Search results for: ion selective electrode
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1335

Search results for: ion selective electrode

465 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments

Authors: William J. Crowther, Conor Marsh

Abstract:

Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.

Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics

Procedia PDF Downloads 89
464 Suspended Nickel Oxide Nano-Beam and Its Heterostructure Device for Gas Sensing

Authors: Kusuma Urs M. B., Navakant Bhat, Vinayak B. Kamble

Abstract:

Metal oxide semiconductors (MOS) are known to be excellent candidates for solid-state gas sensor devices. However, in spite of high sensitivities, their high operating temperatures and lack of selectivity is a big concern limiting their practical applications. A lot of research has been devoted so far to enhance their sensitivity and selectivity, often empirically. Some of the promising routes to achieve the same are reducing dimensionality and formation of heterostructures. These heterostructures offer improved sensitivity, selectivity even at relatively low operating temperatures compared to bare metal oxides. Thus, a combination of n-type and p-type metal oxides leads to the formation of p-n junction at the interface resulting in the diffusion of the carriers across the barrier along with the surface adsorption. In order to achieve this and to study their sensing mechanism, we have designed and lithographically fabricated a suspended nanobeam of NiO, which is a p-type semiconductor. The response of the same has been studied for various gases and is found to exhibit selective response towards hydrogen gas at room temperature. Further, the same has been radially coated with TiO₂ shell of varying thicknesses, in order to study the effect of radial p-n junction thus formed. Subsequently, efforts have been made to study the effect of shell thickness on the space charge region and to shed some light on the basic mechanism involved in gas sensing of MOS sensors.

Keywords: gas sensing, heterostructure, metal oxide semiconductor, space charge region

Procedia PDF Downloads 119
463 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges

Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour

Abstract:

The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.

Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model

Procedia PDF Downloads 61
462 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 202
461 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide

Authors: Sanaz Seraj, Shohre Rouhani

Abstract:

Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.

Keywords: fluorescence, graphene oxide, naphthalimide dye, quenching

Procedia PDF Downloads 578
460 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 357
459 Daily Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria

Authors: Sidali Khedidji, Noureddine Yassaa, Riad Ladji

Abstract:

In this study, n-alkanes which are hazardous for the environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from April 2013 to Mai 2013. Ambient concentration measurements of n-Alkanes were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MS). Total concentrations for n-Alkanes recorded in Sour El Ghozlane suburban ranged from 42 to 69 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of n-alkanes contain the PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 0.50–7.06 ng/m3 and 0.29–6.97 ng/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations. The guide value fixed by the European Community, 40 μg/m3 was not to exceed 35 days, was exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations 80 μg/m3 has been exceeded in 1 sampler during the period study.

Keywords: n-alkanes, PM10, TSP, particulate matter, cement industry

Procedia PDF Downloads 384
458 Assessment of Groundwater Quality in Kaltungo Local Government Area of Gombe State

Authors: Rasaq Bello, Grace Akintola Sunday, Yemi Sikiru Onifade

Abstract:

Groundwater is required for the continuity of life and sustainability of the ecosystem. Hence, this research was purposed to assess groundwater quality for domestic use in Kaltungo Local Government Area, Gombe State. The work was also aimed at determining the thickness and resistivity of the topsoil, areas suitable for borehole construction, quality and potentials of groundwater in the study area. The study area extends from latitude N10015’38” - E11008’01” and longitude N10019’29” - E11013’05”. The data was acquired using the Vertical Electrical Sounding (VES) method and processed using IP12win software. Twenty (20) Vertical Electrical Soundings were carried out with a maximum current electrode separation (AB) of 150m. The VES curves generated from the data reveal that all the VES points have five to six subsurface layers. The first layer has a resistivity value of 7.5 to 364.1 Ωm and a thickness ranging from 0.8 to 7.4m, and the second layer has a resistivity value of 1.8 to 600.3 Ωm thickness ranging from 2.6 to 31.4m, the third layer has resistivity value of 23.3 to 564.4 Ωm thickness ranging from 10.3 to 77.8m, the fourth layer has resistivity value of 19.7 to 640.2 Ωm thickness ranging from 8.2m to 120.0m, the fifth layer has resistivity value of 27 to 234 Ωm thickness ranging from 8.2 to 53.7m and the six-layer is the layer that extended beyond the probing depth. The VES curves generated from the data revealed KQHA curve type for VES 1, HKQQ curve for VES 4, HKQ curve for VES 5, KHA curve for VES 11, QQHK curve for VES 12, HAA curve for VES 6 and VES 19, HAKH curve for VES 7, VES 8, VES 10 and VES 18, HKH curve for VES 2, VES 3, VES 9, VES 13, VES 14, VES 15, VES 16, VES 17 and VES 20. Values of the Coefficient of Anisotropy, Reflection Coefficient, and Resistivity Contrast obtained from the Dar-Zarrouk parameters indicated good water prospects for all the VES points in this study, with VES points 4, 9 and 18 having the highest prospects for groundwater exploration.

Keywords: formation parameters, groundwater, resistivity, resistivity contrast, vertical electrical sounding

Procedia PDF Downloads 35
457 A Review on the Challenge and Need of Goat Semen Production and Artificial Insemination in Nepal

Authors: Pankaj K. Jha, Ajeet K. Jha, Pravin Mishra

Abstract:

Goat raising is a popular livestock sub-commodity of mixed farming system in Nepal. Besides food and nutritional security, it has an important role in the economy of many peoples. Goat breeding through AI is commonly practiced worldwide. It is a very basic tool to speed up genetic improvement and increase productivity. For the goat genetic improvement program, the government of Nepal has imported some specialized exotic goat breeds and semen. Some progress has been made in the initiation of selective breeding within the local breeds and practice of AI with imported semen. Importance of AI in goats has drawn more attention among goat farmers. However, importing semen is not a permanent solution at national level; rather, it is more important to develop and establish its own frozen semen production technique. Semen quality and its relationship with fertility are said to be a major concern in animal production, hence accurate measurement of semen fertilizing potential is of great importance. The survivability of sperm cells depends on semen quality. Survivability of sperm cells is assessed through visual and microscopic evaluation of spermatozoal progressive motility and morphology. In Nepal, there is lack of scientific information on seminal attributes of buck semen, its dilution, cooling and freezing technique under management conditions of Nepal. Therefore, the objective of this review was to provide brief information about breeding system, semen production and artificial insemination in Nepalese goat.

Keywords: artificial insemination, goat, Nepal, semen

Procedia PDF Downloads 197
456 Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water

Authors: Yufan Mu

Abstract:

High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly.

Keywords: copper flotation, pyrite depression, copper-activated pyrite, potassium ferrate, high salinity process water

Procedia PDF Downloads 64
455 Detection of Arcobacter and Helicobacter pylori Contamination in Organic Vegetables by Cultural and Polymerase Chain Reaction (PCR) Methods

Authors: Miguel García-Ferrús, Ana González, María A. Ferrús

Abstract:

The most demanded organic foods worldwide are those that are consumed fresh, such as fruits and vegetables. However, there is a knowledge gap about some aspects of organic food microbiological quality and safety. Organic fruits and vegetables are more exposed to pathogenic microorganisms due to surface contact with natural fertilizers such as animal manure, wastes and vermicompost used during farming. It has been suggested that some emergent pathogens, such as Helicobacter pylori or Arcobacter spp., could reach humans through the consumption of raw or minimally processed vegetables. Therefore, the objective of this work was to study the contamination of organic fresh green leafy vegetables by Arcobacter spp. and Helicobacter pylori. For this purpose, a total of 24 vegetable samples, 13 lettuce and 11 spinach were acquired from 10 different ecological supermarkets and greengroceries and analyzed by culture and PCR. Arcobacter spp. was detected in 5 samples (20%) by PCR, 4 spinach and one lettuce. One spinach sample was found to be also positive by culture. For H. pylori, the H. pylori VacA gene-specific band was detected in 12 vegetable samples (50%), 10 lettuces and 2 spinach. Isolation in the selective medium did not yield any positive result, possibly because of low contamination levels together with the presence of the organism in its viable but non-culturable form. Results showed significant levels of H. pylori and Arcobacter contamination in organic vegetables that are generally consumed raw, which seems to confirm that these foods can act as transmission vehicles to humans.

Keywords: Arcobacter sp., Helicobacter pylori, Organic Vegetables, Polymerase Chain Reaction (PCR)

Procedia PDF Downloads 153
454 Integrated Geotechnical and Geophysical Investigation of a Proposed Construction Site at Mowe, Southwestern Nigeria

Authors: Kayode Festus Oyedele, Sunday Oladele, Adaora Chibundu Nduka

Abstract:

The subsurface of a proposed site for building development in Mowe, Nigeria, using Standard Penetration Test (SPT) and Cone Penetrometer Test (CPT) supplemented with Horizontal Electrical Profiling (HEP) was investigated with the aim of evaluating the suitability of the strata for foundation materials. Four SPT and CPT were implemented using 10 tonnes hammer. HEP utilizing Wenner array were performed with inter-electrode spacing of 10 – 60 m along four traverses coincident with each of the SPT and CPT. The HEP data were processed using DIPRO software and textural filtering of the resulting resistivity sections was implemented to enable delineation of hidden layers. Sandy lateritic clay, silty lateritic clay, clay, clayey sand and sand horizons were delineated. The SPT “N” value defined very soft to soft sandy lateritic (<4), stiff silty lateritic clay (7 – 12), very stiff silty clay (12 - 15), clayey sand (15- 20) and sand (27 – 37). Sandy lateritic clay (5-40 kg/cm2) and silty lateritic clay (25 - 65 kg/cm2) were defined from the CPT response. Sandy lateritic clay (220-750 Ωm), clay (< 50 Ωm) and sand (415-5359 Ωm) were delineated from the resistivity sections with two thin layers of silty lateritic clay and clayey sand defined in the texturally filtered resistivity sections. This study concluded that the presence of incompetent thick clayey materials (18 m) beneath the study area makes it unsuitable for shallow foundation. Deep foundation involving piling through the clayey layers to the competent sand at 20 m depth was recommended.

Keywords: cone penetrometer, foundation, lithologic texture, resistivity section, standard penetration test

Procedia PDF Downloads 251
453 The Promising Way to Minimize the Negative Effects of Iron Fortification

Authors: M. Juffrie, Siti Helmyati, Toto Sudargo, B. J. Istiti Kandarina

Abstract:

Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota.

Keywords: tempeh, synbiotic, iron, haemoglobin, gut microbiota

Procedia PDF Downloads 446
452 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: electrowinning, intercell bars, PV energy, current modulation

Procedia PDF Downloads 141
451 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function

Authors: Giselle Maggie-Fer Castañeda Lozano

Abstract:

The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.

Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks

Procedia PDF Downloads 52
450 Distribution and Taxonomy of Marine Fungi in Nha Trang Bay and Van Phong Bay, Vietnam

Authors: Thu Thuy Pham, Thi Chau Loan Tran, Van Duy Nguyen

Abstract:

Marine fungi play an important role in the marine ecosystems. Marine fungi also supply biomass and metabolic products of industrial value. Currently, the biodiversity of marine fungi along the coastal areas of Vietnam has not yet been studied fully. The objective of this study is to assess the spatial and temporal diversity of planktonic fungi from the coastal waters of Nha Trang Bay and Van Phong Bay in Central Vietnam using culture-dependent and independent approach. Using culture-dependent approach, filamentous fungi and yeasts were isolated on selective media and then classified by phenotype and genotype based on the sequencing of ITS (internal transcribed spacers) regions of rDNA with two primer pairs (ITS1F_KYO2 and ITS4; NS1 and NS8). Using culture-independent approach, environmental DNA samples were isolated and amplified using fungal-specific ITS primer pairs. A total of over 160 strains were isolated from 10 seawater sampling stations at 50 cm depth. They were classified into diverse genera and species of both yeast and mold. At least 5 strains could be potentially novel species. Our results also revealed that planktonic fungi were molecularly diverse with hundreds of phylotypes recovered across these two bays. The results of the study provide data about the distribution and taxonomy of mycoplankton in this area, thereby allowing assessment of their positive role in the biogeochemical cycle of coastal ecosystems and the development of new bioactive compounds for industrial applications.

Keywords: biodiversity, ITS, marine fungi, Nha Trang Bay, Van Phong Bay

Procedia PDF Downloads 176
449 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell

Authors: Sharda Nara, Bansi Dhar Malhotra

Abstract:

Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.

Keywords: biofuel cell, electroactivity, folic acid, tissue engineering

Procedia PDF Downloads 119
448 Daily Variations of Particulate Matter (PM10) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria

Authors: Sidali Khedidji, Riad Ladji, Noureddine Yassaa

Abstract:

In this study, particulate matter (PM10) which are hazardous for environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from March 2013 to April 2013. Ambient concentration measurements of polycyclic aromatic hydrocarbons were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MSD). Total concentrations for PAHs recorded in sour el ghozlane suburban ranged from 101 to 204 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 4.76–165.76 μg/m3 and 28.63–800.14 μg/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations.The guide value fixed by the European Community «40 μg/m3» not to exceed 35 days, were exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations «80 μg/m3» has been exceeded in 3 samplers during the period study.

Keywords: PAHs, PM10, TSP, particulate matter, cement industry

Procedia PDF Downloads 366
447 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing

Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin

Abstract:

As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.

Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia

Procedia PDF Downloads 115
446 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study

Authors: M. Hadavi, Z. Hashemi

Abstract:

Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.

Keywords: vocabulary leaning strategies, medical sciences, students, linguistics

Procedia PDF Downloads 441
445 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: air pollution, linear programming, mining, optimization, treatment technologies

Procedia PDF Downloads 196
444 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score

Authors: Jianfeng Hu

Abstract:

Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.

Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes

Procedia PDF Downloads 269
443 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 372
442 A Fresh Look at Tense System of Qashqaie Dialect of Turkish Language

Authors: Mohammad Sharifi Bohlouli

Abstract:

Turkish language with many dialects is native or official language of great number of people all around the world. The Qashqaie dialect of Turkish language is spoken by the Qashqaie tribe mostly scattered in the southern part of Iran. This paper aims at analyzing the tense system of this dialect to detect the type and number of tense and aspects available to its speakers. To collect a reliable data, a group of 50 old native speakers were randomly chosen as the informants and different techniques such as; Shuy et al interviews, selective listening ,and eavesdropping were used. The results of data analysis showed that the tense system in the Qashqaie dialect of Turkish language includes 3 absolute tenses , 6 aspectual , and 2 subjunctive ones. The interesting part of the study is that Qashqaie dialect enables its speakers to make a kind of aspectual opposition through verb structure which seems to be almost impossible through verb forms in any other nonturkish languages. For example in the following examples sentences 1 &2 and 3&4 have the same translation In English although they are different in both meaning and structure. 1. Ali ensha yazirdi. 2. Ali ensha yazirmush. (Ali was writing a composition.) 3. Ali yadmishdi. 4. Ali yadmishimish. ( Ali had slept.) The changes in the verb structure in Qashqaie dialect enables its speakers to say that whether the doer of the action remembers the process of doing the action or not. So, it presents a new aspectual opposition as Observed /nonobserved. The research findings reveal many other regularities and linguistic features that can be useful for linguists interested in Turkish in general and for those interested in tense and aspect and also they can be helpful for different pedagogical purposes including teaching and translating.

Keywords: qashqaie dialect, tense, aspect, linguistics, Turkish Language

Procedia PDF Downloads 350
441 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 69
440 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture

Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić

Abstract:

Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.

Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration

Procedia PDF Downloads 420
439 Ab-initio Calculations on the Mechanism of Action of Platinum and Ruthenium Complexes in Phototherapy

Authors: Eslam Dabbish, Fortuna Ponte, Stefano Scoditti, Emilia Sicilia, Gloria Mazzone

Abstract:

The medical techniques based on the use of light for activating the drug are occupying a prominent place in the cancer treatment due to their selectivity that contributes to reduce undesirable side effects of conventional chemotherapy. Among these therapeutic treatments, photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are emerging as complementary approaches for selective destruction of neoplastic tissue through direct cellular damage. Both techniques rely on the employment of a molecule, photosensitizer (PS), able to absorb within the so-called therapeutic window. Thus, the exposure to light of otherwise inert molecules promotes the population of excited states of the drug, that in PDT are able to produce the cytotoxic species, such as 1O2 and other ROS, in PACT can be responsible of the active species release or formation. Following the success of cisplatin in conventional treatments, many other transition metal complexes were explored as anticancer agents for applications in different medical approaches, including PDT and PACT, in order to improve their chemical, biological and photophysical properties. In this field, several crucial characteristics of candidate PSs can be accurately predicted from first principle calculations, especially in the framework of density functional theory and its time-dependent formulation, contributing to the understanding of the entire photochemical pathways involved which can ultimately help in improving the efficiency of a drug. A brief overview of the outcomes on some platinum and ruthenium-based PSs proposed for the application in the two phototherapies will be provided.

Keywords: TDDFT, metal complexes, PACT, PDT

Procedia PDF Downloads 86
438 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 230
437 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications

Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita

Abstract:

Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.

Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution

Procedia PDF Downloads 371
436 Correlation between Copper Uptake and Decrease of Copper (Hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa

Authors: Khaled M. Khleifat

Abstract:

Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram-positive bacteria Bacillusthuringiensis strain Israelisas well as Gram-negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron-binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.

Keywords: Pseudomonas aeruginosa, hypocupremia, correlation, PCV

Procedia PDF Downloads 299