Search results for: Leydig TM3 cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3206

Search results for: Leydig TM3 cells

2306 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 104
2305 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 224
2304 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density

Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany

Abstract:

Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.

Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination

Procedia PDF Downloads 263
2303 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
2302 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell

Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim

Abstract:

Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.

Keywords: dolichos lablab, germination, neuroprotection, trigonelline

Procedia PDF Downloads 323
2301 In Vitro Evaluation of the Antimitotic and Genotoxic Effect by the Allium cepa L. Test of the Aqueous Extract of Peganum harmala L. Leaves (Laghouat, Algeria)

Authors: Ouzid Yasmina, Aiche-Iratni Ghenima, Harchaoui Lina, Saadoun Noria, Houali Karim

Abstract:

Medicinal plants are an important source of bioactive molecules with biological activities such as anticancer, antioxidant, anti-inflammatory, antibacterial, antimitotic.... These molecules include alkaloids, polyphenols and terpenes. The latter can be extracted by different solvents, namely: water, ethanol, methanol, butanol, acetone... This is why it seemed interesting to us to evaluate in vitro the antimitotic and genotoxic effect of these secondary metabolites contained in the aqueous extract of the leaves of Peganum harmala L. by the Allium cepa L. test on meristematic cells by calculating the mitotic parameters (The mitotic index, the aberration index and the limit value of cytotoxicity).A spectrophotometric determination of secondary metabolites, namely alkaloids and flavonoids in the aqueous extract of this essence, was performed. As a result, the alkaloid content is estimated to be 28.42 μg EC/mg extract, and the flavonoid content is 12.52 μg EQ/mg extract. The determination of the mitotic index revealed disturbances in cell division with a highly significant difference between the negative control (distilled water) and the different samples (aqueous extracts, colchicine and quecetin). The exposure of meristematic cells to our samples resulted in a large number of chromosomal, nuclear and cellular aberrations with an aberration index reaching 16.21±1.28% for the 4mg/ml aqueous extract and 11.71±3.32% for the 10mg/ml aqueous extract. The limit value of cytotoxicity revealed that our samples are sublethal on Allium cepa L. meristematic cells.

Keywords: allium cepa l., antimitotic and genotoxic effect, aqueous leaf extract, laghouat (algeria), peganum harmala l., secondary metabolites

Procedia PDF Downloads 94
2300 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 398
2299 Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy

Authors: L. Szymanski, Z. Kolacinski, Z. Kamiński, G. Raniszewski, J. Fraczyk, L. Pietrzak

Abstract:

In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz.

Keywords: synthesis of carbon nanotubes, hyperthermia, ligands, carbon nanotubes

Procedia PDF Downloads 286
2298 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective

Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin

Abstract:

Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.

Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis

Procedia PDF Downloads 263
2297 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 313
2296 Simulation of Red Blood Cells in Complex Micro-Tubes

Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi

Abstract:

In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.

Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics

Procedia PDF Downloads 174
2295 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 100
2294 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 301
2293 Right Atrial Tissue Morphology in Acquired Heart Diseases

Authors: Edite Kulmane, Mara Pilmane, Romans Lacis

Abstract:

Introduction: Acquired heart diseases remain one of the leading health care problems in the world. Changes in myocardium of the diseased hearts are complex and pathogenesis is still not fully clear. The aim of this study was to identify appearance and distribution of apoptosis, homeostasis regulating factors, and innervation and ischemia markers in right atrial tissue in different acquired heart diseases. Methods: During elective open heart surgery were taken right atrial tissue fragments from 12 patients. All patients were operated because of acquired heart diseases- aortic valve stenosis (5 patients), coronary heart disease (5 patients), coronary heart disease and secondary mitral insufficiency (1 patient) and mitral disease (1 patient). The mean age was (mean±SD) 70,2±7,0 years (range 58-83 years). The tissues were stained with haematoxylin and eosin methods for routine light-microscopical examination and for immunohistochemical detection of protein gene peptide 9.5 (PGP 9.5), human atrial natriuretic peptide (hANUP), vascular endothelial growth factor (VEGF), chromogranin A and endothelin. Apoptosis was detected by TUNEL method. Results: All specimens showed degeneration of cardiomyocytes with lysis of myofibrils, diffuse vacuolization especially in perinuclear region, different size of cells and their nuclei. The severe invasion of connective tissue was observed in main part of all fragments. The apoptotic index ranged from 24 to 91%. One specimen showed region of newly performed microvessels with cube shaped endotheliocytes that were positive for PGP 9.5, endothelin, chromogranin A and VEGF. From all fragments, taken from patients with coronary heart disease, there were observed numerous PGP 9.5-containing nerve fibres, except in patient with secondary mitral insufficiency, who showed just few PGP 9.5 positive nerves. In majority of specimens there were regions observed with cube shaped mixed -VEGF immunoreactive endocardial and epicardial cells. Only VEGF positive endothelial cells were observed just in few specimens. There was no significant difference of hANUP secreting cells among all specimens. All patients operated due to the coronary heart disease moderate to numerous number of chromogranin A positive cells were seen while in patients with aortic valve stenosis tissue demonstrated just few factor positive cells. Conclusions: Complex detection of different factors may indicate selectively disordered morphopathogenetical event of heart disease: decrease of PGP 9.5 nerves suggests the decreased innervation of organ; increased apoptosis indicates the cell death without ingrowth of connective tissue; persistent presence of hANUP proves the unchanged homeostasis of cardiomyocytes probably supported by expression of chromogranins. Finally, decrease of VEGF detects the regions of affected blood vessels in heart affected by acquired heart disease.

Keywords: heart, apoptosis, protein-gene peptide 9.5, atrial natriuretic peptide, vascular endothelial growth factor, chromogranin A, endothelin

Procedia PDF Downloads 295
2292 Pregnancy - The Unique Immunological Paradigm

Authors: Husham Bayazed

Abstract:

Purpose of presentation: Pregnancy represents the most important period for the conservation of the species. The immune system is one of the most important systems protecting the mother against the environment and preventing damage to the fetus. This presentation aims to review and discuss the role of the immune system during pregnancy, the evolutionary inflammatory process through pregnancy, infectious and environmental exposure influences on the mother and the fetus, and the impacts of sexual dimorphism of the placenta on offspring susceptibility to different disorders. Recent Findings: In 1960, Peter Medawar (Nobel Prize Winner) proposed that the fetus, a semi-allograft, is similar to a tissue graft that escapes rejection through a mechanism involving systemic immune suppression (Graft –Host response). However, recent researchers and studies have documented that implantation means inflammation, and the inflammatory process is considered a breach of tolerance in pregnancy with immune induction, which is necessary for the protection of the mother and the fetus against infections and environmental triggers. This inflammatory process should be maintained during different pregnancy phases till parturition, and any block at any phase will be associated with pregnancy complications, including pregnancy failure or loss, miscarriage, and preterm birth subsequently. Maternal immune activation following any trigger can have a positive effect on the fetus. The old concept of the placenta being asexual is inaccurate, and being with sexual dimorphism with clear differences in susceptibility to different factors that stimulate maternal immunity. Summary: The presence of different immune cells ((i.e., T cells, B cells, NK cells, etc.) at the implantation site is considered proof of a strong maternal immune response to the fetus. Therefore, human pregnancy is considered a unique immunological paradigm requiring maternal immune modulation rather than suppression. So Medawar's postulation of maternal systemic immunosuppression is wrong. Maternal immune system activation triggered by infections, stress, diet, and pollution can have a positive effect on the fetus, with the development of fetal-trained immunity necessary for survival. The sexual dimorphism of the placenta seems to have an impact on the differences in sex susceptible to the environment maternal risk stimuli. This link to why the incidence of autism is increasing more among boys than girls.

Keywords: pregnancy, maternal immunity, implantation and inflammation, placenta sexual dimorphism

Procedia PDF Downloads 93
2291 Caffeic Acid in Cosmetic Formulations: An Innovative Assessment

Authors: Caroline M. Spagnol, Vera L. B. Isaac, Marcos A. Corrêa, Hérida R. N. Salgado

Abstract:

Phenolic compounds are abundant in the Brazilian plant kingdom and they are part of a large and complex group of organic substances. Cinnamic acids are part of this group of organic compounds, and caffeic acid (CA) is one of its representatives. Antioxidants are compounds which act as free radical scavengers and, in other cases, such as metal chelators, both in the initiation stage and the propagation of oxidative process. The tyrosinase, polyphenol oxidase, is an enzyme that acts at various stages of melanin biosynthesis within the melanocytes and is considered a key molecule in this process. Some phenolic compounds exhibit inhibitory effects on melanogenesis by inhibiting the tyrosinase enzymatic activity and therefore has been the subject of studies. However, few studies have reported the effectiveness of these products and their safety. Objectives: To assess the inhibitory activity of tyrosinase, the antioxidant activity of CA and its cytotoxic potential. The method to evaluate the inhibitory activity of tyrosinase aims to assess the reduction transformation of L-dopa into dopaquinone reactions catalyzed by the enzyme. For evaluating the antioxidant activity was used the analytical methodology of DPPH radical inhibition. The cytotoxicity evaluation was carried out using the MTT method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), a colorimetric assay which determines the amount of insoluble violet crystals formed by the reduction of MTT in the mitochondria of living cells. Based on the results obtained during the study, CA has low activity as a depigmenting agent. However, it is a more potent antioxidant than ascorbic acid (AA), since a lower amount of CA is sufficient to inhibit 50% of DPPH radical. The results are promising since CA concentration that promoted 50% toxicity in HepG2 cells (IC50=781.8 μg/mL) is approximately 330 to 400 times greater than the concentration required to inhibit 50% of DPPH (IC50 DPPH= 2.39 μg/mL) and ABTS (IC50 ABTS= 1.96 μg/mL) radicals scavenging activity, respectively. The maximum concentration of caffeic acid tested (1140 mg /mL) did not reach 50% of cell death in HaCat cells. Thus, it was concluded that the caffeic acid does not cause toxicity in HepG2 and HaCat cells in the concentrations required to promote antioxidant activity in vitro, and it can be applied in topical products.

Keywords: caffeic acid, antioxidant, cytotoxicity, cosmetic

Procedia PDF Downloads 379
2290 Epididymis in the Agouti (Dasyprocta azarae): Light Microscope Study

Authors: Bruno C. Schimming, Leandro L. Martins, PatríCia F. F. Pinheiro, Raquel F. Domeniconi, FabríCio S. Oliveira

Abstract:

The agouti is a wildlife rodent that can be used as an alternative source of animal protein and this species has been raised in captivity in Brazil with the aim of providing meat. Thus, the knowledge of their reproductive biology and morphology of the reproductive organs is important. The objective of this study was to describe the morphology of epididymis in the Azara’s agouti, by light microscopy. Samples of epididymis were obtained from five adult Azara’s agouti (Dasyprocta azarae) during castration surgery performed at the Municipal Zoo of Catanduva, Brazil. Fragments of the epididymal regions (initial segment, caput, corpus and cauda) were collected. The biological samples were immediately fixed in paraformaldehyde for 24 hours, followed by histologic procedures comprising embedding in ParaplastTM (Sigma, St. Louis, MO, USA), sections of 5 µm, and staining with HE and Masson’s trichrome. The epididymis was a highly convoluted tubule that links the testis to the vas deferens. The epithelium lining was pseudostratified columnar surrounded by a periductal stroma. The epithelium contains several cell types: principal, basal, apical, clear, and hallo cells. Principal cells were the most abundant cell type. There were observed also migratory cells named halo cells. The caput epididymis was divided into two different regions: initial segment and caput. The initial segment has a very wide lumen, a high epithelium with conspicuous microvilli and the lumen was wide with exfoliated material. The other region of the caput epididymis, showed a lower epithelium when compared with the initial segment, large amounts of spermatozoa in the lumen, and a cytoplasmic vacuolization. This region presented many narrows cells. Many spermatozoa appeared in the lumen of corpus epididymis. The cauda region had a lower epithelium than the other epididymal regions in the agouti. The cauda epithelium presented plicae protruding into the lumen. Large amounts of spermatozoa are also present in the lumen. Small microvilli uniformly arranged so as to form a kind of “brush border” are observed on the apical surface of the cauda epithelium. The pattern of the epithelium lining the duct of the agouti epididymis does not differ greatly from that reported to other mammals, such as domestic and wildlife animals. These findings can cooperate with future investigations especially those related to rational exploration of these animals. All experimental procedures were approved by the institutional ethics committee (CEUA 796/2015). This study was supported by FAPESP (Grants 2015/23822-1).

Keywords: wildlife, testis excurrent ducts, epididymis, morphology

Procedia PDF Downloads 236
2289 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma

Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha

Abstract:

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.

Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP

Procedia PDF Downloads 56
2288 Transition to Hydrogen Cities in Korea and Japan

Authors: Minhee Son, Kyung Nam Kim

Abstract:

This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.

Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy

Procedia PDF Downloads 490
2287 Impact of Light Intensity, Illumation Strategy and Self-Shading on Sustainable Algal Growth in Photo Bioreactors

Authors: Amritanshu Shriwastav, Purnendu Bose

Abstract:

Algal photo bioreactors were operated at incident light intensities of 0.24, 2.52 and 5.96 W L-1 to determine the impact of light on algal growth. Low specific Chlorophyll-a content of algae was a strong indicator of light induced stress on algal cells. It was concluded that long term operation of photo bioreactors in the continuous illumination mode was infeasible under the range of incident light intensities examined and provision of a dark period after each light period was necessary for algal cells to recover from light-induced stress. Long term operation of photo bioreactors in the intermittent illumination mode was however possible at light intensities of 0.24 and 2.52 W L-1. Further, the incident light intensity in the photo bioreactors was found to decline exponentially with increase in algal concentration in the reactor due to algal ‘self-shading’. This may be an important determinant for photo bioreactor performance at higher algal concentrations.

Keywords: Algae, algal growth, photo bioreactor, photo-inhibition, ‘self-shading’

Procedia PDF Downloads 319
2286 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application

Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job

Abstract:

In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.

Keywords: cell line, chrome, genotoxicity, leather, natural rubber

Procedia PDF Downloads 196
2285 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism

Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng

Abstract:

Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.

Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell

Procedia PDF Downloads 154
2284 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage

Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama

Abstract:

Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.

Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system

Procedia PDF Downloads 181
2283 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling

Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta

Abstract:

In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.

Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity

Procedia PDF Downloads 129
2282 Circadian Rhythmic Expression of Choroid Plexus Membrane Transport Proteins

Authors: Rafael Mineiro, André Furtado, Isabel Gonçalves, Cecília Santos, Telma Quintela

Abstract:

The choroid plexus (CP) epithelial cells form the blood-cerebrospinal fluid barrier. This barrier is highly important for brain protection by physically separating the blood from the cerebrospinal fluid, controlling the trafficking of molecules, including therapeutic drugs, from blood to the brain. The control is achieved by tight junctions between epithelial cells, membrane receptors and transport proteins from the solute carrier and ATP-binding cassette superfamily on the choroid plexus epithelial cells membrane. Previous research of our group showed a functional molecular clock in the CP. The key findings included a rhythmic expression of Bmal1, Per2, and Cry2 in female rat CP. and a rhythmic expression of Cry2 and Per2 in male rat CP. Furthermore, in cultured rat CP epithelial cells we already showed that 17β-estradiol upregulates the expression of Bmal1 and Per1, where the Per1 and Per2 upregulation was abrogated in the presence of the estrogen receptors antagonist ICI. These findings, together with the fact that the CP produces robust rhythms, prompt us to understand the impact of sex hormones and circadian rhythms in CP drug transporters expression, which is a step towards the development and optimization of therapeutic strategies for efficiently delivering drugs to the brain. For that, we analyzed the circadian rhythmicity of the Abcb1, Abcc2, Abcc4 Abcg2, and Oat3 drug transporters at the CP of male and female rats. This analysis was performed by accessing the gene expression of the mentioned transporters at 4 time points by RT-qPCR and the presence of rhythms was evaluated by the CircWave software. Our findings showed a rhythmic expression of Abcc1 in the CP of male rats, of Abcg2 in female rats, and of Abcc4 and Oat3 in both male and female rats with an almost antiphasic pattern between male and female rats for Abcc4. In conclusion, these findings translated to a functional point of view may account for daily variations in brain permeability for several therapeutic drugs, making our findings important data for the future establishment and development of therapeutic strategies according to daytime.

Keywords: choroid plexus, circadian rhythm, membrane transporters, sex hormones

Procedia PDF Downloads 12
2281 The Role Of Diallyl Trisulfide As A Suppressor In Activated-Platelets Induced Human Breast Cancer MDA-MB-435s Cells Hematogenous Metastasis

Authors: Yuping Liu, Li Tao, Yin Lu

Abstract:

Accumulating evidence has been shown that diallyl trisulfide (DATS) from garlic may reduce the risk of developing several types of cancer. In view of the dynamic crosstalk interplayed by tumor cells and platelets in hematogenous metastasis, we demonstrate the effectiveness of DATS on the metastatic behaviors of MDA-MB-435s human breast cancer cell line co-incubated with activated platelets. Indeed, our data identified that DATS significantly blocked platelets fouction induced by PAF, followed by the decreased production of TXB2. DATS was found to dose-dependently suppressed MDA-MB-435s cell migration and invasion in presence of activated platelets by PAF in vitro. Furthermore, the expression, secretion and enzymatic activity of matrix metalloproteinase (MMP)-2/9, as well as the luciferase activity of upstream regulator NF-κB in MDA-MB-435s, were obviously diminished by DATS. In parallel, DATS blocked upstream NF-κB activation signaling complexes composed of extracellular signal-related kinase (ERK) as assessed by measuring the levels of the phosphorylated forms.

Keywords: DATS, ERK, metastasis, MMPs, NF-κB, platelet

Procedia PDF Downloads 386
2280 Synthesis and Anticancer Evaluation of Substituted 2-(3,4-Dimethoxyphenyl) Benzazoles

Authors: Cigdem Karaaslan, Yalcin Duydu, Aylin Ustundag, Can Ozgur Yalcın, Hakan Goker

Abstract:

Benzazole nucleus is found in the structure of many compounds as anticancer agents. Bendamustine (Alkylating agent), Nocodazole (Mitotic inhibitor), Veliparib (PARP inhibitor), Glasdegib (SMO inhibitor) are clinically used as anticancer therapeutics which bearing benzimidazole moiety. Based on the principle of bioisosterism in the present work, 23 compounds belonging to 2-(3,4-dimethoxy-phenyl) benzazoles and imidazopyridine series were synthesized and evaluated for their anticancer activities. N-(5-Chloro-2-hydroxyphenyl)-3,4-dimethoxybenzamide, was obtained by the amidation of 2-hydroxy-5-chloroaniline with 3,4-dimethoxybenzoic acid by using 1,1'-carbonyldiimidazole. Cyclization of benzamide derivative to benzoxazole, was achieved by p-toluenesulfonic acid. Other 1H-benz (or pyrido) azoles were prepared by the reaction between 2-aminothiophenol, o-phenylenediamine, o-pyridinediamine with sodium metabisulfite adduct of 3,4-dimethoxybenzaldehyde. The NMR assignments of the dimethoxy groups were established by the Nuclear Overhauser Effect Spectroscopy. A compound named, 5(4),7(6)-Dichloro-2-(3,4-dimethoxy) phenyl-1H-benzimidazole, bearing two chlorine atoms at the 5(4) and 7(6) positions of the benzene moiety of benzimidazole was found the most potent analogue, against A549 cells with the GI50 value of 1.5 µg/mL. In addition, 2-(3,4-Dimethoxyphenyl)-5,6-dimethyl-1H-benzimi-dazole showed remarkable cell growth inhibition against MCF-7 and HeLa cells with the GI₅₀ values of 7 and 5.5 µg/mL, respectively. It could be concluded that introduction of di-chloro atoms at the phenyl ring of 2-(3,4-dimethoxyphenyl)-1H-benzimidazoles increase significant cytotoxicity to selected human tumor cell lines in comparison to other all benzazoles synthesized in this study. Unsubstituted 2-(3,4-dimethoxyphenyl) imidazopyridines also gave the good inhibitory profile against A549 and HeLa cells.

Keywords: 3, 4-Dimethoxyphenyl, 1H-benzimidazole, benzazole, imidazopyridine

Procedia PDF Downloads 122
2279 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 189
2278 Mediterranean Diet-Driven Changes in Gut Microbiota Decrease the Infiltration of Inflammatory Myeloid Cells into the Intestinal Tissue

Authors: Gema Gómez-Casado, Alba Rodríguez-Muñoz, Virginia Mela-Rivas, Pallavi Kompella, Francisco José Tinahones-Madueña, Isabel Moreno-Indias, Almudena Ortega-Gómez

Abstract:

Obesity is a high-priority health problem worldwide due to its high prevalence. The proportion of obese and overweight subjects in industrialized countries exceeds half of the population in most cases. Beyond the metabolic problem, obesity boosts inflammation levels in the organism. The gut microbiota, considered an organ by itself, controls a high variety of processes at a systemic level. In fact, the microbiota interacts closely with the immune system, being crucial in determining the maturation state of neutrophils, key effectors of the innate immune response. It is known that changes in the diet exert strong effects on the variety and activity of the gut microbiota. The effect that those changes have on the axis microbiota-immune response is an unexplored field. In this study, 10 patients with obesity (weight 114,3 ± 14,5Kg, BMI 40,47±3,66) followed a Mediterranean-hypocaloric diet for 3 months, reducing their initial weight by 12,71 ± 3%. A transplant of microbiota from these patients before and after the diet was performed into wild type “germ-free” mice (n=10/group), treated with antibiotics. Six weeks after the transplant, mice were euthanized, and the presence of cells from the innate immune system were analysed in different organs (bone marrow, blood, spleen, visceral adipose tissue, and intestine) by flow cytometry. No differences were observed in the number of myeloid cells in bone marrow, blood, spleen, or visceral adipose tissue of mice transplanted with patient’s microbiota before and after following the Mediterranean diet. However, the intestine of mice that received post-diet microbiota presented a marked decrease in the number of neutrophils (whose presence is associated with tissue inflammation), as well as macrophages. In line with these findings, intestine monocytes from mice with post-diet microbiota showed a less inflammatory profile (lower Ly6Gˡᵒʷ proportion of cells). These results point toward a decrease in the inflammatory state of the intestinal tissue, derived from changes in the gut microbiota, which occurred after a 3-month Mediterranean diet.

Keywords: obesity, nutrition, Mediterranean diet, gut microbiota, immune system

Procedia PDF Downloads 127
2277 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma

Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu

Abstract:

In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.

Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles

Procedia PDF Downloads 194