Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water

Authors : Yufan Mu

Abstract : High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate ($[]_2[]_4$), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when ($[]_2[]_4$) was added in the flotation cell during conditioning, ($[]_2[]_4$) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of ($[]_2[]_4$) on pyrite was ascribed to the significant increase in the pulp potential (E_h), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal oxyhydroxides $[u([]_{H}]_{2^{-}})$ released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides $[u([]_{H}]_{2^{-}})$ reception rectandic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that ($[]_{2[]_4}$) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly.

Keywords : copper flotation, pyrite depression, copper-activated pyrite, potassium ferrate, high salinity process water **Conference Title :** ICEMEAM 2024 : International Conference on Extractive Metallurgy and Extraction of Activated Minerals **Conference Location :** London, United Kingdom

Conference Dates : March 11-12, 2024