threw more light on the harvesting methods and intensity of CS collection from the wild. Cryptolepine concentration was found to be highest (~1.84 mg/100 mg of root material) at 289 days after planting (DAP) which coincided with the peak of root dry weight (52.8 g), signifying the best time for root harvest. Staking was found to be important for seed production. The first 105 DAP were characterized by low yields of root dry weight (13.5 g), followed by a period of rapid growth in which the root dry weight increased almost linearly until 289 DAP. Although dry matter partitioned to the vines increased towards the end of the experimental period (60%), dry matter partitioned to the roots remained fairly constant (30%) throughout the experimental period. Cryptolepine was found to increase as the plant aged and the practice of staking CS promoted pod formation. A suitable cropping cycle for the cultivation of CS was also developed.

Keywords: domestication, staking, conservation, wild harvesting

Procedia PDF Downloads 373
6495 Modular, Responsive, and Interactive Green Walls - A Case Study

Authors: Flaviu Mihai Frigura-Lliasa, Andreea Anamaria Anghel, Attila Simo

Abstract:

Due to the beauty, usefulness, science, constantly changing, constantly evolving features, and most of the time, mystery it involves, nature-based art is seen as a both modern and timeless direction that has been extensively used in design. The goal of the team's activities was to experiment with ways of fusing the two most common contemporary ways of referring to green installations, that is, either in a pure artistic or in an ecological manner, and creating a living, dynamic, interactive installation capable of both receiving and interpreting external factors, such as natural and human stimuli, that would not only determine some of the mechanism's presets. By consequent, a complex experiment made up of various research and project stages was elaborated in order to transform an idea into an actual interactive green installation within months thanks to the interaction, teamwork, and design processes undertaken throughout the academic years by both university lecturers and some of our students. The outcomes would lead to the development of a dynamic artwork called "Modgrew" as well as the introduction of experiment-based learning at the Timisoara Faculty of Architecture and Urban Planning, as well as at the Faculty of Electrical and Power Engineering, for the green wall automation issues.

Keywords: green design, living walls, modular structure, interactive proof of concept

Procedia PDF Downloads 66