Search results for: sterol regulatory element binding proteins
5446 Expression Regulation of Membrane Protein by Codon Variation of Amino Acid at N-Terminal Region
Authors: Ahreum Choi, Otgontuya Tsogbadrakh, Kwang-Hwan Jung
Abstract:
Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied. These retinal-binding proteins have divided into two types. The type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. For type I rhodopsin, there are two main functions that are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is one of the microbial rhodopsin with main function as photo-sensory transduction. Although ASR is expressed fairly well in Escherichia coli, the expression level is relatively less compare to Proteorhodopsin. In this study, full length of ASR was used to test for the expression influence by codon usage in E. coli. Eight amino acids of codon at N-terminal part of ASR were changed randomly with designed primers, which allow 8,192 nucleotide different cases. The codon changes were screened for the preferable codons of each residue, which have given higher expression yield. Among those 57 selected mutations, there are 24 color-enhanced E. coli colonies that contain ASR proteins, and it showed better expression level than the wild type ASR codon usage. This strongly suggests that high codon usage of only partial N-terminal of protein can increase the expression level of whole protein.Keywords: 7-transmembrane, all-trans retinal, rhodopsin, codon-usage, protein expression
Procedia PDF Downloads 1805445 Human C-Cbl and Cbl-b Proteins Are More Highly Expressed in the Thymus Compared to the Testis
Authors: Mazo Kone, Rachida Salah, Harir Noria
Abstract:
Background and objectives: c-Cbl and Cbl-b are two members of the Cbl family proteins, with a crucial role of downregulation of tyrosine kinase receptors. They act as E3 ubiquitin ligases and are multivalent adaptor proteins, making them important in maintaining homeostasis in the body. This study investigated the expression level in thymus and testis in normal conditions. Methods: The expression level was assessed by immunochemistry of tissue microarrays of normal thymus and testis biopsies. Results: Cbl-b and c-Cbl proteins were found to be highly expressed in normal testis and thymus, indicated as yellowish brown granules in the cytomembrane and cytoplasm compared to controls. The c-Cbl appears to be more highly expressed than the Cbl-b in the thymus, while c-Cbl appears slightly stronger than Cbl-b in the testis. The thymus was found with a higher grade compared to the testis. Conclusion: In this work we concluded, that in normal condition, thymus tissue expresses more Cbl family proteins(c-Cbl and Cbl-b) than the testis tissue in humans.Keywords: Human C-Cbl proteins, Human Cbl-b protein, Testis, Thymus
Procedia PDF Downloads 2335444 Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System
Authors: Perumalsamy Muthiah, Murugesan Thanapalan
Abstract:
The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed.Keywords: aqueous two-phase system, phase diagram, extraction, cheese whey
Procedia PDF Downloads 4105443 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study
Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani
Abstract:
Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.Keywords: CspA, homology modelling, mutation, molecular dynamics simulation
Procedia PDF Downloads 3745442 Molecular Docking Analysis of Flavonoids Reveal Potential of Eriodictyol for Breast Cancer Treatment
Authors: Nicole C. Valdez, Vincent L. Borromeo, Conrad C. Chong, Ahmad F. Mazahery
Abstract:
Breast cancer is the most prevalent cancer worldwide, where the majority of cases are estrogen-receptor positive and involve 2 receptor proteins. The binding of estrogen to estrogen receptor alpha (ERα) promotes breast cancer growth, while it's binding to estrogen-receptor beta (ERβ) inhibits tumor growth. While natural products have been a promising source of chemotherapeutic agents, the challenge remains in finding a bioactive compound that specifically targets cancer cells, minimizing side effects on normal cells. Flavonoids are natural products that act as phytoestrogens and induce the same response as estrogen. They are able to compete with estrogen for binding to ERα; however, it has a higher binding affinity for ERβ. Their abundance in nature and low toxicity make them a potential candidate for breast cancer treatment. This study aimed to determine which particular flavonoids can specifically recognize ERβ and potentially be used for breast cancer treatment through molecular docking. A total of 206 flavonoids comprised of 97 isoflavones and 109 flavanones were collected from ZINC15, while the 3D structures of ERβ and ERα were obtained from Protein Data Bank. These flavonoid subclasses were chosen as they bind more strongly to ERs due to their chemical structure. The structures of the flavonoid ligands were converted using Open Babel, while the estrogen receptor protein structures were prepared using Autodock MGL Tools. The optimal binding site was found using BIOVIA Discovery Studio Visualizer before docking all flavonoids on both ERβ and ERα through Autodock Vina. Genistein is a flavonoid that exhibits anticancer effects by binding to ERβ, so its binding affinity was used as a baseline. Eriodictyol and 4”,6”-Di-O-Galloylprunin both exceeded genistein’s binding affinity for ERβ and was lower than its binding affinity for ERα. Of the two, eriodictyol was pursued due to its antitumor properties on a lung cancer cell line and on glioma cells. It is able to arrest the cell cycle at the G2/M phase by inhibiting the mTOR/PI3k/Akt cascade and is able to induce apoptosis via the PI3K/Akt/NF-kB pathway. Protein pathway and gene analysis were also conducted using ChEMBL and PANTHER and it was shown that eriodictyol might induce anticancer effects through the ROS1, CA7, KMO, and KDM1A genes which are involved in cell proliferation in breast cancer, non-small cell lung cancer, and other diseases. The high binding affinity of eriodictyol to ERβ, as well as its potential affected genes and antitumor effects, therefore, make it a candidate for the development of new breast cancer treatment. Verification through in vitro experiments such as checking the upregulation and downregulation of genes through qPCR and checking cell cycle arrest using a flow cytometry assay is recommended.Keywords: breast cancer, estrogen receptor, flavonoid, molecular docking
Procedia PDF Downloads 895441 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes
Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra
Abstract:
Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity
Procedia PDF Downloads 3495440 Relationship between Deliberate Practice of Dribbling and Self-Regulatory Behavior of Male Basketball Players
Authors: Daud Abdia, Aqsa Shamim, Farhan Tabassum
Abstract:
In order to achieve specific goals, basketball players have to use different skills to enhance their motivation, one such skill is deliberate practice. The aim of this study was to explore the relationship between deliberate practice of dribbling and self-regulatory behavior of male basketball players. For this purpose, a sample of 108 basketball players using stratified sampling was taken from public and private sector universities. Sample was divided into two groups that are experimental (n=54) and control group (n=54) using comparative experimental design. Experimental group was involved in the training of deliberate practice of dribbling for 5 weeks. Amounts of weekly practice activity and Self-Regulation of Learning Self-Report Scale (SRL-SRS) were used for self-regulatory behavior to collect data after the deliberate practice. The reliability of amounts of weekly practice activity was found to be 0.852, whereas SRL-SRS was found to be 0.890. The results of the study indicated a strong positive correlation between deliberate practice of dribbling and self-regulatory behavior (r=0.755, n=54, p=.000). Whereas, paired sample t-test; t(53)=1.37, p < 0.005 shows statistically significant improvement in the self-regulatory behavior after the training program of deliberate practice from 3.02 ± 0.64m to 3.21 ± 0.75m (p < 0.005). It was concluded that in order to enhance the self-regulatory behavior of basketball players we should work on the deliberate practice of the players.Keywords: self-regulatory behavior, deliberate practice, dribbling, basketball
Procedia PDF Downloads 1725439 Canthin-6-One Alkaloid Inhibits NF-κB and AP-1 Activity: An Inhibitory Action At Transcriptional Level
Authors: Fadia Gafri, Kathryn Mckintosh, Louise Young, Alan Harvey, Simon Mackay, Andrew Paul, Robin Plevin
Abstract:
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor found originally to play a key role in regulating inflammation. However considerable evidence links this pathway to the suppression of apoptosis, cellular transformation, proliferation and invasion (Aggarwal et al., 2006). Moreover, recent studies have also linked inflammation to cancer progression making NF-κB overall a promising therapeutic target for drug discovery (Dobrovolskaia & Kozlov, 2005). In this study we examined the effect of the natural product canthin-6-one (SU182) as part of a CRUK small molecule drug discovery programme for effects upon the NF-κB pathway. Initial studies demonstrated that SU182 was found to have good potency against the inhibitory kappa B kinases (IKKs) at 30M in vitro. However, at concentrations up to 30M, SU182 had no effect upon TNFα stimulated loss in cellular IκBα or p65 phosphorylation in the keratinocyte cell line NCTC2544. Nevertheless, 30M SU182 reduced TNF-α / PMA-induced NF-κB-linked luciferase reporter activity to (22.9 ± 5%) and (34.6± 3 %, P<0.001) respectively, suggesting an action downstream of IKK signalling. Indeed, SU182 neither decreased NF-κB-DNA binding as assayed by EMSA nor prevented the translocation of p65 (NF-κB) to the nucleus assessed by immunofluorescence and subcellular fractionation. In addition to the inhibition of transcriptional activity of TNFα-induced NF-κB reporter activity SU182 significantly reduced PMA-induced AP-1-linked luciferase reporter activity to about (48± 9% at 30M, P<0.001) . This mode of inhibition was not sufficient to prevent the activation of NF-κB dependent induction of other proteins such as COX-2 and iNOS, or activated MAP kinases (p38, JNK and ERK1/2) in LPS stimulated RAW 264.7 macrophages. Taken together these data indicate the potential for SU182 to interfere with the transcription factors NF-κB and AP-1 at transcriptional level. However, no potential anti-inflammatory effect was indicated, further investigation for other NF-κB dependent proteins linked to survival are also required to identify the exact mechanism of action.Keywords: Canthin-6-one, NF-κB, AP-1, phosphorylation, Nuclear translocation, DNA-binding activity, inflammatory proteins.
Procedia PDF Downloads 4585438 Modeling Thin Shell Structures by a New Flat Shell Finite Element
Authors: Djamal Hamadi, Ashraf Ayoub, Ounis Abdelhafid, Chebili Rachid
Abstract:
In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures.Keywords: finite element, flat shell element, strain based approach, static condensation
Procedia PDF Downloads 4305437 Dimensionless Binding Values in the Evaluation of Paracetamol Tablet Formulation
Authors: Abayomi T. Ogunjimi, Gbenga Alebiowu
Abstract:
Mechanical properties of paracetamol tablets containing Neem (Azadirachta indica) gum were compared with standard Acacia gum BP as binder. Two dimensionless binding quantities BEN and BEC were used in assessing the influence of binder type on two mechanical properties, Tensile Strength (TS) and Brittle Fracture Index (BFI). The two quantities were also used to assess the influence of relative density and binder concentration on TS and BFI as well as compare Binding Efficiencies (BE). The result shows that TS is dependent on relative density, binder type and binder concentration while BFI is dependent on the binder type and binder concentration; and that although, the inclusion of NMG in a paracetamol tablet formulation may not enhance the TS of the tablets produced, however it will decrease the tendency of the tablets to cap or laminate. This work concludes that BEN may be useful in quantitative assessment while BEC may be appropriate for qualitative assessment.Keywords: binding efficiency, brittle fracture index, dimensionless binding, tensile strength
Procedia PDF Downloads 2535436 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors
Authors: Ho-Wa Li, Sai-Wing Tsang
Abstract:
The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics
Procedia PDF Downloads 1505435 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS
Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim
Abstract:
Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.Keywords: E. histolytica, ESA, proteomics, biomarker
Procedia PDF Downloads 3435434 An Analysis of Mongolian Possessive Markers
Authors: Yaxuan Wang
Abstract:
It has long been a mystery that why the Mongolian possessive suffix, which is constrained by Condition A of binding theory, has the ability to probe a potential antecedent outside of its binding domain. This squib argues that binding theory alone is not sufficient to explain the linguistic facts and proposes an analysis adopting the Agree operation. The current analysis correctly predicts all the possible and impossible structures, with an additional hypothesis that Mongolian possessive suffixes serve as an antecedent for PROs in adjunct. The findings thus provide insights into how Agree operates in Mongolian language.Keywords: syntax, Mongolian, agreement, possessive particles
Procedia PDF Downloads 1015433 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development
Authors: Patarasuda Chaisupa, R. Clay Wright
Abstract:
The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.Keywords: synthetic biology, bioengineering, molecular biology, biotechnology
Procedia PDF Downloads 925432 SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations
Authors: Atlal El-Assaad
Abstract:
Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide.Keywords: SARS-CoV-2, variant, ionic amino acid, protein-protein interactions, missense mutation, AESOP
Procedia PDF Downloads 1135431 Target-Triggered DNA Motors and their Applications to Biosensing
Authors: Hongquan Zhang
Abstract:
Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification
Procedia PDF Downloads 845430 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases
Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman
Abstract:
To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases
Procedia PDF Downloads 3775429 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells
Authors: Fadilah Aleanizy
Abstract:
Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli
Procedia PDF Downloads 4095428 Modelling Ibuprofen with Human Albumin
Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva
Abstract:
The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.Keywords: ibuprofen, human serum albumin, density functional theory, binding energies
Procedia PDF Downloads 3475427 Analysis of Extracellular Vesicles Interactomes of two Isoforms of Tau Protein via SHSY-5Y Cell Lines
Authors: Mohammad Aladwan
Abstract:
Alzheimer’s disease (AD) is a widespread dementing illness with a complex and poorly understood etiology. An important role in improving our understanding of the AD process is the modeling of disease-associated changes in tau protein phosphorylation, a protein known to mediate events essential to the onset and progression of AD. A main feature of AD is the abnormal phosphorylation of tau protein and the presence of neurofibrillary tangles. In order to evaluate the respective roles of the microtubule-binding region (MTBR) and alternatively spliced exons in the N-terminal projection domains in AD, we have constructed SHSY-5Y cell lines that stably overexpress four different species of tau protein (4R2N, 4R0N, N(E-2), N(E+2)). Since the toxicity and spreading of tau lesions in AD depends on the interactions of tau with other proteins, we have performed a proteomic analysis of exosome-fraction interactomes for cell lysates and media samples that were isolated from SHSY-5Y cell lines. Functional analysis of tau interactomes based on gene ontology (GO) terms was performed using the String 10.5 database program. The highest number of exosomes proteomes and tau associated proteins were found with 4R2N isoform (2771 and 159) in cell lysate and they have a high strength of connectivity (78%) between proteins, while N(E-2) isoform in the media proteomes has the highest number of proteins and tau associated protein (1829 and 205). Moreover, known AD markers were significantly enriched in secreted interactomes relative to lysate interactomes in the SHSY-5Y cells of tau isoforms lacking exons 2 and 3 in the N-terminal. The lack of exon 2 (E-2) from tau protein can be mediated by tau secretion and spreading to different cells. Enriched functions in the secreted E-2 interactome include signaling and developmental pathways that have been linked to a) tau misprocessing and lesion development and b) tau secretion and which, therefore, could play novel roles in AD pathogenesis.Keywords: Alzheimer's disease, dementia, tau protein, neurodegenration disease
Procedia PDF Downloads 1005426 Manipulating The PAAR Proteins of Acinetobacter Baumannii
Authors: Irene Alevizos, Jessica Lewis, Marina Harper, John Boyce
Abstract:
Acinetobacter baumannii causes a range of severe nosocomial-acquired infections, and many strains are multi-drug resistant. A. baumannii possesses survival mechanisms allowing it to thrive in competitive polymicrobial environments, including a Type VI Secretion System (T6SS) that injects effector proteins into other bacteria to give a competitive advantage. The effects of T6SS firing are broad and depend entirely on the effector that is delivered. Effects can include toxicity against prokaryotic or eukaryotic cells and the acquisition of essential nutrients. The T6SS of some species can deliver ‘specialised effectors’ that are fused directly to T6SS components, such as PAAR proteins. PAAR proteins are predicted to form the piercing tip of the T6SS and are essential for T6SS function. Although no specialised effectors have been identified in A. baumannii, many strains encode multiple PAAR proteins. Analysis of PAAR proteins across the species identified 12 families of PAAR proteins with distinct C-terminal extensions. A. baumannii AB307-0294 encodes two PAAR proteins, one of which has a C-terminal extension. Mutation of one or both of the PAAR-encoding genes in this strain showed that expression of either PAAR protein was sufficient for T6SS function. We employed a heterologous expression approach and determined that PAAR proteins from different A. baumannii strains, as well as the closely related A. baylyi species, could complement the A. baumannii ∆paar mutant and restore T6SS function. Furthermore, we showed that PAAR fusions could be used to deliver artificially cloned protein fragments by generating Histidine- and Streptavidin- tagged PAAR specialised effectors, which restored T6SS activity. This provides evidence that the fusion of protein fragments onto PAAR proteins in A. baumannii is compatible with a functional T6SS. Successful delivery by this mechanism extends the scope of what the T6SS can deliver, including user designed proteins.Keywords: A. baumannii, effectors, PAAR, T6SS
Procedia PDF Downloads 975425 High Throughput Virtual Screening against ns3 Helicase of Japanese Encephalitis Virus (JEV)
Authors: Soma Banerjee, Aamen Talukdar, Argha Mandal, Dipankar Chaudhuri
Abstract:
Japanese Encephalitis is a major infectious disease with nearly half the world’s population living in areas where it is prevalent. Currently, treatment for it involves only supportive care and symptom management through vaccination. Due to the lack of antiviral drugs against Japanese Encephalitis Virus (JEV), the quest for such agents remains a priority. For these reasons, simulation studies of drug targets against JEV are important. Towards this purpose, docking experiments of the kinase inhibitors were done against the chosen target NS3 helicase as it is a nucleoside binding protein. Previous efforts regarding computational drug design against JEV revealed some lead molecules by virtual screening using public domain software. To be more specific and accurate regarding finding leads, in this study a proprietary software Schrödinger-GLIDE has been used. Druggability of the pockets in the NS3 helicase crystal structure was first calculated by SITEMAP. Then the sites were screened according to compatibility with ATP. The site which is most compatible with ATP was selected as target. Virtual screening was performed by acquiring ligands from databases: KinaseSARfari, KinaseKnowledgebase and Published inhibitor Set using GLIDE. The 25 ligands with best docking scores from each database were re-docked in XP mode. Protein structure alignment of NS3 was performed using VAST against MMDB, and similar human proteins were docked to all the best scoring ligands. The low scoring ligands were chosen for further studies and the high scoring ligands were screened. Seventy-three ligands were listed as the best scoring ones after performing HTVS. Protein structure alignment of NS3 revealed 3 human proteins with RMSD values lesser than 2Å. Docking results with these three proteins revealed the inhibitors that can interfere and inhibit human proteins. Those inhibitors were screened. Among the ones left, those with docking scores worse than a threshold value were also removed to get the final hits. Analysis of the docked complexes through 2D interaction diagrams revealed the amino acid residues that are essential for ligand binding within the active site. Interaction analysis will help to find a strongly interacting scaffold among the hits. This experiment yielded 21 hits with the best docking scores which could be investigated further for their drug like properties. Aside from getting suitable leads, specific NS3 helicase-inhibitor interactions were identified. Selection of Target modification strategies complementing docking methodologies which can result in choosing better lead compounds are in progress. Those enhanced leads can lead to better in vitro testing.Keywords: antivirals, docking, glide, high-throughput virtual screening, Japanese encephalitis, ns3 helicase
Procedia PDF Downloads 2305424 Diplomatic Assurances in International Law
Authors: William Thomas Worster
Abstract:
Diplomatic assurances issued by states declaring that they will not mistreat individuals returned to them occupy a strange middle ground between being legal and non-legal obligations. States assert that they are non-binding, yet at other times that they are binding. However, this assertion may not be the end of the discussion. The International Court of Justice and other tribunals have concluded that similar instruments were binding, states have disagreed that certain similar instruments were binding, and the Vienna Convention on the Law of Treaties and its travaux prépératoires do not appear to contemplate non-binding instruments. This paper is a case study of diplomatic assurances but, by necessity, touches on the delicate question of whether certain texts are treaties, promises, or non-binding political statements. International law, and law in general, requires a binary approach to obligation. All communications must be binding or not, even if the fit is not precise. Through this study, we will find that some of the obligations in certain assurances can be understood as legal and some not. We will attempt to state the current methodology for determining which obligations are legal under the law of treaties and law on binding unilateral promises. The paper begins with some background of the legal environment of diplomatic assurances and their use in cases of expulsion. The paper then turns to discuss the legal nature of diplomatic assurances, proceeding to address various possibilities for legal value as treaties and as binding unilateral statements. This paper will not examine the legal value of diplomatic assurances solely under customary international law other than the way in which customary international law might further refine the treaty definition. In order to identify whether any assurances are contained in legal acts, this study identifies a pool of relevant assurances and qualitatively analyzes whether any of those are contained in treaties or binding unilateral statements. To the author’s best knowledge, this study is the first large-scale, qualitative qualitative analysis of assurances as a group of instruments that accounts for their heterogenous nature. It is also the first study to identify the indicators of whether an instrument is a treaty or promise.Keywords: diplomatic assurances, deportation, extradition, expulsion, non-refoulement, torture, persecution, death penalty, human rights, memorandum of understanding, promises, secret, monitoring, compliance, enforcement
Procedia PDF Downloads 875423 How Manufacturing Firm Manages Information Security: Need Pull and Technology Push Perspective
Authors: Geuna Kim, Sanghyun Kim
Abstract:
This study investigates various factors that may influence the ISM process, including the organization’s internal needs and external pressure, and examines the role of regulatory pressure in ISM development and performance. The 105 sets of data collected in a survey were tested against the research model using SEM. The results indicate that NP and TP had positive effects on the ISM process, except for perceived benefits. Regulatory pressure had a positive effect on the relationship between ISM awareness and ISM development and performance.Keywords: information security management, need pull, technology push, regulatory pressure
Procedia PDF Downloads 2975422 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins
Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang
Abstract:
Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.Keywords: milk protein, bioactive nutrient, interaction, protection
Procedia PDF Downloads 4125421 Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate
Authors: M. N. Hanina, M. Hairul Shahril, I. Ismatul Nurul Asyikin, A. K. Abdul Jalil, M. R. Salina, M. R. Maryam, M. Rosfarizan
Abstract:
The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion.Keywords: Bacillus subtilis ATCC21332, streptomycin sulfate, extracellular proteins, antibiotics
Procedia PDF Downloads 2845420 Characterization of Transmembrane Proteins with Five Alpha-Helical Regions
Authors: Misty Attwood, Helgi Schioth
Abstract:
Transmembrane proteins are important components in many essential cell processes such as signal transduction, cell-cell signalling, transport of solutes, structural adhesion activities, and protein trafficking. Due to their involvement in diverse critical activities, transmembrane proteins are implicated in different disease pathways and hence are the focus of intense interest in understanding functional activities, their pathogenesis in disease, and their potential as pharmaceutical targets. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. In this in silico bioinformatics analysis, we identify and comprehensively characterize the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). We classify nearly 60 5TM proteins in which 31 are members of ten families that contain two or more family members and all members are predicted to contain the 5TM architecture. Furthermore, nine singlet proteins that contain the 5TM architecture without paralogues detected in humans were also identifying, indicating the evolution of single unique proteins with the 5TM structure. Interestingly, more than half of these proteins function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this family in sharp contrast with other TM families. Three major 5TM families were identified and include the Tweety family, which are pore-forming subunits of the swelling-dependent volume regulated anion channel in astrocytes; the sidoreflexin family that acts as mitochondrial amino acid transporters; and the Yip1 domain family engaged in vesicle budding and intra-Golgi transport. About 30% of the proteins have enhanced expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumour types, indicating further investigation into the function and expression of these proteins is important. This study provides the first comprehensive analysis of proteins with 5TM regions and provides details of the unique characteristics and application in pharmaceutical development.Keywords: 5TM, cancer prognostic marker, drug targets, transmembrane protein
Procedia PDF Downloads 1095419 Investigation of Mutagenicity and DNA Binding Properties of Metal-Free and Metallophthalocyanines Containing α-Napththolbenzein Groups on the Peripheral Positions
Authors: Meltem Betül Sağlam, Halil İbrahim Güler, Aykut Sağlam
Abstract:
In this work, phthalocyanine compounds containing α-naphtholbenzeinunits have been synthesized. Mutagenicity and DNA binding properties of the compounds were investigated by Salmonella/Microsome Assay and spectrophotometer. According to the results of the preliminary range finding tests, the compounds gave no toxic effect to all tester strain S. typhimurium TA98 and TA100 at doses of 500, 1100, 350, 500 and 750 µg/plate in the presence and absence of S9, respectively. This study showed that all compounds exhibited efficient DNA-binding activity. In conclusion, these non-toxic compounds may be used as effective DNA dyes for molecular biology studies.Keywords: dye, mutagenicity, phthalocyanine, toxicity
Procedia PDF Downloads 2315418 The Effect of Resistance and Progressive Training on Hsp 70 and Glucose
Authors: F. Nameni, H. Poursadra
Abstract:
The present study investigated resistance and progressive training alters the expression of chaperone proteins. These proteins function to maintain homeostasis, facilitate repair from injury, and provide protection. Nineteen training female in 2 groups taking part in the intervention volunteered to give blood samples. Levels of chaperone proteins were measured in response to resistance and progressive training. Hsp 70 levels were increased immediately after 2 h progressive training but decreased after resistance training. The data showed that human skeletal muscle responds to the stress of a single period of progressive training by up-regulating and resistance training by down-regulating expression of HSP70. Physical exercise can elevate core temperature and muscle temperatures and the expression pattern of HSP70 due to training status may be attributed to adaptive mechanisms.Keywords: resistance training, heat shock proteins, leukocytes, Hsp 70
Procedia PDF Downloads 4585417 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis
Authors: Mhaned Oubounyt, Jan Baumbach
Abstract:
Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks
Procedia PDF Downloads 150