Search results for: microbial enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1524

Search results for: microbial enzymes

1464 Different Methods Anthocyanins Extracted from Saffron

Authors: Hashem Barati, Afshin Farahbakhsh

Abstract:

The flowers of saffron contain anthocyanins. Generally, extraction of anthocyanins takes place at low temperatures (below 30 °C), preferably under vacuum (to minimize degradation) and in an acidic environment. In order to extract anthocyanins, the dried petals were added to 30 ml of acidic ethanol (pH=2). Amount of petals, extraction time, temperature, and ethanol percentage which were selected. Total anthocyanin content was a function of both variables of ethanol percent and extraction time.To prepare SW with pH of 3.5, different concentrations of 100, 400, 700, 1,000, and 2,000 ppm of sodium metabisulfite were added to aqueous sodium citrate. At this selected concentration, different extraction times of 20, 40, 60, 120, 180 min were tested to determine the optimum extraction time. When the extraction time was extended from 20 to 60 min, the total recovered anthocyanins of sulfur method changed from 650 to 710 mg/100 g. In the EW method Cellubrix and Pectinex enzymes were added separately to the buffer solution at different concentrations of 1%, 2.5%, 5%, 7%, 10%, and 12.5% and held for 2 hours reaction time at an ambient temperature of 40 °C. There was a considerable and significant difference in trends of Acys content of tepals extracted by pectinex enzymes at 5% concentration and AE solution.

Keywords: saffron, anthocyanins, acidic environment, acidic ethanol, pectinex enzymes, Cellubrix enzymes, sodium metabisulfite

Procedia PDF Downloads 487
1463 Bio-Genetic Activities Associated with Resistant in Peppers to Phytophthora capsici

Authors: Mehdi Nasr-Esfahani, Leila Mohammad Bagheri, Ava Nasr-Esfahani

Abstract:

Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. In this study, a diverse collection of 37 commercial edible and ornamental pepper genotypes infected with P. capsici were investigated for biomass parameters and enzymatic activity of peroxidase or peroxide reductases (EC), superoxide dismutase (SOD), polyphenol oxidase (PPOs), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Seven candidate DEG genes were also evaluated on resistant and susceptible pepper cultivars, through measuring product formation, using spectrophotometry and real-time polymerase chain reaction. All the five enzymes and seven defense-gene candidates were up-regulated in all inoculated pepper accessions to P. capsici. But, the enzymes and DEG genes were highly expressed in resistant cv. 19OrnP-PBI, 37ChillP-Paleo, and “23CherryP-Orsh". The expression level of enzymes were 1.5 to 5.6-fold higher in the resistant peppers, than the control non-inoculated genotypes. Also, the transcriptional levels of related candidate DEG genes were 3.16 to 5.90-fold higher in the resistant genotypes. There was a direct and high correlation coefficient between resistance, bio-mass parameters, enzymatic activity, and resistance gene expression. The related enzymes and candidate genes expressed herein will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.

Keywords: AP2/ERF, cDNA, enzymes, MIP gene, q-RTPCR, XLOC

Procedia PDF Downloads 133
1462 Anaerobic Digestion Batch Study of Taxonomic Variations in Microbial Communities during Adaptation of Consortium to Different Lignocellulosic Substrates Using Targeted Sequencing

Authors: Priyanka Dargode, Suhas Gore, Manju Sharma, Arvind Lali

Abstract:

Anaerobic digestion has been widely used for production of methane from different biowastes. However, the complexity of microbial communities involved in the process is poorly understood. The performance of biogas production process concerning the process productivity is closely coupled to its microbial community structure and syntrophic interactions amongst the community members. The present study aims at understanding taxonomic variations occurring in any starter inoculum when acclimatised to different lignocellulosic biomass (LBM) feedstocks relating to time of digestion. The work underlines use of high throughput Next Generation Sequencing (NGS) for validating the changes in taxonomic patterns of microbial communities. Biomethane Potential (BMP) batches were set up with different pretreated and non-pretreated LBM residues using the same microbial consortium and samples were withdrawn for studying the changes in microbial community in terms of its structure and predominance with respect to changes in metabolic profile of the process. DNA of samples withdrawn at different time intervals with reference to performance changes of the digestion process, was extracted followed by its 16S rRNA amplicon sequencing analysis using Illumina Platform. Biomethane potential and substrate consumption was monitored using Gas Chromatography(GC) and reduction in COD (Chemical Oxygen Demand) respectively. Taxonomic analysis by QIIME server data revealed that microbial community structure changes with different substrates as well as at different time intervals. It was observed that biomethane potential of each substrate was relatively similar but, the time required for substrate utilization and its conversion to biomethane was different for different substrates. This could be attributed to the nature of substrate and consequently the discrepancy between the dominance of microbial communities with regards to different substrate and at different phases of anaerobic digestion process. Knowledge of microbial communities involved would allow a rational substrate specific consortium design which will help to reduce consortium adaptation period and enhance the substrate utilisation resulting in improved efficacy of biogas process.

Keywords: amplicon sequencing, biomethane potential, community predominance, taxonomic analysis

Procedia PDF Downloads 504
1461 Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster

Authors: A. Elain, M. Le Fellic, A. Le Pemp, N. Hachet

Abstract:

Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community.

Keywords: iodinated compounds, biodegradability, deiodination, electron-accepting conditions, microbial consortium

Procedia PDF Downloads 298
1460 Efficiency of Background Chlorine Residuals against Accidental Microbial Episode in Proto-Type Distribution Network (Rig) Using Central Composite Design (CCD)

Authors: Sajida Rasheed, Imran Hashmi, Luiza Campos, Qizhi Zhou, Kim Keu

Abstract:

A quadratic model (p ˂ 0.0001) was developed by using central composite design of 50 experimental runs (42 non-center + 8 center points) to assess efficiency of background chlorine residuals in combating accidental microbial episode in a prototype distribution network (DN) (rig). A known amount of background chlorine residuals were maintained in DN and a required number of bacteria, Escherichia coli K-12 strain were introduced by an injection port in the pipe loop system. Samples were taken at various time intervals at different pipe lengths. Spread plate count was performed to count bacterial number. The model developed was significant. With microbial concentration and time (p ˂ 0.0001), pipe length (p ˂ 0.022), background chlorine residuals (p ˂ 0.07) and time^2 (p ˂ 0.09) as significant factors. The ramp function of variables shows that at the microbial count of 10^6, at 0.76 L/min, and pipe length of 133 meters, a background residual chlorine 0.16 mg/L was enough for complete inactivation of microbial episode in approximately 18 minutes.

Keywords: central composite design (CCD), distribution network, Escherichia coli, residual chlorine

Procedia PDF Downloads 439
1459 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic

Abstract:

3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.

Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering

Procedia PDF Downloads 226
1458 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 394
1457 Influence of Different Ripening Agents on the Shelf-Life and Microbial Load of Organic and Inorganic Musaceae, during the Ripening Process, and the Health Implication for Food Security

Authors: Wisdom Robert Duruji

Abstract:

Local farmers and fruit processors in developing countries of West Africa use different ripening agents to accelerate the ripening process of plantain and banana. This study reports on the influence of different ripening agents on the shelf-life and microbial load of organic and inorganic plantain (Musa paradisiaca) and banana (Musa sapientum) during ripening process and the health implication for food security in Nigeria. The experiment consisted of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening agent was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating their micro flora (Bacteria, Yeast and Mould) using pour plate method. Microbes present in the samples were enumerated, characterized and classified to genera and species. The result indicated that the microbial load of inorganic plantain from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 12.11 cfu/g for ripened; and the microbial load of organic plantain from Obafemi Awolowo University Teaching and Research Farm (OAUTRF) increased from 6.00 for unripe to 11.60 cfu/g for ripened. Also, the microbial load of inorganic banana from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 11.50 cfu/g for ripened; while the microbial load of organic banana from OAUTRF increased from 6.50 for unripe to 9.40 cfu/g for ripened. The microbial effects of the ripening agents increased from 10.00 for control to 16.00 cfu/g for treated (ripened) organic and inorganic plantain; while that of organic and inorganic banana increased from 7.50 for control to 14.50 cfu/g for ripened. Visual observation for the presence of fungal colonies and deterioration rates were monitored till seven days after the plantain and banana fingers have fully ripened. Inorganic plantain and banana from (Urban day) open market in Ile-Ife are more contaminated than organic plantain and banana fingers from OAUTRF. The ripening accelerators reduced the shelf life, increased senescence, and microbial load of plantain and banana. This study concluded that organic Agriculture is better and microbial friendlier than inorganic farming.

Keywords: organic agriculture, food security, Musaceae, calcium carbide, Irvingia gabonensis, Newbouldia laevis

Procedia PDF Downloads 525
1456 Triazenes: Unearthing Their Hidden Arsenal Against Malaria and Microbial Menace

Authors: Frans J. Smit, Wisdom A. Munzeiwa, Hermanus C. M. Vosloo, Lyn-Marie Birkholtz, Richard K. Haynes

Abstract:

Malaria and antimicrobial infections remain significant global health concerns, necessitating the continuous search for novel therapeutic approaches. This abstract presents an overview of the potential use of triazenes as effective agents against malaria and various antimicrobial pathogens. Triazenes are a class of compounds characterized by a linear arrangement of three nitrogen atoms, rendering them structurally distinct from their cyclic counterparts. This study investigates the efficacy of triazenes against malaria and explores their antimicrobial activity. Preliminary results revealed significant antimalarial activity of the triazenes, as evidenced by in vitro screening against P. falciparum, the causative agent of malaria. Furthermore, the compounds exhibited broad-spectrum antimicrobial activity, indicating their potential as effective antimicrobial agents. These compounds have shown inhibitory effects on various essential enzymes and processes involved in parasite survival, replication, and transmission. The mechanism of action of triazenes against malaria involves interactions with critical molecular targets, such as enzymes involved in the parasite's metabolic pathways and proteins responsible for host cell invasion. The antimicrobial activity of the triazenes against bacteria and fungi was investigated through disc diffusion screening. The antimicrobial efficacy of triazenes has been observed against both Gram-positive and Gram-negative bacteria, as well as multidrug-resistant strains, making them potential candidates for combating drug-resistant infections. Furthermore, triazenes possess favourable physicochemical properties, such as good stability, solubility, and low toxicity, which are essential for drug development. The structural versatility of triazenes allows for the modification of their chemical composition to enhance their potency, selectivity, and pharmacokinetic properties. These modifications can be tailored to target specific pathogens, increasing the potential for personalized treatment strategies. In conclusion, this study highlights the potential of triazenes as promising candidates for the development of novel antimalarial and antimicrobial therapeutics. Further investigations are necessary to determine the structure-activity relationships and optimize the pharmacological properties of these compounds. The results warrant additional research, including MIC studies, to further explore the antimicrobial activity of the triazenes. Ultimately, these findings contribute to the development of more effective strategies for combating malaria and microbial infections.

Keywords: malaria, anti-microbials, triazene, resistance

Procedia PDF Downloads 79
1455 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 322
1454 Synchrotron X-Ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell

Authors: Sunil Dehipawala, Gayathrie Amarasuriya, N. Gadura, G. Tremberger Jr, D.Lieberman, Harry Gafney, Todd Holden, T. Cheung

Abstract:

The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS.

Keywords: EXAFS, fourier transform, Shewanella oneidensis, microbial fuel cell

Procedia PDF Downloads 376
1453 Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell

Authors: Rajesh P.P., Md. Tabish Noori, Makarand M. Ghangrekar

Abstract:

Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC.

Keywords: coulombic efficiency, methanogenesis inhibition, microbial fuel cell, nitroethane

Procedia PDF Downloads 295
1452 Establishing the Microbial Diversity of Traditionally Prepared Rice Beer of Northeast India to Impact in Increasing Its Shelf Life

Authors: Shreya Borthakur, Adhar Sharma

Abstract:

The North-east states of India are well known for their age-old practice of preparing alcoholic beer from rice and millet. They do so in a traditional way by sprinkling starter cake (inoculum) on cooked rice or millet after which the fermentation starts and eventually, forms the beer. This starter cake has a rich composition of different microbes and medicinal herbs along with the powdered rice dough or maize dough with rice bran. The starter cake microbial composition has an important role in determining the microbial succession and metabolic secretions as the fermentation proceeds from the early to its late stage, thus, giving the beer a unique aroma, taste, and other sensory properties of traditionally prepared beer. Here, We have worked on identifying and characterizing the microbial community in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. A total of 18 microbial strains have been isolated from the starter cake of Monpa tribe, while 10 microbial isolates in that of Galo tribe. A metagenomic approach was applied to enumerate the cultural and non-cultural microbes present in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. The findings of the mini-project lays foundation to understand the role of microbes present in the starter cake in the beer’s fermentation process and will aide in future research on re-formulating the starter cakes to prevent the early spoilage of the ready to consume beer as the traditional rice beer has a short shelf-life. The paper concludes with the way forward being controlled CRISPR-Cas9.

Keywords: fermentation, traditional beer, microbial succession, preservation, CRISPR-Cas, food microbiology

Procedia PDF Downloads 95
1451 Effect of Oral Administration of "Gadagi" Tea on Activities of Some Antioxidant Enzymes in Rats

Authors: A. M. Gadanya, M. S. Sule

Abstract:

Effect of oral administration of Gadagi tea on some antioxidant enzymes was assessed in healthy male albino rats. The rats were grouped and administered with standard doses of the 3 types of Gadagi tea i.e. Sak, Sada and Magani for a period of four weeks. Animals that were not administered with the tea constituted the control group. At the end of fourth week, the animals were sacrificed and their serum superoxide dismutase (SOD), glutathione reductase (GR) and catalase (CAT) activities were determined. The activities of the enzymes were also determined in the brain, liver, kidney and intestine homogenates of the rats. Mean SOD activity in brain of rats orally administered with “sada” was found to be significantly higher (P < 0.05) than that of the control group. Mean CAT activity in the intestine of rats orally administered with “magani” was found to be significantly higher (P < 0.05) than that of the control group and the experimental groups of Sak and Sada at standard dose level. Thus, all the “Gadagi” tea preparations studied at standard dose level could stimulate antioxidant enzymes, especially SOD in brain and CAT in intestine (by Sada) and CAT in intestine (by Magani).

Keywords: “Gadagi” tea, superoxide dismutase, catalase, glutathione reductase

Procedia PDF Downloads 444
1450 VII Phytochemistry UNIT-IV Glycoside

Authors: Magy Magdy Danial Riad

Abstract:

Introduction: Glycosides: Enzymatic and hydrolysis reactions of glycosides, mechanism of action, SAR, therapeutic uses and toxicity of glycosides. Cardiac glycosides of digitalis, bufa and squill. Structure of salicin, hesperidin and rutin. Glycosides are certain molecules in which a sugar part is bound to some other part. Glycosides play numerous important roles in living organisms. Formally, a glycoside is any molecule in which a sugar group is bonded through its anomeric carbon to another group and form glycosidic bonds via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The purpose: the addition of sugar be bonded to a non-sugar for the molecule to qualify as a glycoside, The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). The glycone and aglycone portions can be chemically separated by hydrolysis in the presence of acid. Methods: There are also numerous enzymes that can form and break glycosidic bonds. Results: The most important cleavage enzymes are the glycoside hydrolases, and the most important synthetic enzymes in nature are glycosyltransferases. Mutant enzymes termed glycosynthases have been developed that can form glycosidic bonds. Conclusions: There are a great many ways to chemically synthesize glycosidic bonds.

Keywords: glycosides, bufa, squill, thioglycosides

Procedia PDF Downloads 31
1449 Effects of Irrigation Intervals on Antioxidant Enzyme Activity in Black Carrot Leaves (Daucus carota L.)

Authors: Hakan Arslan, Deniz Ekinci, Alper Gungor, Gurkan Bilir, Omer Tas, Mehmet Altun

Abstract:

Drought is one of the major abiotic stresses affecting the agricultural production worldwide. In this study, Leaf samples were taken from the carrot plants grown under drought stress conditions during the harvesting period. The plants were irrigated in three irrigation interval (4, 6 and 8 days) and Irrigation water regime was set up in pots. The changes in activities of antioxidant enzymes such as glutathione reductase (GR), glutathione s-transferase (GST), superoxide dismutase (SOD)) in leaves of black carrot were investigated. The activities of antioxidant enzymes (GR, GST, SOD) were varied significantly with irrigation intervals. The highest value of GR, GST and SOD were determined in the irrigation interval of 6 days. All antioxidant activity values were decreased in 8 days of irrigation interval. As a result of the study, it has been suggested that optimum irrigation intervals for plants can be used in antioxidant enzymes.

Keywords: antioxidant enzyme, carrot, drought, irrigation interval

Procedia PDF Downloads 192
1448 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells

Authors: Jayesh M. Sonawane, Prakash C. Ghosh

Abstract:

Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.

Keywords: microbial fuel cells, landfill leachate, air-breathing cathode, performance study

Procedia PDF Downloads 284
1447 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia

Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran

Abstract:

The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.

Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators

Procedia PDF Downloads 139
1446 Effect of Phenytoin and Cyclosporine on Connective Tissue Enzymes in Gingival Fibroblasts of Adult and Children

Authors: V. Surena, B. Nazemisalman, F. Noghrehkar

Abstract:

Introduction: Gingival overgrowth (GO) is a common side effect involving users of antiepileptic, immunosuppressive and calcium channel blocker drugs. Cyclosporine and phenytoin are amongst the most widely used drugs associated with GO. Gingival fibroblasts seem to have a significant role in the production of certain enzymes after administration of the drugs contributing to GO. Previous studies have shown a higher prevalence of GO in children and adolescents. The aim of this study was to compare normal human gingival fibroblasts with those exposed to Cyclosporine or phenytoin in measuring the production levels of certain enzymes that could have a possible role in GO. Methods: samples were obtained from the gingival biopsies of seven adult and seven children and were cultured into plates. With the growth of fibroblast cells, they were treated with or without either Cyclosporine or phenytoin. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine the expressed levels of R-EGF, cathepsin B,L, Lysyl oxidase, COL1, TGF β1, MMP-1,2, and TIMP1. Results: according to RT-PCR analyses, the expressed levels of R-EGF, cathepsin B, L, Lysyl oxidase, COL1, TGF β1, MMP-1, 2 and TIMP1 were affected by Cyclosporine and phenytoin. TGF-β1, TIMP, Cathepsin B and EGF showed comparable values in the adult and pediatric groups. Conclusions: Different expressed levels of enzymes after treatment of the gingival fibroblasts of adults and pediatrics with phenytoin or Cyclosporine could be the reason for the higher severity of GO in children. More studies need to be performed on the pathogenesis of GO at different age groups.

Keywords: cyclosporine, fibroblasts, phenytoin, gingivae

Procedia PDF Downloads 248
1445 Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases

Authors: Diana Larisa Vladoiu, Vasile Ostafe, Adriana Isvoran

Abstract:

Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate.

Keywords: chitinases, inhibition, molecular docking, pesticides

Procedia PDF Downloads 525
1444 Serum Anti-Oxidation Enzymes Response to L-Carnitine Supplementation

Authors: Farah Nameni, Hamidreza Poursadra, Maasumeh Nurani Pilehrud

Abstract:

Exercise training induced Inflammation and stress. Antioxidant, for example L- Carnitine has beneficial effects in immune system and increased antioxidant enzymes activity. L- Carnitine protects the tissue against the oxidative side effect and helps the body to protect against stress during and after acute exercise. The aim of this study was to determine the effect of L-Carnitine on the blood enzymes: GPX SOD, CAT and GR response. In this study, 20 basketball players girls participated. Subjects were randomly assigned into two groups; placebo and supplementation. Antioxidadision enzymes (Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase) evaluated. L-Carnitine supplement group orally daily received 3000 mg powder for 14 dys. Then all participates trained basketball exercise acute. Blood samples were drawn vein before and immediately after exercise. Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase were measured, and data was analyzed using repeated measure ANOVA, Bonferroni and t-test. Our results showed: SOD, GPX and GPX (P < 0.05) have a significant increase. These results suggest L-Carnitine supplementation may increase GPX SOD, CAT, and basal anti oxidative capacity. L-Carnitine can modulate the alterations of exercise oxidative damage in girl basketball players.

Keywords: l-carnitine, GPX, SOD, CAT, exercise, GR, anti-oxidant

Procedia PDF Downloads 167
1443 Extracellular Laccase Production by Co-culture between Galactomyces reesii IFO 10823 and Filamentous Fungal Strains Isolated from Fungus Comb Using Natural Inducer

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

Extracellular laccases are copper-containing microbial enzymes with many industrial biotechnological applications. This study evaluated the ability of nutrients in coconut coir to enhance the yield of extracellular laccase of Galactomyces reesii IFO 10823 and develop a co-culture between this yeast and other filamentous fungi isolated from the fungus comb of Macrotermes sp. The co-culture between G. reesii IFO 10823 and M. indicus FJ-M-5 (G3) gave the highest activity at 580.20 U/mL. When grown in fermentation media prepared from coconut coir and distilled water at 70% of initial moisture without supplement addition, G3 produced extracellular laccase of 113.99 U/mL.

Keywords: extracellular laccase, production, yeast, natural inducer

Procedia PDF Downloads 243
1442 Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences

Authors: Hana Barak, Alex Sivan, Ariel Kushmaro

Abstract:

Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’.

Keywords: bacteria, bioinformatics, dark matter, Next Generation Sequencing, unknown

Procedia PDF Downloads 229
1441 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions

Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba

Abstract:

The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.

Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan

Procedia PDF Downloads 275
1440 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation

Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova

Abstract:

Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.

Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi

Procedia PDF Downloads 118
1439 Using Hybrid Method for Inactivation of Microorganism and Enzymes in a Berry Juice

Authors: Golnoosh Torabian, P. Valtchev, F. Dehghani

Abstract:

The need for efficient nutraceutical products has been dramatically changing the approach of the industrial processes. The development of novel mild processes is highly demanded for the production of such products; especially when both quality and safety need to be guaranteed during their long shelf life. Within this research, for the first time, we investigated the effect of supercritical carbon dioxide treatment for the inactivation of microbes and enzymes in a berry juice possessing therapeutic effect. We demonstrated that a complete inactivation of microbes can be achieved at optimized conditions of treatment. However, the bottle neck of the process was represented by the unpromising inactivation of the degradative enzyme by supercritical carbon dioxide treatment. However, complete enzyme inactivation was achieved by applying two strategies: the first was optimizing juicing method by adding a mechanical step and the second strategy was addition of natural inhibitors to the juice. Overall these results demonstrate that our hybrid process has a significant effect on the inactivation of microorganism and enzymes in the fresh juice. The developed process opens the possibility for the evolution of new products with optimal nutritional and sensorial characteristics, as well as offering a competitive cost and an environmentally friendly alternative for pasteurization and extension of shelf life in a wide range of natural therapeutic products.

Keywords: hybrid method, berry juice, pasteurization, enzymes inactivation

Procedia PDF Downloads 168
1438 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 317
1437 Effect of Supplementing Different Sources and Levels of Phytase Enzyme to Diets on Productive Performance for Broiler Chickens

Authors: Sunbul Jassim Hamodi, Muna Khalid Khudayer, Firas Muzahem Hussein

Abstract:

The experiment was conducted to study the effect of supplement sources of Phytase enzyme (bacterial, fungal, enzymes mixture) using levels (250, 500, 750) FTY/ kg feed to diets compared with control on the performance for one thousand fifty broiler chicks (Ross 308) from 1day old with initial weight 39.78 gm till 42 days. The study involved 10 treatments, three replicates per treatment (35 chicks/replicate). Treatments were as follows: T1: control diet (without any addition). T2: added bacterial phytase enzyme 250FTY/ kg feed. T3: added bacterial phytase enzyme 500FTY/ kg feed. T4: added bacterial phytase enzyme 750FTY/ kg feed. T5: added fungal phytase enzyme 250FTY/ kg feed. T6: added fungal phytase enzyme 500FTY/ kg feed. T7: added fungal phytase enzyme 750FTY/ kg feed. T8 added enzymes mixture 250U/ kg feed. T9: added enzymes mixture 500U/ kg feed. T10: added enzymes mixture 750U/ kg feed. The results revealed that supplementing 750 U from enzymes mixture to broiler diet increased significantly (p <0.05) body weight compared with (250 FTY bacterial phytase/Kgfeed), (750 FTY bacterial phytase/Kg feed), (750FTY fungal phytase/Kgfeed) at 6 weeks, also supplemented different sources and levels from phytase enzyme improved a cumulative weight gain for (500 FTY bacterial phytase/Kgfeed), (250FTY fungal phytase/Kgfeed), (500FTY fungal phytase/Kgfeed), (250 Uenzymes mixture/Kgfeed), (500 Uenzymes mixture/Kgfeed) and (750 U enzymes mixture/Kgfeed) treatments compared with (750 FTY fungal phytase/Kgfeed)treatment, about accumulative feed consumption (500 FTY fungal phytase/Kgfeed) and (250 Uenzymes mixture/Kgfeed) increased significantly compared with control group and (750FTY fungal phytase/Kgfeed) during 1-6 weeks. There were significantly improved in cumulative feed conversion for (500U enzymes mixture/Kgfeed) compared with the worse feed conversion ratio that recorded in (250 FTY bacterial phytase/Kgfeed). No significant differences between treatments in internal organs relative weights, carcass cuts, dressing percentage and production index. Mortality was increased in (750FTY fungal phytase/Kgfeed) compared with other treatments.

Keywords: phytase, phytic acid, broiler, productive performance

Procedia PDF Downloads 273
1436 The Effect of Saccharomyces cerevisiae Live Yeast Culture on Microbial Nitrogen Supply to Small Intestine in Male Kivircik Yearlings Fed with Different Ratio of Forage and Concentrate

Authors: Nurcan Cetinkaya, Nadide Hulya Ozdemir

Abstract:

The aim of the study was to investigate the effect of Saccharomyces cerevisiae (SC) live yeast culture on microbial protein supply to the small intestine in Kivircik male yearlings when fed with different ratio of forage and concentrate diets. Four Kivircik male yearlings with permanent rumen canula were used in the experiment. . The treatments were allocated to a 4x4 Latin square design. Diet I consisted of 70% alfalfa hay and 30% concentrate, Diet II consisted of 30% alfalfa hay and 70% concentrate, Diet I and II were supplemented with a SC. Daily urine was collected and stored at -20°C until analysis. Calorimetric methods were used for the determination of urinary allantoin and creatinin levels. The estimated microbial N supply to small intestine for Diets I, I+SC, II and II+SC were 2.51, 2.64, 2.95 and 3.43 g N/d respectively. Supplementation of Diets I and II with SC significantly affected the allantoin levels in µmol/W0. 75 (p<0.05). Mean creatinine values in µmol/W0. 75 and allantoin:creatinin ratios were not significantly different among diets. In conclusion, supplementation with SC live yeast culture had a significant effect on urinary allantoin excretion and microbial protein supply to small intestine in Kivircik yearlings fed with high concentrate Diet II (P<0.05). Hence urinary allantoin excretion may be used as a tool for estimating microbial protein supply in Kivircık yearlings. However, further studies are necessary to understand the metabolism of Saccharomyces cerevisiae live yeast culture with different forage: concentrate ratio in Kıvırcık Yearlings.

Keywords: allantoin, creatinin, Kivircik yearling, microbial nitrogen, Saccharomyces cerevisia

Procedia PDF Downloads 387
1435 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 123