Search results for: diagnosis and treatment
9547 Idiopathic Gingival Fibromatosis
Authors: Bandana Koirala, Shivalal Sharma
Abstract:
Introduction: Gingival enlargements are quite common and may be either inflammatory, non-inflammatory or a combination of both. Idiopathic gingival enlargement is a rare condition with a proliferative fibrous lesion of the gingival tissue that causes esthetic and functional problems. It is of undetermined etiology. Case Description: This case report addresses the diagnosis and treatment of a case of idiopathic gingival enlargement in a 9-year-old male patient. The patient presented with a generalized diffuse gingival enlargement involving the entire maxillary and the mandibular arch with extension on occlusal, buccal, lingual, and palatal surfaces with just parts of occlusal surfaces of few upper and lower molars visible resulting in open mouth, difficulty in mastication and speech. Biopsy report confirmed the diagnosis of fibromatosis gingivae. Gingivectomy was carried out in all four quadrants by using external bevel incision. Conclusion: Though total esthetics could not be restored due to unusual bony enlargement, the general appearance improved satisfactorily. Treatment after complete excision however, improved the masticatory competence to a great extent.Keywords: idiopathic gingival fibromatosis, gingival enlargement, gingivectomy, medical and health sciences
Procedia PDF Downloads 3309546 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases
Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal
Abstract:
This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare
Procedia PDF Downloads 1169545 Patients' Perceptions of Receiving a Diagnosis of a Haematological Malignancy, following the SPIKES Protocol
Authors: Lauren Dixon, David Galvani
Abstract:
Objective: Sharing devastating news with patients is often considered the most difficult task of doctors. This study aimed to explore patients’ perceptions of receiving bad news including which features improve the experience and which areas need refining. Methods: A questionnaire was written based on the steps of the SPIKES model for breaking bad news. 20 patients receiving treatment for a haematological malignancy completed the questionnaire. Results: Overall, the results are promising as most patients praised their consultation. ‘Poor’ was more commonly rated by women and participants aged 45-64. The main differences between the ‘excellent’ and ‘poor’ consultations include the doctor’s sensitivity and checking the patients’ understanding. Only 35% of patients were asked their existing knowledge and 85% of consultations failed to discuss the impact of the diagnosis on daily life. Conclusion: This study agreed with the consensus of existing literature. The commended aspects include consultation set-up and information given. Areas patients felt needed improvement include doctors determining the patient’s existing knowledge and exploring how the diagnosis will affect the patient’s life. With a poorer prognosis, doctors should work on conveying appropriate hope. The study was limited by a small sample size and potential recall bias.Keywords: cancer, diagnosis, haematology, patients
Procedia PDF Downloads 3159544 Cephalometric Changes of Patient with Class II Division 1 [Malocclusion] Post Orthodontic Treatment with Growth Stimulation: A Case Report
Authors: Pricillia Priska Sianita
Abstract:
An aesthetic facial profile is one of the goals in Orthodontics treatment. However, this is not easily achieved, especially in patients with Class II Division 1 malocclusion who have the clinical characteristics of convex profile and significant skeletal discrepancy due to mandibular growth deficiency. Malocclusion with skeletal problems require proper treatment timing for growth stimulation, and it must be done in early age and in need of good cooperation from the patient. If this is not done and the patient has passed the growth period, the ideal treatment is orthognathic surgery which is more complicated and more painful. The growth stimulation of skeletal malocclusion requires a careful cephalometric evaluation ranging from diagnosis to determine the parts that require stimulation to post-treatment evaluation to see the success achieved through changes in the measurement of the skeletal parameters shown in the cephalometric analysis. This case report aims to describe skeletal changes cephalometrically that were achieved through orthodontic treatment in growing period. Material and method: Lateral Cephalograms, pre-treatment, and post-treatment of cases of Class II Division 1 malocclusion is selected from a collection of cephalometric radiographic in a private clinic. The Cephalogram is then traced and measured for the skeletal parameters. The result is noted as skeletal condition data of pre-treatment and post-treatment. Furthermore, superimposition is done to see the changes achieved. The results show that growth stimulation through orthodontic treatment can solve the skeletal problem of Class II Division 1 malocclusion and the skeletal changes that occur can be verified through cephalometric analysis. The skeletal changes have an impact on the improvement of patient's facial profile. To sum up, the treatment timing on a skeletal malocclusion is very important to obtain satisfactory results for the improvement of the aesthetic facial profile, and skeletal changes can be verified through cephalometric evaluation of pre- and post-treatment.Keywords: cephalometric evaluation, class II division 1 malocclusion, growth stimulation, skeletal changes, skeletal problems
Procedia PDF Downloads 2509543 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 4509542 Efficacy of the ExVent Accessory with the O2Vent Optima Oral Appliance in the Treatment of Obstructive Sleep Apnea: A Clinical Trial
Authors: Sat Sharma, Antonella Conflitti, Hilary Reiter
Abstract:
Introduction: The study's purpose was to assess the efficacy of the oral appliance device O2Vent Optima + ExVent as compared to Optima in the treatment of OSA. Methods: A prospective, open-label study conducted at 3 sites included subjects with mild to moderate OSA (AHI ≥ 5 and ≤ 30). Screening Phase: A diagnostic in-lab PSG study was performed to confirm a diagnosis of mild to moderate OSA. Treatment I: Subjects used O2Vent Optima for 6 weeks and underwent an in-lab PSG sleep night while using the O2Vent Optima. Treatment II: Subjects used O2Vent Optima + ExVent for 6 weeks and underwent an in-lab PSG sleep night while using the O2Vent Optima + ExVent Primary Effectiveness Measure: Change in AHI between baseline vs. O2Vent Optima MAD vs. O2Vent Optima + ExVent. Results: Treatment with Optima, Optima + ExVent reduced AHI from 22.5±6.4/hr to 12.6±4.5/hr to 5.9±2.7 (p< 0.005 baseline vs. Optima and Optima + ExVent; p<0.05 Optima MAD vs. Optima + ExVent). The average reduction in AHI with Optima was 43%, and with Optima + ExVent was 72%. The lowest oxygen during sleep increased from 84.6±2.7% to 88.6±2.9% to 91.6±3.2% (p< 0.005 baseline vs. Optima and Optima + ExVent; p<0.05 Optima vs. Optima + ExVent). During the trial, patients on treatment with Optima and Optima + ExVent demonstrated no excessive adverse events or device malfunction. Conclusion: Treatment with O2Vent Optima and O2Vent Optima + ExVent significantly improved OSA compared to the baseline. An even greater benefit was observed with the addition of ExVent to the Optima in mild to moderate OSA.Keywords: oral appliance, O2Vent, sleep dentistry, sleep apnea
Procedia PDF Downloads 659541 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2129540 From Biosensors towards Artificial Intelligence: A New Era in Toxoplasmosis Diagnostics and Therapeutics
Authors: Gehan Labib Abuelenain, Azza Fahmi, Salma Awad Mahmoud
Abstract:
Toxoplasmosis is a global parasitic disease caused by the protozoan Toxoplasma gondii (T. gondii), with a high infection rate that affects one third of the human population and results in severe implications in pregnant women, neonates, and immunocompromised patients. Anti-parasitic treatments and schemes available against toxoplasmosis have barely evolved over the last two decades. The available T. gondii therapeutics cannot completely eradicate tissue cysts produced by the parasite and are not well-tolerated by immunocompromised patients. This work aims to highlight new trends in Toxoplasma gondii diagnosis by providing a comprehensive overview of the field, summarizing recent findings, and discussing the new technological advancements in toxoplasma diagnosis and treatment. Advancements in therapeutics utilizing trends in molecular biophysics, such as biosensors, epigenetics, and artificial intelligence (AI), might provide solutions for disease management and prevention. These insights will provide tools to identify research gaps and proffer planning options for disease control.Keywords: toxoplamosis, diagnosis, therapeutics, biosensors, AI
Procedia PDF Downloads 389539 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile
Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali
Abstract:
Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile
Procedia PDF Downloads 4559538 Review of Malaria Diagnosis Techniques
Authors: Lubabatu Sada Sodangu
Abstract:
Malaria is a major cause of death in tropical and subtropical nations. Malaria cases are continually rising as a result of a number of factors, despite the fact that the condition is now treatable using effective methods. In this situation, quick and effective diagnostic methods are essential for the management and control of malaria. Malaria diagnosis using conventional methods is still troublesome, hence new technologies have been created and implemented to get around the drawbacks. The review describes the currently known malaria diagnostic techniques, their strengths and shortcomings.Keywords: malaria, technique, diagnosis, Africa
Procedia PDF Downloads 559537 Review of Malaria Diagnosis Techniques
Authors: Lubabatu Sada Sodangi
Abstract:
Malaria is a major cause of death in tropical and subtropical nations. Malaria cases are continually rising as a result of a number of factors, despite the fact that the condition is now treatable using effective methods. In this situation, quick and effective diagnostic methods are essential for the management and control of malaria. Malaria diagnosis using conventional methods is still troublesome; hence, new technologies have been created and implemented to get around the drawbacks. The review describes the currently known malaria diagnostic techniques, their strengths, and shortcomings.Keywords: malaria, technique, diagnosis, Africa
Procedia PDF Downloads 609536 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer
Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan
Abstract:
Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.Keywords: cervical cancer, early detection, digital Pathology, screening
Procedia PDF Downloads 1789535 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment
Authors: Abbas Pourreza
Abstract:
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.Keywords: breast cancer, HER2 positive, miRNA, TNBC
Procedia PDF Downloads 979534 Epidemiological, Ecology, and Case Management of Plasmodium Knowlesi Malaria in Phang-Nga Province, Thailand
Authors: Surachart Koyadun
Abstract:
Introduction: Plasmodium knowlesi (P. knowlesi) malaria is a zoonotic disease that is classified as type 5 of human malaria. Commonly found in macaques (Macaca fascicularis) and (Macaca nemestrina), P. knowlesi is capable of resulting in both uncomplicated and severe malaria in humans. Situation of P. knowlesi malaria in Phang-Nga province for the past 3 years from 2020 – 2022 revealed no case report in 2020, however, a total of 14 cases had been reported in 2021 - 2022. This research aimed to 1) study the epidemiology of P. knowlesi, 2) examine the clinical manifestations of P. knowlesi patients, 3) analyze the ecology and entomology of P. knowlesi, and 4) analyze the diagnosis and treatment of P. knowlesi. Method: This research was a retrospective descriptive study/case report. The study was conducted in 14 patients with P. knowlesi malaria between 2021 and 2022 in 4 districts of Phang-Nga Province, Thailand including Thapput, Kapong, Takuapa and Khuraburi. Results: The study subjects of P. knowlesi malaria were all males. Most of them were working age groups as farmers and worked in forest or plantation areas. All had no history of blood transfusions. Most of the patients did not use mosquito nets and had a history of camping in the forest prior to the onset of fever. An analysis of all 14 sources of infection unveiled the area is home to macaques, and that area has detected Anopheles mosquito, which is the carrier of the disease. Majority of them got sick in the dry season of Thailand (December-April). The main symptoms brought to the hospital were fever, chills, headache, body aches. Laboratory findings on the first day of diagnosis were as follows: The white blood cell count was found within the normal range. In the proportion of white blood cells, eosinophils were found to be slightly higher than normal. Slight anemia was found on early examination. The platelet count was found to be below normal in all cases. Severely low platelet count (2,000 cells/mm3) was found in severe cases with multiple complications. No patient was found dead but 85.7% of complications were found, with acute renal failure being the most common. Patients with delayed diagnosis and treatment of malaria (inaccurate diagnosis or late access to the hospital) had the highest severity and complications than those who had seen the doctor since the first 3-4 days of illness or the screening of symptoms and risk history by the malaria clinic staff at vector-borne disease control unit. Conclusion and Recommendation: P. knowlesi malaria is an emerging infectious disease transmitted from animals to humans. There are challenges in epidemiology, entomology, ecology for effective surveillance, prevention and control. Early diagnosis and treatment would reduce complications and prevent death.Keywords: malaria, plasmodium knowlesi, epidemiology, ecology, entomology, diagnosis, treatment
Procedia PDF Downloads 729533 Low-Dose Chest Computed Tomography Can Help in Differential Diagnosis of Asthma–COPD Overlap Syndrome in Children
Authors: Frantisek Kopriva, Kamila Michalkova, Radim Dudek, Jana Volejnikova
Abstract:
Rationale: Diagnostic criteria of asthma–COPD overlap syndrome (ACOS) are controversial in pediatrics. Emphysema is characteristic of COPD and usually does not occur in typical asthma; its presence in patients with asthma suggests the concurrence with COPD. Low-dose chest computed tomography (CT) allows a non-invasive assessment of the lung tissue structure. Here we present CT findings of emphysematous changes in a child with ACOS. Patient and Methods: In a 6-year-old boy, atopy was confirmed by a skin prick test using common allergen extracts (grass and tree pollen, house dust mite, molds, cat, dog; manufacturer Stallergenes Greer, London, UK), where reactions over 3 mm were considered positive. Treatment with corticosteroids was started during the course of severe asthma. At 12 years of age, his spirometric parameters deteriorated despite treatment adjustment (VC 1.76 L=85%, FEV1 1.13 L=67%, TI%VCmax 64%, MEF25 19%, TLC 144%) and the bronchodilator test became negative. Results: Low-dose chest CT displayed irregular regions with increased radiolucency of pulmonary parenchyma (typical for hyperinflation in emphysematous changes) in both lungs. This was in accordance with the results of spirometric examination. Conclusions: ACOS is infrequent in children. However, low-dose chest CT scan can be considered to confirm this diagnosis or eliminate other diagnoses when the clinical condition is deteriorating and treatment response is poor.Keywords: child, asthma, low-dose chest CT, ACOS
Procedia PDF Downloads 1469532 Changes in Serum Hepcidin Levels in Children with Inflammatory Bowel Disease during Anti-Inflammatory Treatment
Authors: Eva Karaskova, Jana Volejnikova, Dusan Holub, Maria Velganova-Veghova, Michaela Spenerova, Dagmar Pospisilova
Abstract:
Background: Hepcidin is the central regulator of iron metabolism. Its production is mainly affected by an iron deficiency and the presence of inflammatory activity in the body. The aim of this study was to compare serum hepcidin levels in paediatric patients with newly diagnosed inflammatory bowel disease and hepcidin levels during maintenance therapy, correlate changes of serum hepcidin levels with selected markers of iron metabolism and inflammation and type of provided treatment. Methods: Children with newly diagnosed Crohn's disease (CD) and ulcerative colitis (UC) were included in this prospective study. Blood and stool samples were collected before treatment (baseline). Serum hepcidin, hemoglobin levels, platelet counts, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL 6), ferritin, iron, soluble transferrin receptors, and fecal calprotectin were assessed. The same parameters were measured and compared with the baseline levels in the follow-up period, during maintenance therapy (average of 39 months after diagnosis). Results: Patients with CD (n=30) had higher serum hepcidin levels (expressed as a median and interquartile range) at diagnosis than subjects with UC (n=13). These levels significantly decreased during the follow-up (from 36.5 (11.5-79.6) ng/ml to 2.1 (0.9-6.7) ng/ml). Contrarily, no significant serum hepcidin level changes were observed in UC (from 5.4 (3.4-16.6) ng/ml to 4.8 (0.9-8.1) ng/ml). While in children with CD hepcidin level dynamics correlated with disease activity and inflammatory markers (ESR, CRP), an only correlation with serum iron levels was observed in patients with UC. Conclusion: Children with CD had higher serum hepcidin levels at diagnosis compared to subjects with UC. Decrease of serum hepcidin in the CD group during anti-inflammatory therapy has been observed, whereas low hepcidin levels in children with UC have remained unchanged. Acknowledgment: This study was supported by grant MH CZ–DRO (FNOl, 00098892).Keywords: children, Crohn's disease, ulcerative colitis, anaemia, hepcidin
Procedia PDF Downloads 1259531 Trajectories of Depression Anxiety and Stress among Breast Cancer Patients: Assessment at First Year of Diagnosis
Authors: Jyoti Srivastava, Sandhya S. Kaushik, Mallika Tewari, Hari S. Shukla
Abstract:
Little information is available about the development of psychological well being over time among women who have been undergoing treatment for breast cancer. The aim of this study was to identify the trajectories of depression anxiety and stress among women with early-stage breast cancer. Of the 48 Indian women with newly diagnosed early-stage breast cancer recruited from surgical oncology unit, 39 completed an interview and were assessed for depression anxiety and stress (Depression Anxiety Stress Scale-DASS 21) before their first course of chemotherapy (baseline) and follow up interviews at 3, 6 and 9 months thereafter. Growth mixture modeling was used to identify distinct trajectories of Depression Anxiety and Stress symptoms. Logistic Regression analysis was used to evaluate the characteristics of women in distinct groups. Most women showed mild to moderate level of depression and anxiety (68%) while normal to mild level of stress (71%). But one in 11 women was chronically anxious (9%) and depressed (9%). Young age, having a partner, shorter education and receiving chemotherapy but not radiotherapy might characterize women whose psychological symptoms remain strong nine months after diagnosis. By looking beyond the mean, it was found that several socio-demographic and treatment factors characterized the women whose depression, anxiety and stress level remained severe even nine months after diagnosis. The results suggest that support provided to cancer patients should have a special focus on a relatively small group of patient most in need.Keywords: psychological well being, growth mixture modeling, logistic regression analysis, socio-demographic factors
Procedia PDF Downloads 1499530 Soft Computing Approach for Diagnosis of Lassa Fever
Authors: Roseline Oghogho Osaseri, Osaseri E. I.
Abstract:
Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.Keywords: anfis, lassa fever, medical diagnosis, soft computing
Procedia PDF Downloads 2719529 The Relationship between Level of Anxiety and the Development of Children with Growth Hormone Deficiency
Authors: Ewa Mojs, Katarzyna Wiechec, Maia Kubiak, Wlodzimierz Samborski
Abstract:
Interactions between mother’s psychological condition and child’s health status are complex and derive from the nature of the mother-child relationship. The aim of the study was to analyze the issue of anxiety amongst mothers of short children in the aspect of growth hormone therapy. The study was based on a group of 101 mothers of originally short-statured children – 70 with growth hormone deficiency (GHD) treated with recombinant human growth hormone (rhGH) and 31 undergoing the diagnostic process, without any treatment. Collected medical data included child's gender, height and weight, chronological age, bone age delay, and rhGH therapy duration. For all children, the height SDS and BMI SDS were calculated. To evaluate anxiety in mothers, the Spielberger State-Trait Anxiety Inventory (STAI) was used. Obtained results revealed low trait anxiety levels, with no statistically significant differences between the groups. State anxiety levels were average when mothers of all children were analyzed together, but when divided into groups, statistical differences appeared. Mothers of children without diagnosis and treatment had significantly higher levels of state anxiety than mothers of children with GHD receiving appropriate therapy. These results show, that the occurrence of growth failure in children is not related to high maternal trait anxiety, but the lack of diagnosis and lack of appropriate treatment generates higher levels of maternal state anxiety than the process of rh GH therapy in the offspring. Commencement of growth hormone therapy induce a substantial reduction of the state anxiety in mothers, and the duration of treatment causes its further decrease.Keywords: anxiety, development, growth hormone deficiency, motherhood
Procedia PDF Downloads 2829528 Utility of CT Perfusion Imaging for Diagnosis and Management of Delayed Cerebral Ischaemia Following Subarachnoid Haemorrhage
Authors: Abdalla Mansour, Dan Brown, Adel Helmy, Rikin Trivedi, Mathew Guilfoyle
Abstract:
Introduction: Diagnosing delayed cerebral ischaemia (DCI) following aneurysmal subarachnoid haemorrhage (SAH) can be challenging, particularly in poor-grade patients. Objectives: This study sought to assess the value of routine CTP in identifying (or excluding) DCI and in guiding management. Methods: Eight-year retrospective neuroimaging study at a large UK neurosurgical centre. Subjects included a random sample of adult patients with confirmed aneurysmal SAH that had a CTP scan during their inpatient stay, over a 8-year period (May 2014 - May 2022). Data collected through electronic patient record and PACS. Variables included age, WFNS scale, aneurysm site, treatment, the timing of CTP, radiologist report, and DCI management. Results: Over eight years, 916 patients were treated for aneurysmal SAH; this study focused on 466 patients that were randomly selected. Of this sample, 181 (38.84%) had one or more CTP scans following brain aneurysm treatment (Total 318). The first CTP scan in each patient was performed at 1-20 days following ictus (median 4 days). There was radiological evidence of DCI in 83, and no reversible ischaemia was found in 80. Findings were equivocal in the remaining 18. Of the 103 patients treated with clipping, 49 had DCI radiological evidence, in comparison to 31 of 69 patients treated with endovascular embolization. The remaining 9 patients are either unsecured aneurysms or non-aneurysmal SAH. Of the patients with radiological evidence of DCI, 65 had a treatment change following the CTP directed at improving cerebral perfusion. In contrast, treatment was not changed for (61) patients without radiological evidence of DCI. Conclusion: CTP is a useful adjunct to clinical assessment in the diagnosis of DCI and is helpful in identifying patients that may benefit from intensive therapy and those in whom it is unlikely to be effective.Keywords: SAH, vasospasm, aneurysm, delayed cerebral ischemia
Procedia PDF Downloads 699527 Headache Masquerading as Common Psychiatric Disorders in Patients of Low Economic Class in a Tertiary Care Setting
Authors: Seema Singh Parmar, Shweta Chauhan
Abstract:
Aims & Objectives: To evaluate the presence of various psychiatric disorders in patients reporting with a headache as the only symptom. Methodology: 200 patients with the chief complain of a headache who visited the psychiatric OPD of a tertiary care were investigated. Out of them 50 who had pure psychiatric illness without any other neurological disease were investigated, and their diagnosis was made. Independent sample t-tests were applied to generate results. Results: The most common psychiatric diagnosis seen in the sample was Depression (64%) out of which 47% showed features of Depression with anxious distress. Other psychiatric disorders seen were Generalized Anxiety Disorder, Panic Attacks, Somatic Symptom Disorder and Obsessive Compulsive Disorder. For pure psychiatry, headache related illnesses female to male ratio was 1.64. Conclusion: The increasing frequency of psychiatric disorders among patients who only visit the doctor seeking treat a headache shows the need for better identification of psychiatric disorders because proper diagnosis and target of psychiatric treatment shall give complete relief to the patient’s symptomatology.Keywords: anxiety disorders, depression, headache, panic attacks
Procedia PDF Downloads 3779526 Diagnostic Delays and Treatment Dilemmas: A Case of Drug-Resistant HIV and Tuberculosis
Authors: Christi Jackson, Chuka Onaga
Abstract:
Introduction: We report a case of delayed diagnosis of extra-pulmonary INH-mono-resistant Tuberculosis (TB) in a South African patient with drug-resistant HIV. Case Presentation: A 36-year old male was initiated on 1st line (NNRTI-based) anti-retroviral therapy (ART) in September 2009 and switched to 2nd line (PI-based) ART in 2011, according to local guidelines. He was following up at the outpatient wellness unit of a public hospital, where he was diagnosed with Protease Inhibitor resistant HIV in March 2016. He had an HIV viral load (HIVVL) of 737000 copies/mL, CD4-count of 10 cells/µL and presented with complaints of productive cough, weight loss, chronic diarrhoea and a septic buttock wound. Several investigations were done on sputum, stool and pus samples but all were negative for TB. The patient was treated with antibiotics and the cough and the buttock wound improved. He was subsequently started on a 3rd-line ART regimen of Darunavir, Ritonavir, Etravirine, Raltegravir, Tenofovir and Emtricitabine in May 2016. He continued losing weight, became too weak to stand unsupported and started complaining of abdominal pain. Further investigations were done in September 2016, including a urine specimen for Line Probe Assay (LPA), which showed M. tuberculosis sensitive to Rifampicin but resistant to INH. A lymph node biopsy also showed histological confirmation of TB. Management and outcome: He was started on Rifabutin, Pyrazinamide and Ethambutol in September 2016, and Etravirine was discontinued. After 6 months on ART and 2 months on TB treatment, his HIVVL had dropped to 286 copies/mL, CD4 improved to 179 cells/µL and he showed clinical improvement. Pharmacy supply of his individualised drugs was unreliable and presented some challenges to continuity of treatment. He successfully completed his treatment in June 2017 while still maintaining virological suppression. Discussion: Several laboratory-related factors delayed the diagnosis of TB, including the unavailability of urine-lipoarabinomannan (LAM) and urine-GeneXpert (GXP) tests at this facility. Once the diagnosis was made, it presented a treatment dilemma due to the expected drug-drug interactions between his 3rd-line ART regimen and his INH-resistant TB regimen, and specialist input was required. Conclusion: TB is more difficult to diagnose in patients with severe immunosuppression, therefore additional tests like urine-LAM and urine-GXP can be helpful in expediting the diagnosis in these cases. Patients with non-standard drug regimens should always be discussed with a specialist in order to avoid potentially harmful drug-drug interactions.Keywords: drug-resistance, HIV, line probe assay, tuberculosis
Procedia PDF Downloads 1739525 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 449524 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4919523 New Test Algorithm to Detect Acute and Chronic HIV Infection Using a 4th Generation Combo Test
Authors: Barun K. De
Abstract:
Acquired immunodeficiency syndrome (AIDS) is caused by two types of human immunodeficiency viruses, collectively designated HIV. HIV infection is spreading globally particularly in developing countries. Before an individual is diagnosed with HIV, the disease goes through different phases. First there is an acute early phase that is followed by an established or chronic phase. Subsequently, there is a latency period after which the individual becomes immunodeficient. It is in the acute phase that an individual is highly infectious due to a high viral load. Presently, HIV diagnosis involves use of tests that do not detect the acute phase infection during which both the viral RNA and p24 antigen are expressed. Instead, these less sensitive tests detect antibodies to viral antigens which are typically sero-converted later in the disease process following acute infection. These antibodies are detected in both asymptomatic HIV-infected individuals as well as AIDS patients. Studies indicate that early diagnosis and treatment of HIV infection can reduce medical costs, improve survival, and reduce spreading of infection to new uninfected partners. Newer 4th generation combination antigen/antibody tests are highly sensitive and specific for detection of acute and established HIV infection (HIV1 and HIV2) enabling immediate linkage to care. The CDC (Center of Disease Control, USA) recently recommended an algorithm involving three different tests to screen and diagnose acute and established infections of HIV-1 and HIV-2 in a general population. Initially a 4th generation combo test detects a viral antigen p24 and specific antibodies against HIV -1 and HIV-2 envelope proteins. If the test is positive it is followed by a second test known as a differentiation assay which detects antibodies against specific HIV-1 and HIV-2 envelope proteins confirming established infection of HIV-1 or HIV-2. However if it is negative then another test is performed that measures viral load confirming an acute HIV-1 infection. Screening results of a Phoenix area population detected 0.3% new HIV infections among which 32.4% were acute cases. Studies in the U.S. indicate that this algorithm effectively reduces HIV infection through immediate treatment and education following diagnosis.Keywords: new algorithm, HIV, diagnosis, infection
Procedia PDF Downloads 4149522 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy
Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen
Abstract:
Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.Keywords: computer-aided diagnosis, diabetic retinopathy, exudate, image processing
Procedia PDF Downloads 2749521 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 929520 Response to Name Training in Autism Spectrum Disorder (ASD): A New Intervention Model
Authors: E. Verduci, I. Aguglia, A. Filocamo, I. Macrì, R. Scala, A. Vinci
Abstract:
One of the first indicator of autism spectrum disorder (ASD) is a decreasing tendency or failure to respond to name (RTN) call. Despite RTN is important for social and language developmentand it’s a common target for early interventions for children with ASD, research on specific treatments is insufficient and does not consider the importance of the discrimination between the own name and other names. The purpose of the current study was to replicate an assessment and treatment model proposed by Conine et al. (2020) to teach children with ASD to respond to their own name and to not respond to other names (RTO). The model includes three different phases (baseline/screening, treatment, and generalization), and itgradually introduces the different treatment components, starting with the most naturalistic ones (such as social interaction) and adding more intrusive components (such as tangible reinforcements, prompt and fading procedures) if necessary. The participants of this study were three children with ASD diagnosis: D. (5 years old) with a low frequency of RTN, M. (7 years old) with a RTN unstable and no ability of discrimination between his name and other names, S. (3 years old) with a strong RTN but a constant response to other names. Moreover, the treatment for D. and M. consisted of social and tangible reinforcements (treatment T1), for S. the purpose of the treatment was to teach the discrimination between his name and the others. For all participants, results suggest the efficacy of the model to acquire the ability to selectively respond to the own name and the generalization of the behavior with other people and settings.Keywords: response to name, autism spectrum disorder, progressive training, ABA
Procedia PDF Downloads 849519 Intelligent Prediction of Breast Cancer Severity
Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman
Abstract:
Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.Keywords: breast cancer, intelligent classification, neural networks, mammography
Procedia PDF Downloads 4919518 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 352