Search results for: exciton binding energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8742

Search results for: exciton binding energy

8742 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 108
8741 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 294
8740 Trions in Semiconductor Quantum Dot System

Authors: Jayden Leonard, Nguyen Que Huong

Abstract:

In this work, we study the Trion state in a spherical quantum dot of a direct band gap semiconductor with a shell of organic material. The electronic structure of the Trion due to degenerate valence band will be considered. The coupling between the wannier exciton inside the dot and the Frenkel exciton in the shell will make the Trion state become hybrid. The competition between “semiconductor” and “organic” phases of the Trion and the transitions between them depend on Parameters of the system such as the materials, the size of the dot and the thickness of the shell, etc… and could be manipulated using those parameters.

Keywords: trion, exciton, quantum dot, heterostructure

Procedia PDF Downloads 140
8739 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 248
8738 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 343
8737 In-Silico Investigation of Phytochemicals from Ocimum Sanctum as Plausible Antiviral Agent in COVID-19

Authors: Dileep Kumar, Janhavi Ramchandra Rao Kumar, Rao

Abstract:

COVID-19 has ravaged the globe, and it is spreading its Spectre day by day. In the absence of established drugs, this disease has created havoc. Some of the infected persons are symptomatic or asymptomatic. The respiratory system, cardiac system, digestive system, etc. in human beings are affected by this virus. In our present investigation, we have undertaken a study of the Indian Ayurvedic herb, Ocimum sanctum against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. MM-GBSA based binding free energy calculations also suggest the most favorable binding affinities of carvacrol, β elemene, and β caryophyllene with binding energies of −61.61, 58.23, and −54.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. It rekindles our hope for the design and development of new drug candidates for the treatment of COVID19.

Keywords: molecular docking, COVID-19, ocimum sanctum, binding energy

Procedia PDF Downloads 144
8736 Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers

Authors: Arslan Usman, Abdul Sattar, Hamid Latif, Afshan Ashfaq, Muhammad Rafique, Martin Koch

Abstract:

Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV.

Keywords: 2D materials, photoluminescence, AFM, excitons

Procedia PDF Downloads 118
8735 Investigating the Energy Gap and Wavelength of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ Superlattices in Terms of Material Thickness and Al Mole Fraction Using Empirical Tight-Binding Method

Authors: Matineh Sadat Hosseini Gheidari, Vahid Reza Yazdanpanah

Abstract:

In this paper, we used the empirical tight-binding method (ETBM) with sp3s* approximation and considering the first nearest neighbor with spin-orbit interactions in order to model superlattice structure (SLS) of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ grown on GaAs (100) substrate at 300K. In the next step, we investigated the behavior of the energy gap and wavelength of this superlattice in terms of different thicknesses of core materials and Al mole fractions. As a result of this survey, we found out that as the Al composition increases, the energy gap of this superlattice has an upward trend and ranges from 1.42-1.63 eV. Also, according to the wavelength range that we gained from this superlattice in different Al mole fractions and various thicknesses, we can find a suitable semiconductor for a special light-emitting diode (LED) application.

Keywords: energy gap, empirical tight-binding method, light-emitting diode, superlattice, wavelength

Procedia PDF Downloads 155
8734 Modelling Ibuprofen with Human Albumin

Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva

Abstract:

The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.

Keywords: ibuprofen, human serum albumin, density functional theory, binding energies

Procedia PDF Downloads 319
8733 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4

Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.

Keywords: ZnO, nanorods, hydrothermal, KMnO4

Procedia PDF Downloads 360
8732 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride

Authors: Farzaneh Shayeganfar, Ali Ramazani

Abstract:

Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.

Keywords: surface plasmon, hot carrier, strain engineering, valley polariton

Procedia PDF Downloads 79
8731 Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV

Authors: L. Yettou

Abstract:

In this study, the calculations of proton emission spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations.

Keywords: Preequilibrium models , level density, level density a-parameter., Empire code, Talys code.

Procedia PDF Downloads 96
8730 Energy Service Companies as a Facilitator for Implementation of Energy-Environment Conventions

Authors: Bahareh Arghand

Abstract:

The establishment of rules and regulations for more effective energy-environment interactions are essential to achieving sustainable development. Sustainable development requires mechanisms that can promote compliance in energy-environment conventions. There are many binding agreements and non-binding instruments at regional and international levels on energy and the environment. These conventions try to decrease conflicts of interest between energy, environment and economic by legal principles and practical mechanisms. The major core of conventions is their implementations because the poor implementation and enforcement power affect their success. In this regard, the main goal of this study is proposing the effective implementation mechanisms. Energy service companies' (ESCOs) activities can improve energy efficiency and decrease the environmental degradations. Therefore, it can be proposed and assessed the merit mechanism of ESCO performance as a facilitator to implement energy-environment conventions. An assessment of ESCO performance, including its potentials, problems, and limitations, as a facilitator for effective implementation of the energy-environment convention, is included. This study is oriented towards effective development and application of laws and the function of ESCOs as appropriate economic instruments and facilitator for implementation of energy-environment conventions. The resulting system of close cooperation between the energy-environment conventions and ESCOs is geared toward advancing environmental protection and economic factors by the transfer of environmentally-sound technologies that meet sustainable development objectives.

Keywords: energy-environment conventions, energy service company, facilitator mechanism, sustainable development

Procedia PDF Downloads 138
8729 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 35
8728 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments

Authors: G. Carrero, C. Contreras, M. J. Hendzel

Abstract:

Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.

Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation

Procedia PDF Downloads 401
8727 Effects of Bacteria on Levels of AFM1 in Phosphate Buffer at Different Level of Energy Source

Authors: Ali M. Elgerbi, Obied A. Alwan, Al-Taher O. Alzwei, Abdurrahim A. Elouzi

Abstract:

The binding of AFM1 to bacteria in phosphate buffer solution depended on many factors such as: availability of energy, incubation period, species and strain of bacteria. Increase in concentration of sugar showed higher removal of AFM1 and faster than in phosphate buffer alone. With 1.0% glucose lactic acid bacteria and bifidobacteria showed toxin removal ranging from 7.7 to 39.7% whereas with 10.0% glucose the percentage removal was 21.8 to 45.4% at 96 hours of incubation.

Keywords: aflatoxin M1, lactic acid bacteria, bifidobacteria , binding, phosphate buffer

Procedia PDF Downloads 469
8726 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 184
8725 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface

Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke

Abstract:

Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.

Keywords: concanavalin A, FRET, sensor, biomimetic membrane

Procedia PDF Downloads 270
8724 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 413
8723 The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts

Authors: Sarka Keprdova, Jiri Bydzovsky

Abstract:

This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced.

Keywords: ash, binder, cement, energy by-product, FBC ash (fluidized bed combustion ash), filling materials, shives, slag, technical hemp

Procedia PDF Downloads 374
8722 Antitrypanosomal Activity of Stigmasterol: An in silico Approach

Authors: Mohammed Auwal Ibrahim, Aminu Mohammed

Abstract:

Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.

Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol

Procedia PDF Downloads 233
8721 Quantum Fisher Information of Bound Entangled W-Like States

Authors: Fatih Ozaydin

Abstract:

Quantum Fisher information (QFI) is a multipartite entanglement witness and recently it has been studied extensively with separability and entanglement in the focus. On the other hand, bound entanglement is a special phenomena observed in mixed entangled states. In this work, we study the QFI of W states under a four-dimensional entanglement binding channel. Starting with initally pure W states of several qubits, we find how the QFI decreases as two qubits of the W state is subject to entanglement binding. We also show that as the size of the W state increases, the effect of entanglement binding is decreased.

Keywords: Quantum Fisher information, W states, bound entanglement, entanglement binding

Procedia PDF Downloads 440
8720 A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions

Authors: Wei-Ting Kuo, Feng-Huei Lin

Abstract:

Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery.

Keywords: adhesion force, binding affinity, epidermal growth factor receptor, target molecule

Procedia PDF Downloads 400
8719 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 515
8718 Isotope Effects on Inhibitors Binding to HIV Reverse Transcriptase

Authors: Agnieszka Krzemińska, Katarzyna Świderek, Vicente Molinier, Piotr Paneth

Abstract:

In order to understand in details the interactions between ligands and the enzyme isotope effects were studied between clinically used drugs that bind in the active site of Human Immunodeficiency Virus Reverse Transcriptase, HIV-1 RT, as well as triazole-based inhibitor that binds in the allosteric pocket of this enzyme. The magnitudes and origins of the resulting binding isotope effects were analyzed. Subsequently, binding isotope effect of the same triazole-based inhibitor bound in the active site were analyzed and compared. Together, these results show differences in binding origins in two sites of the enzyme and allow to analyze binding mode and place of newly synthesized inhibitors. Typical protocol is described below on the example of triazole ligand in the allosteric pocket. Triazole was docked into allosteric cavity of HIV-1 RT with Glide using extra-precision mode as implemented in Schroedinger software. The structure of HIV-1 RT was obtained from Protein Data Bank as structure of PDB ID 2RKI. The pKa for titratable amino acids was calculated using PROPKA software, and in order to neutralize the system 15 Cl- were added using tLEaP package implemented in AMBERTools ver.1.5. Also N-terminals and C-terminals were build using tLEaP. The system was placed in 144x160x144Å3 orthorhombic box of water molecules using NAMD program. Missing parameters for triazole were obtained at the AM1 level using Antechamber software implemented in AMBERTools. The energy minimizations were carried out by means of a conjugate gradient algorithm using NAMD. Then system was heated from 0 to 300 K with temperature increment 0.001 K. Subsequently 2 ns Langevin−Verlet (NVT) MM MD simulation with AMBER force field implemented in NAMD was carried out. Periodic Boundary Conditions and cut-offs for the nonbonding interactions, range radius from 14.5 to 16 Å, are used. After 2 ns relaxation 200 ps of QM/MM MD at 300 K were simulated. The triazole was treated quantum mechanically at the AM1 level, protein was described using AMBER and water molecules were described using TIP3P, as implemented in fDynamo library. Molecules 20 Å apart from the triazole were kept frozen, with cut-offs established on range radius from 14.5 to 16 Å. In order to describe interactions between triazole and RT free energy of binding using Free Energy Perturbation method was done. The change in frequencies from ligand in solution to ligand bounded in enzyme was used to calculate binding isotope effects.

Keywords: binding isotope effects, molecular dynamics, HIV, reverse transcriptase

Procedia PDF Downloads 397
8717 Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, langmuir isotherm, mild steel

Procedia PDF Downloads 314
8716 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures

Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi

Abstract:

Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.

Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO

Procedia PDF Downloads 254
8715 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 316
8714 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 341
8713 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 313