Search results for: wrist joint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 902

Search results for: wrist joint

842 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 435
841 Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material

Authors: A. Benhamena, L. Aminallah, A. Aid, M. Benguediab, A. Amrouche

Abstract:

The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results.

Keywords: aluminum 2024-T3 alloy, single-lap adhesive joints, Interface stress distributions, material nonlinear analysis, adhesive, bending moment, finite element method

Procedia PDF Downloads 545
840 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 68
839 Virtual Test Model for Qualification of Knee Prosthesis

Authors: K. Zehouani, I. Oldal

Abstract:

Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.

Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS

Procedia PDF Downloads 118
838 Determination of Skeletal Age in Nigerian Children: Applicability of the Greulich and Pyle Atlas

Authors: Udoaka A. I., Didia B. C.

Abstract:

Background: The maturation of a child’s bones as it grows to adulthood can be viewed radiologically. The skeletal age (bone age) is the average age at which a particular stage of bone maturation is achieved. The Greulich and Pyle standard is the commonest method used to assess the skeletal age using the hand and wrist radiograph throughout the world. This atlas was compiled solely from Caucasian children and made use of the orderly sequence of carpal ossification to determine the skeletal age. Several authors have faulted this atlas for not being suitable for other races. Aim: The aim of this study is to determine if the Greulich and Pyle Atlas is applicable to Nigerian children when compared to their chronological ages. Methods: The total number of 78 normal radiographs of the hand and wrist of Nigerian children obtained from several hospitals were used for this study . These radiographs were compared with the atlas and their skeletal ages noted form the atlas. The child’s chronological age in each case was also recorded. Results: The result shows a mean increase of two months in the skeletal ages of the Nigerian children compared to the atlas. This difference, however, was not significant. The skeletal age (in months) was greater in 77% of the children than the expected age in the atlas. Conclusion: The mean skeletal age of Nigerian children, though more than the standard in the atlas, is not statistically significant; as a result the study finds the radiographic atlas of Greulich and Pyle atlas applicable to Nigerian children.

Keywords: Greulich and Pyle Atlas, radiograph, skeletal age

Procedia PDF Downloads 240
837 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 575
836 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints

Procedia PDF Downloads 300
835 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental study, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain

Procedia PDF Downloads 314
834 Review for Mechanical Tests of Corner Joints on Wooden Windows and Effects to the Stiffness

Authors: Milan Podlena, Stepan Hysek, Jiri Prochazka, Martin Bohm, Jan Bomba

Abstract:

Corner joints are the weakest part of windows, where the members are connected together. Since the dimensions of the windows started become bigger, the strength requirements for corner joints started to increase as well. Therefore, the aim of this study was to test the samples of corner joints of wooden windows. Moisture content of test specimens was stabilized in the climate chamber. After conditioning, test specimens were loaded in the laboratory conditions onto an universal testing machine and the failure load was measured. Data was recalculated by using goniometric, bending moment and stiffness equation to the stiffness coefficients and the bending moments were investigated. The results showed difference that was observed for the mortise with tenon joint and the dowel joint. This difference was explained by a varied adhesive bond area, which is related to the dimensions of dowels (diameter and length) as well. The bending moments and stiffness ware (except of type of corner joint) also affected by type of used adhesive, type of dowels and wood species.

Keywords: corner joint, wooden window, bending moment, stiffness

Procedia PDF Downloads 192
833 Unpowered Knee Exoskeleton with Compliant Joints for Stair Descent Assistance

Authors: Pengfan Wu, Xiaoan Chen, Ye He, Tianchi Chen

Abstract:

This paper introduces the design of an unpowered knee exoskeleton to assist human walking by redistributing the moment of the knee joint during stair descent (SD). Considering the knee moment varying with the knee joint angle and the work of the knee joint is all negative, the custom-built spring was used to convert negative work into the potential energy of the spring during flexion, and the obtained energy work as assistance during extension to reduce the consumption of lower limb muscles. The human-machine adaptability problem was left by traditional rigid wearable due to the knee involves sliding and rotating without a fixed-axis rotation, and this paper designed the two-direction grooves to follow the human-knee kinematics, and the wire spring provides a certain resistance to the pin in the groove to prevent extra degrees of freedom. The experiment was performed on a normal stair by healthy young wearing the device on both legs with the surface electromyography recorded. The results show that the quadriceps (knee extensor) were reduced significantly.

Keywords: unpowered exoskeleton, stair descent, knee compliant joint, energy redistribution

Procedia PDF Downloads 105
832 Poststreptococcal Reactive Arthritis in Children: A Serial Case

Authors: A. Lubis, S. S. Pasulu, Z. Hikmah, A. Endaryanto, A. Harsono

Abstract:

Infection by group A streptococci (GAS) can trigger an autoantibody that cause a poststreptococcal reactive arthritis (PSRA). Four patients with PSRA aged 10 years to 14 years old with the main complaint of joint pain for five days to 10 days after suffering a fever and sore throat. The joint pain was persistent, additive, and non migratory. All patients revealed an increase in erythrocyte sedimentation rate (ESR) and anti-streptolysin O (ASLO), but the chest x-ray, electrocardiography, and echocardiography were normal. Bone imaging showed no destruction on the affected joint. Jones Criteria were not fulfilled in all patients. Erythromycin and ibuprofen were given in all patients and an improvement was shown. Erythromycin was continued for one year and routine controls were conducted for cardiac evaluation. The prognosis of all the patients was good.

Keywords: arthritis, group a streptococcus, autoantibody, Jones criteria

Procedia PDF Downloads 209
831 Mechanical Properties and Thermal Comfort of 3D Printed Hand Orthosis for Neurorehabilitation

Authors: Paulo H. R. G. Reis, Joana P. Maia, Davi Neiva Alves, Mariana R. C. Aquino, Igor B. Guimaraes, Anderson Horta, Thiago Santiago, Mariana Volpini

Abstract:

Additive manufacturing is a manufacturing technique used in many fields as a tool for the production of complex parts accurately. This technique has a wide possibility of applications in bioengineering, mainly in the manufacture of orthopedic devices, thanks to the versatility of shapes and surface details. The present article aims to evaluate the mechanical viability of a wrist-hand orthosis made using additive manufacturing techniques with Nylon 12 polyamide and compare this device with the wrist-hand orthosis manufactured by the traditional process with thermoplastic Ezeform. The methodology used is based on the application of computational simulations of voltage and temperature, from finite element analysis, in order to evaluate the properties of displacement, mechanical stresses and thermal comfort in the two devices. The execution of this work was carried out through a case study with a 29-year-old male patient. The modeling software involved was Meshmixer from US manufacturer Autodesk and Fusion 360 from the same manufacturer. The results demonstrated that the orthosis developed by 3D printing, from Nylon 12, presents better thermal comfort and response to the mechanical stresses exerted on the orthosis.

Keywords: additive manufacturing, finite elements, hand orthosis, thermal comfort, neurorehabilitation

Procedia PDF Downloads 165
830 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber

Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong

Abstract:

Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.

Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement

Procedia PDF Downloads 149
829 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy

Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko

Abstract:

A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.

Keywords: diffusion brazing, microstructure, superalloy, tensile strength

Procedia PDF Downloads 338
828 Finite Element Analysis of Ball-Joint Boots under Environmental and Endurance Tests

Authors: Young-Doo Kwon, Seong-Hwa Jun, Dong-Jin Lee, Hyung-Seok Lee

Abstract:

Ball joints support and guide certain automotive parts that move relative to the frame of the vehicle. Such ball joints are covered and protected from dust, mud, and other interfering materials by ball-joint boots made of rubber—a flexible and near-incompressible material. The boots may experience twisting and bending deformations because of the motion of the joint arm. Thus, environmental and endurance tests of ball-joint boots apply both bending and twisting deformations. In this study, environmental and endurance testing was simulated via the finite element method performed by using a commercial software package. The ranges of principal stress and principal strain values that are known to directly affect the fatigue lives of the parts were sought. By defining these ranges, the number of iterative tests and modifications of the materials and dimensions of the boot can be decreased. Therefore, instead of performing actual part tests, manufacturers can perform standard fatigue tests in trials of different materials by applying only the defined range of stress or strain values.

Keywords: boot, endurance tests, rubber, FEA

Procedia PDF Downloads 242
827 Parametric Template-Based 3D Reconstruction of the Human Body

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu

Abstract:

This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.

Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint

Procedia PDF Downloads 47
826 Numerical Study on the Ultimate Load of Offshore Two-Planar Tubular KK-Joints at Fire-Induced Elevated Temperatures

Authors: Hamid Ahmadi, Neda Azari-Dodaran

Abstract:

A total of 270 nonlinear steady-state finite element (FE) analyses were performed on 54 FE models of two-planar circular hollow section (CHS) KK-joints subjected to axial loading at five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). The primary goal was to investigate the effects of temperature and geometrical characteristics on the ultimate strength, modes of failure, and initial stiffness of the KK-joints. Results indicated that on an average basis, the ultimate load of a two-planar tubular KK-joint at 200 ºC, 400 ºC, 550 ºC, and 700 ºC is 90%, 75%, 45%, and 16% of the joint’s ultimate load at ambient temperature, respectively. Outcomes of the parametric study showed that replacing the yield stress at ambient temperature with the corresponding value at elevated temperature to apply the EN 1993-1-8 equations for the calculation of the joint’s ultimate load at elevated temperatures may lead to highly unconservative results that might endanger the safety of the structure. Results of the parametric study were then used to develop a set of design formulas, through nonlinear regression analyses, to calculate the ultimate load of two-planar tubular KK-joints subjected to axial loading at elevated temperatures.

Keywords: ultimate load, two-planar tubular KK-joint, axial loading, elevated temperature, parametric equation

Procedia PDF Downloads 128
825 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: modified hybrid joint, repair, seismic loading type, acceptance criteria

Procedia PDF Downloads 498
824 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 133
823 The Current State Of Human Gait Simulator Development

Authors: Stepanov Ivan, Musalimov Viktor, Monahov Uriy

Abstract:

This report examines the current state of human gait simulator development based on the human hip joint model. This unit will create a database of human gait types, useful for setting up and calibrating mechano devices, as well as the creation of new systems of rehabilitation, exoskeletons and walking robots. The system has ample opportunity to configure the dimensions and stiffness, while maintaining relative simplicity.

Keywords: hip joint, human gait, physiotherapy, simulation

Procedia PDF Downloads 380
822 Performance Comparison of Joint Diagonalization Structure (JDS) Method and Wideband MUSIC Method

Authors: Sandeep Santosh, O. P. Sahu

Abstract:

We simulate an efficient multiple wideband and nonstationary source localization algorithm by exploiting both the non-stationarity of the signals and the array geometric information.This algorithm is based on joint diagonalization structure (JDS) of a set of short time power spectrum matrices at different time instants of each frequency bin. JDS can be used for quick and accurate multiple non-stationary source localization. The JDS algorithm is a one stage process i.e it directly searches the Direction of arrivals (DOAs) over the continuous location parameter space. The JDS method requires that the number of sensors is not less than the number of sources. By observing the simulation results, one can conclude that the JDS method can localize two sources when their difference is not less than 7 degree but the Wideband MUSIC is able to localize two sources for difference of 18 degree.

Keywords: joint diagonalization structure (JDS), wideband direction of arrival (DOA), wideband MUSIC

Procedia PDF Downloads 430
821 Play-Based Intervention Training Program for Daycare Workers Attending to Children with Autism

Authors: Raymond E. Raguindin

Abstract:

Objective: This research studied the teaching improvement of daycare workers in imitation, joint attention, and language activities using the play-based early intervention training program in Cabanatuan City, Nueva Ecija. Methods: Focus group discussions were developed to explore the attitude, beliefs, and practices of daycare workers. Results: Findings of the study revealed that daycare workers have existing knowledge and experience in teaching children with autism. Their workshops on managing inappropriate behaviors of children with autism resulting in a general positive perception of accepting and teaching children with autism in daycare centers. Play based activities were modelled and participated in by daycare workers. These include demonstration, modelling, prompting and providing social reinforcers as reward. Five lectures and five training days were done to implement the training program. Daycare workers’ levels of skill in teaching imitation, joint attention and language were gathered before and after the participation in the training program. Findings suggest significant differences between pre-test and post test scores. They have shown significant improvement in facilitating imitation, joint attention, and language children with autism after the play-based early intervention training. They were able to initiate and sustain imitation, joint attention, and language activities with adequate knowledge and confidence. Conclusions: 1. Existing attitudes and beliefs greatly influenced the positive delivery mode of instruction. 2. Teacher-directed approach to improve attention, imitation, joint attention, and language of children with autism can be acquired by daycare workers. 3. Teaching skills and experience can be used as reference and basis for identifying future training needs.

Keywords: early intervention, imitation, joint attention, language

Procedia PDF Downloads 97
820 Knowledge Management in a Combined/Joint Environment

Authors: Cory Cannon

Abstract:

In the current era of shrinking budgets, increasing amounts of worldwide natural disasters, state and non-state initiated conflicts within the world. The response has involved multinational coalitions to conduct effective military operations. The need for a Knowledge Management strategy when developing these coalitions have been overlooked in the past and the need for developing these accords early on will save time and help shape the way information and knowledge are transferred from the staff and action officers of the coalition to the decision-makers in order to make timely decisions within an ever changing environment. The aim of this paper is to show how Knowledge Management has developed within the United States military and how the transformation of working within a Combined/ Joint environment in both the Middle East and the Far East has improved relations between members of the coalitions as well as being more effective as a military force. These same principles could be applied to multinational corporations when dealing with cultures and decision-making processes.

Keywords: civil-military, culture, joint environment, knowledge management

Procedia PDF Downloads 346
819 Perception of Tactile Stimuli in Children with Autism Spectrum Disorder

Authors: Kseniya Gladun

Abstract:

Tactile stimulation of a dorsal side of the wrist can have a strong impact on our attitude toward physical objects such as pleasant and unpleasant impact. This study explored different aspects of tactile perception to investigate atypical touch sensitivity in children with autism spectrum disorder (ASD). This study included 40 children with ASD and 40 healthy children aged 5 to 9 years. We recorded rsEEG (sampling rate of 250 Hz) during 20 min using EEG amplifier “Encephalan” (Medicom MTD, Taganrog, Russian Federation) with 19 AgCl electrodes placed according to the International 10–20 System. The electrodes placed on the left, and right mastoids served as joint references under unipolar montage. The registration of EEG v19 assignments was carried out: frontal (Fp1-Fp2; F3-F4), temporal anterior (T3-T4), temporal posterior (T5-T6), parietal (P3-P4), occipital (O1-O2). Subjects were passively touched by 4 types of tactile stimuli on the left wrist. Our stimuli were presented with a velocity of about 3–5 cm per sec. The stimuli materials and procedure were chosen for being the most "pleasant," "rough," "prickly" and "recognizable". Type of tactile stimulation: Soft cosmetic brush - "pleasant" , Rough shoe brush - "rough", Wartenberg pin wheel roller - "prickly", and the cognitive tactile stimulation included letters by finger (most of the patient’s name ) "recognizable". To designate the moments of the stimuli onset-offset, we marked the moment when the moment of the touch began and ended; the stimulation was manual, and synchronization was not precise enough for event-related measures. EEG epochs were cleaned from eye movements by ICA-based algorithm in EEGLAB plugin for MatLab 7.11.0 (Mathwork Inc.). Muscle artifacts were cut out by manual data inspection. The response to tactile stimuli was significantly different in the group of children with ASD and healthy children, which was also depended on type of tactile stimuli and the severity of ASD. Amplitude of Alpha rhythm increased in parietal region to response for only pleasant stimulus, for another type of stimulus ("rough," "thorny", "recognizable") distinction of amplitude was not observed. Correlation dimension D2 was higher in healthy children compared to children with ASD (main effect ANOVA). In ASD group D2 was lower for pleasant and unpleasant compared to the background in the right parietal area. Hilbert transform changes in the frequency of the theta rhythm found only for a rough tactile stimulation compared with healthy participants only in the right parietal area. Children with autism spectrum disorders and healthy children were responded to tactile stimulation differently with specific frequency distribution alpha and theta band in the right parietal area. Thus, our data supports the hypothesis that rsEEG may serve as a sensitive index of altered neural activity caused by ASD. Children with autism have difficulty in distinguishing the emotional stimuli ("pleasant," "rough," "prickly" and "recognizable").

Keywords: autism, tactile stimulation, Hilbert transform, pediatric electroencephalography

Procedia PDF Downloads 228
818 An Application of Hip Arthroscopy after Acute Injury - A Case Report

Authors: Le Nguyen Binh, Luong Xuan Binh, Le Van Tuan, Tran Binh Duong, Truong Nguyen Khanh Hung, Do Le Hoang Son, Pham Quang Vinh, Hoang Quoc Huy, Nguyen Bach, Nguyen Quoc Khanh Le, Jiunn Horng Kang

Abstract:

Introduction: Traumatic hip dislocation is an emergency in young adult which can cause avascular necrosis of femoral head or osteoarthritis of hip joint. The reasons for these may be the loose body of bony or chondral fragments, which are difficult to be detected on CT scan or MRI. In those cases, Hip arthroscopy may be the method of choice for diagnosis and treatment of loose bodies in hip joint after traumatic dislocation. Methods: A case report is performed. A 55-year-old male patient was under hip arthroscopy to retrieve the loose body in the right hip joint. Results: The patient’s hip was reduced under anesthesia in the opeation room. Xray and CT scan post-reduction showed that his right hip was wide and a small fragment of femoral head (< 5mm) locking inside the joint. A hip arthroscopy was done to take the fragment out. Post-operation, the patient went under rehabilition. After 6 months, he can walk with full-weight bearing; no further dislocaion was noted, and the Harris score was 84 points. Conclusions: Although acute traumatic injury of hip joint is usually treated with open surgeries, these methods have many drawbacks, such as soft tissue destruction, blood-loss,….Despite its technical requirement, hip arthroscopy is less invasive and effective treatment. Therefore, it may be an alternative treatment for a traumatic hip injury and can be applied frequently in the near future.

Keywords: hip dislocation, hip arthroscopy, hip osteoarthritis, acute hip trauma

Procedia PDF Downloads 52
817 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 119
816 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control

Procedia PDF Downloads 70
815 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula

Procedia PDF Downloads 337
814 Woodcast is Ecologically Sound and Tolerated by a Majority of Patients

Authors: R. Hassan, J. Duncombe, E. Darke, A. Dias, K. Anderson, R. G. Middleton

Abstract:

NHS England has set itself the task of delivering a “Net Zero” National Health service by 2040. It is incumbent upon all health care practioners to work towards this goal. Orthopaedic surgeons are no exception. Distal radial fractures are the most common fractures sustained by the adult population. However, studies are shortcoming on individual patient experience. The aim of this study was to assess the patient’s satisfaction and outcomes with woodcast used in the conservative management of distal radius fractures. For all patients managed with woodcast in our unit, we undertook a structured questionnaire that included the Patient Rated Wrist Evaluation (PRWE) score, The EQ-5D-5L score and the pain numerical score at the time of injury and six weeks after. 30 patients were initially managed with woodcast. 80% of patients tolerated woodcast for the full duration of their treatment. Of these, 20% didn’t tolerate woodcast and had their casts removed within 48 hours. Of the remaining, 79.1% were satisfied about woodcast comfort, 66% were very satisfied about woodcast weight, 70% were satisfied with temperature and sweatiness, 62.5% were very satisfied about the smell/odour, and 75% were satisfied about the level of support woodcast provided. During their treatment, 83.3% of patients rated their pain as five or less. For those who completed their treatment in woodcast, none required any further intervention or utilised the open appointment because of ongoing wrist problems. In conclusion, when woodcast is tolerated, patients’ satisfaction and outcome levels were good. However, we acknowledged 20% of patients in our series were not able to tolerate woodacst, Therefore, we suggest a comparison between the widely used synthetic plaster of Paris casting and woodcast to come in order.

Keywords: distal radius fractures, ecological cast, sustainability, woodcast

Procedia PDF Downloads 70
813 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies

Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad

Abstract:

Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.

Keywords: electric vehicles, joint possibilistic- probabilistic uncertainty modeling, uncertain load flow, wind turbine generator

Procedia PDF Downloads 406