Search results for: air-conditioning systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9344

Search results for: air-conditioning systems

464 Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions

Authors: Sara Camino, Fernando Vega, Mercedes Cano, Benito Navarrete, José A. Camino

Abstract:

Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications.

Keywords: absorption, carbon capture, partial oxy-combustion, solvent

Procedia PDF Downloads 190
463 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 194
462 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules

Authors: O. F. Elkommos

Abstract:

Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.

Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics

Procedia PDF Downloads 176
461 TRAC: A Software Based New Track Circuit for Traffic Regulation

Authors: Jérôme de Reffye, Marc Antoni

Abstract:

Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies.

Keywords: track section, track circuits, space-time crossing, adaptive track section, automatic railway signalling

Procedia PDF Downloads 331
460 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery

Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen

Abstract:

The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.

Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates

Procedia PDF Downloads 55
459 Cost Based Analysis of Risk Stratification Tool for Prediction and Management of High Risk Choledocholithiasis Patients

Authors: Shreya Saxena

Abstract:

Background: Choledocholithiasis is a common complication of gallstone disease. Risk scoring systems exist to guide the need for further imaging or endoscopy in managing choledocholithiasis. We completed an audit to review the American Society for Gastrointestinal Endoscopy (ASGE) scoring system for prediction and management of choledocholithiasis against the current practice at a tertiary hospital to assess its utility in resource optimisation. We have now conducted a cost focused sub-analysis on patients categorized high-risk for choledocholithiasis according to the guidelines to determine any associated cost benefits. Method: Data collection from our prior audit was used to retrospectively identify thirteen patients considered high-risk for choledocholithiasis. Their ongoing management was mapped against the guidelines. Individual costs for the key investigations were obtained from our hospital financial data. Total cost for the different management pathways identified in clinical practice were calculated and compared against predicted costs associated with recommendations in the guidelines. We excluded the cost of laparoscopic cholecystectomy and considered a set figure for per day hospital admission related expenses. Results: Based on our previous audit data, we identified a77% positive predictive value for the ASGE risk stratification tool to determine patients at high-risk of choledocholithiasis. 47% (6/13) had an magnetic resonance cholangiopancreatography (MRCP) prior to endoscopic retrograde cholangiopancreatography (ERCP), whilst 53% (7/13) went straight for ERCP. The average length of stay in the hospital was 7 days, with an additional day and cost of £328.00 (£117 for ERCP) for patients awaiting an MRCP prior to ERCP. Per day hospital admission was valued at £838.69. When calculating total cost, we assumed all patients had admission bloods and ultrasound done as the gold standard. In doing an MRCP prior to ERCP, there was a 130% increase in cost incurred (£580.04 vs £252.04) per patient. When also considering hospital admission and the average length of stay, it was an additional £1166.69 per patient. We then calculated the exact costs incurred by the department, over a three-month period, for all patients, for key investigations or procedures done in the management of choledocholithiasis. This was compared to an estimate cost derived from the recommended pathways in the ASGE guidelines. Overall, 81% (£2048.45) saving was associated with following the guidelines compared to clinical practice. Conclusion: MRCP is the most expensive test associated with the diagnosis and management of choledocholithiasis. The ASGE guidelines recommend endoscopy without an MRCP in patients stratified as high-risk for choledocholithiasis. Our audit that focused on assessing the utility of the ASGE risk scoring system showed it to be relatively reliable for identifying high-risk patients. Our cost analysis has shown significant cost savings per patient and when considering the average length of stay associated with direct endoscopy rather than an additional MRCP. Part of this is also because of an increased average length of stay associated with waiting for an MRCP. The above data supports the ASGE guidelines for the management of high-risk for choledocholithiasis patients from a cost perspective. The only caveat is our small data set that may impact the validity of our average length of hospital stay figures and hence total cost calculations.

Keywords: cost-analysis, choledocholithiasis, risk stratification tool, general surgery

Procedia PDF Downloads 98
458 Fucoidan: A Potent Seaweed-Derived Polysaccharide with Immunomodulatory and Anti-inflammatory Properties

Authors: Tauseef Ahmad, Muhammad Ishaq, Mathew Eapen, Ahyoung Park, Sam Karpiniec, Vanni Caruso, Rajaraman Eri

Abstract:

Fucoidans are complex, fucose-rich sulfated polymers discovered in brown seaweeds. Fucoidans are popular around the world, particularly in the nutraceutical and pharmaceutical industries, due to their promising medicinal properties. Fucoidans have been shown to have a variety of biological activities, including anti-inflammatory effects. They are known to inhibit inflammatory processes through a variety of mechanisms, including enzyme inhibition and selectin blockade. Inflammation is a part of the complicated biological response of living systems to damaging stimuli, and it plays a role in the pathogenesis of a variety of disorders, including arthritis, inflammatory bowel disease, cancer, and allergies. In the current investigation, various fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for inhibition of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) in LPS induced human macrophage cell line (THP-1) and human peripheral blood mononuclear cells (PBMCs). Furthermore, we also sought to catalogue these extracts based on their anti-inflammatory effects in the current in-vitro cell model. Materials and Methods: To assess the cytotoxicity of fucoidan extracts, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5, -diphenyltetrazolium bromide) cell viability assay was performed. Furthermore, a dose-response for fucoidan extracts was performed in LPS induced THP-1 cells and PBMCs after pre-treatment for 24 hours, and levels of TNF-α, IL-1β, and IL-6 cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Results: The MTT cell viability assay demonstrated that fucoidan extracts exhibited no evidence of cytotoxicity in THP-1 cells or PBMCs after 48 hours of incubation. The results of the sandwich ELISA revealed that all fucoidan extracts suppressed cytokine production in LPS-stimulated PBMCs and human THP-1 cells in a dose-dependent manner. Notably, at lower concentrations, the lower molecular fucoidan (5-30 kDa) extract from Macrocystis pyrifera was a highly efficient inhibitor of pro-inflammatory cytokines. Fucoidan extracts from all species including Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica exhibited significant anti-inflammatory effects. These findings on several fucoidan extracts provide insight into strategies for improving their efficacy against inflammation-related diseases. Conclusion: In the current research, we have successfully catalogued several fucoidan extracts based on their efficiency in LPS-induced macrophages and PBMCs in downregulating the key pro-inflammatory cytokines (TNF-, IL-1 and IL-6), which are prospective targets in human inflammatory illnesses. Further research would provide more information on the mechanism of action, allowing it to be tested for therapeutic purposes as an anti-inflammatory medication.

Keywords: fucoidan, PBMCs, THP-1, TNF-α, IL-1β, IL-6, inflammation

Procedia PDF Downloads 59
457 Designing Entrepreneurship Education Contents for Entrepreneurial Intention Building among Undergraduates in India

Authors: Sumita Srivastava

Abstract:

Despite several measures taken by the Government of India, entrepreneurship is still not perceived as a viable career option by the young generation. Although the rate of startups has improved a little after the penetration of e portals as business platforms, still the numbers are not very significant. It is also important to note that entrepreneurial initiatives are mostly taken up by graduates of premier institutions of India like Indian Institute of Technology (IITs) and Indian Institute of Management (IIMs). The scenario is not very satisfactory amongst the masses graduating from mainstream universities of the country. Indian youth at large are not attracted towards entrepreneurship as a career choice. The reason probably lies in the social fabric of the country and inappropriate education system which does not support the entrepreneurship at large amongst youth in the country. Education is critical to the development of an economy from the poverty level to the level of self-sustenance and development. The current curriculum in the majority of business schools in India prepares the average graduate to become employed by the available firms or business owners in society. For graduates in other streams, employment opportunities are very limited. The aim of this study was to identify and design entrepreneurship education contents to encourage undergraduates to pursue entrepreneurship as a career choice. This comprehensive study was conducted in multiple stages. Extensive research was conducted at each stage with an appropriate methodology. These stages of the project study were interconnected with each other, and each preceding stage provided inputs for the following stage of the study. In the first stage of the study, an empirical analysis was conducted to understand the current state of entrepreneurial intentions of undergraduates of Agra city. Various stakeholders were contacted at the stage, including students (n = 500), entrepreneurs (n = 20) and academicians and field experts (n = 10). At the second stage of the project study, a systems science technique, Nominal Group Technique (NGT) was used to identify the critical elements of entrepreneurship education in India based upon the findings of stage 1. The application of the Nominal Group Technique involved a workshop format; 15 domain experts participated in the workshop. Throughout the process, a democratic process was followed to avoid individual dominance and premature focusing on a single idea. The study obtained 63 responses from experts for effective entrepreneurship education in India. The responses were reduced to seven elements after a few thematic iterations. These elements were then segregated into content (knowledge, skills and attitude) and learning interaction on the basis of experts’ responses. After identifying critical elements of entrepreneurship education in the previous stage, the course was designed and validated at stage 3 of the project. Scientific methods were used at this stage to validate the curriculum contents and training interventions experimentally. The educational and training interventions designed through this study would not only help in developing entrepreneurial intentions but also creating skills relevant to the local entrepreneurial opportunities in the vicinity.

Keywords: curriculum design, entrepreneurial intention, entrepreneuship education, nominal group technique

Procedia PDF Downloads 130
456 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry

Authors: Dominik Halstrup, Marlene Schriever

Abstract:

The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.

Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry

Procedia PDF Downloads 225
455 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model

Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo

Abstract:

The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.

Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development

Procedia PDF Downloads 222
454 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 87
453 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes

Authors: Zubair Ahmed, Andrea Barbieri

Abstract:

The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.

Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence

Procedia PDF Downloads 121
452 Climate Change and Health: Scoping Review of Scientific Literature 1990-2015

Authors: Niamh Herlihy, Helen Fischer, Rainer Sauerborn, Anneliese Depoux, Avner Bar-Hen, Antoine Flauhault, Stefanie Schütte

Abstract:

In the recent decades, there has been an increase in the number of publications both in the scientific and grey literature on the potential health risks associated with climate change. Though interest in climate change and health is growing, there are still many gaps to adequately assess our future health needs in a warmer world. Generating a greater understanding of the health impacts of climate change could be a key step in inciting the changes necessary to decelerate global warming and to target new strategies to mitigate the consequences on health systems. A long term and broad overview of existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. We conducted a scoping review of published peer-reviewed literature on climate change and health from two large databases, PubMed and Web of Science, between 1990 and 2015. A scoping review allowed for a broad analysis of this complex topic on a meta-level as opposed to a thematically refined literature review. A detailed search strategy including specific climate and health terminology was used to search the two databases. Inclusion and exclusion criteria were applied in order to capture the most relevant literature on the human health impact of climate change within the chosen timeframe. Two reviewers screened the papers independently and any differences arising were resolved by a third party. Data was extracted, categorized and coded both manually and using R software. Analytics and infographics were developed from results. There were 7269 articles identified between the two databases following the removal of duplicates. After screening of the articles by both reviewers 3751 were included. As expected, preliminary results indicate that the number of publications on the topic has increased over time. Geographically, the majority of publications address the impact of climate change and health in Europe and North America, This is particularly alarming given that countries in the Global South will bear the greatest health burden. Concerning health outcomes, infectious diseases, particularly dengue fever and other mosquito transmitted infections are the most frequently cited. We highlight research gaps in certain areas e.g climate migration and mental health issues. We are developing a database of the identified climate change and health publications and are compiling a report for publication and dissemination of the findings. As health is a major co-beneficiary to climate change mitigation strategies, our results may serve as a useful source of information for research funders and investors when considering future research needs as well as the cost-effectiveness of climate change strategies. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, health, review, mapping

Procedia PDF Downloads 317
451 The South African Polycentric Water Resource Governance-Management Nexus: Parlaying an Institutional Agent and Structured Social Engagement

Authors: J. H. Boonzaaier, A. C. Brent

Abstract:

South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between ex ante self-deterministic human behaviour in the realist realm, and ex post governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres.

Keywords: institutional agent, water governance, polycentric water resource management, water resource management

Procedia PDF Downloads 138
450 An Assessment of Health Hazards in Urban Communities: A Study of Spatial-Temporal Variations of Dengue Epidemic in Colombo, Sri Lanka

Authors: U. Thisara G. Perera, C. M. Kanchana N. K. Chandrasekara

Abstract:

Dengue is an epidemic which is spread by Aedes Egyptai and Aedes Albopictus mosquitoes. The cases of dengue show a dramatic growth rate of the epidemic in urban and semi urban areas spatially in tropical and sub-tropical regions of the world. Incidence of dengue has become a prominent reason for hospitalization and deaths in Asian countries, including Sri Lanka. During the last decade the dengue epidemic began to spread from urban to semi-urban and then to rural settings of the country. The highest number of dengue infected patients was recorded in Sri Lanka in the year 2016 and the highest number of patients was identified in Colombo district. Together with the commercial, industrial, and other supporting services, the district suffers from rapid urbanization and high population density. Thus, drainage and waste disposal patterns of the people in this area exert an additional pressure to the environment. The district is situated in the wet zone and thus low lying lands constitute the largest portion of the district. This situation additionally facilitates mosquito breeding sites. Therefore, the purpose of the present study was to assess the spatial and temporal distribution patterns of dengue epidemic in Kolonnawa MOH area (Medical Officer of Health) in the district of Colombo. The study was carried out using 615 recorded dengue cases in Kollonnawa MOH area during the south east monsoon season from May to September 2016. The Moran’s I and Kernel density estimation were used as analytical methods. The analysis of data was accomplished through the integrated use of ArcGIS 10.1 software packages along with Microsoft Excel analytical tool. Field observation was also carried out for verification purposes during the study period. Results of the Moran’s I index indicates that the spatial distribution of dengue cases showed a cluster distribution pattern across the area. Kernel density estimation emphasis that dengue cases are high where the population has gathered, especially in areas comprising housing schemes. Results of the Kernel Density estimation further discloses that hot spots of dengue epidemic are located in the western half of the Kolonnawa MOH area, which is close to the Colombo municipal boundary and there is a significant relationship with high population density and unplanned urban land use practices. Results of the field observation confirm that the drainage systems in these areas function poorly and careless waste disposal methods of the people further encourage mosquito breeding sites. This situation has evolved harmfully from a public health issue to a social problem, which ultimately impacts on the economy and social lives of the country.

Keywords: Dengue epidemic, health hazards, Kernel density, Moran’s I, Sri Lanka

Procedia PDF Downloads 300
449 Soybean Oil Based Phase Change Material for Thermal Energy Storage

Authors: Emre Basturk, Memet Vezir Kahraman

Abstract:

In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.

Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing

Procedia PDF Downloads 382
448 Strategic Interventions to Address Health Workforce and Current Disease Trends, Nakuru, Kenya

Authors: Paul Moses Ndegwa, Teresia Kabucho, Lucy Wanjiru, Esther Wanjiru, Brian Githaiga, Jecinta Wambui

Abstract:

Health outcome has improved in the country since 2013 following the adoption of the new constitution in Kenya with devolved governance with administration and health planning functions transferred to county governments. 2018-2022 development agenda prioritized universal healthcare coverage, food security, and nutrition, however, the emergence of Covid-19 and the increase of non-communicable diseases pose a challenge and constrain in an already overwhelmed health system. A study was conducted July-November 2021 to establish key challenges in achieving universal healthcare coverage within the county and best practices for improved non-communicable disease control. 14 health workers ranging from nurses, doctors, public health officers, clinical officers, and pharmaceutical technologists were purposely engaged to provide critical information through questionnaires by a trained duo observing ethical procedures on confidentiality. Data analysis. Communicable diseases are major causes of morbidity and mortality. Non-communicable diseases contribute to approximately 39% of deaths. More than 45% of the population does not have access to safe drinking water. Study noted geographic inequality with respect to distribution and use of health resources including competing non-health priorities. 56% of health workers are nurses, 13% clinical officers, 7% doctors, 9%public health workers, 2% are pharmaceutical technologists. Poor-quality data limits the validity of disease-burdened estimates and research activities. Risk factors include unsafe water, sanitation, hand washing, unsafe sex, and malnutrition. Key challenge in achieving universal healthcare coverage is the rise in the relative contribution of non-communicable diseases. Improve targeted disease control with effective and equitable resource allocation. Develop high infectious disease control mechanisms. Improvement of quality data for decision making. Strengthen electronic data-capture systems. Increase investments in the health workforce to improve health service provision and achievement of universal health coverage. Create a favorable environment to retain health workers. Fill in staffing gaps resulting in shortages of doctors (7%). Develop a multi-sectional approach to health workforce planning and management. Need to invest in mechanisms that generate contextual evidence on current and future health workforce needs. Ensure retention of qualified, skilled, and motivated health workforce. Deliver integrated people-centered health services.

Keywords: multi-sectional approach, equity, people-centered, health workforce retention

Procedia PDF Downloads 113
447 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia

Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla

Abstract:

Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.

Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus

Procedia PDF Downloads 114
446 The Roles of Mandarin and Local Dialect in the Acquisition of L2 English Consonants Among Chinese Learners of English: Evidence From Suzhou Dialect Areas

Authors: Weijing Zhou, Yuting Lei, Francis Nolan

Abstract:

In the domain of second language acquisition, whenever pronunciation errors or acquisition difficulties are found, researchers habitually attribute them to the negative transfer of the native language or local dialect. To what extent do Mandarin and local dialects affect English phonological acquisition for Chinese learners of English as a foreign language (EFL)? Little evidence, however, has been found via empirical research in China. To address this core issue, the present study conducted phonetic experiments to explore the roles of local dialects and Mandarin in Chinese EFL learners’ acquisition of L2 English consonants. Besides Mandarin, the sole national language in China, Suzhou dialect was selected as the target local dialect because of its distinct phonology from Mandarin. The experimental group consisted of 30 junior English majors at Yangzhou University, who were born and lived in Suzhou, acquired Suzhou Dialect since their early childhood, and were able to communicate freely and fluently with each other in Suzhou Dialect, Mandarin as well as English. The consonantal target segments were all the consonants of English, Mandarin and Suzhou Dialect in typical carrier words embedded in the carrier sentence Say again. The control group consisted of two Suzhou Dialect experts, two Mandarin radio broadcasters, and two British RP phoneticians, who served as the standard speakers of the three languages. The reading corpus was recorded and sampled in the phonetic laboratories at Yangzhou University, Soochow University and Cambridge University, respectively, then transcribed, segmented and analyzed acoustically via Praat software, and finally analyzed statistically via EXCEL and SPSS software. The main findings are as follows: First, in terms of correct acquisition rates (CARs) of all the consonants, Mandarin ranked top (92.83%), English second (74.81%) and Suzhou Dialect last (70.35%), and significant differences were found only between the CARs of Mandarin and English and between the CARs of Mandarin and Suzhou Dialect, demonstrating Mandarin was overwhelmingly more robust than English or Suzhou Dialect in subjects’ multilingual phonological ecology. Second, in terms of typical acoustic features, the average duration of all the consonants plus the voice onset time (VOT) of plosives, fricatives, and affricatives in 3 languages were much longer than those of standard speakers; the intensities of English fricatives and affricatives were higher than RP speakers but lower than Mandarin and Suzhou Dialect standard speakers; the formants of English nasals and approximants were significantly different from those of Mandarin and Suzhou Dialects, illustrating the inconsistent acoustic variations between the 3 languages. Thirdly, in terms of typical pronunciation variations or errors, there were significant interlingual interactions between the 3 consonant systems, in which Mandarin consonants were absolutely dominant, accounting for the strong transfer from L1 Mandarin to L2 English instead of from earlier-acquired L1 local dialect to L2 English. This is largely because the subjects were knowingly exposed to Mandarin since their nursery and were strictly required to speak in Mandarin through all the formal education periods from primary school to university.

Keywords: acquisition of L2 English consonants, role of Mandarin, role of local dialect, Chinese EFL learners from Suzhou Dialect areas

Procedia PDF Downloads 97
445 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 83
444 A Socio-Spatial Analysis of Financialization and the Formation of Oligopolies in Brazilian Basic Education

Authors: Gleyce Assis Da Silva Barbosa

Abstract:

In recent years, we have witnessed a vertiginous growth of large education companies. Daughters of national and world capital, these companies expand both through consolidated physical networks in the form of branches spread across the territory and through institutional networks such as business networks through mergers, acquisitions, creation of new companies and influence. They do this by incorporating small, medium and large schools and universities, teaching systems and other products and services. They are also able to weave their webs directly or indirectly in philanthropic circles, limited partnerships, family businesses and even in public education through various mechanisms of outsourcing, privatization and commercialization of products for the sector. Although the growth of these groups in basic education seems to us a recent phenomenon in peripheral countries such as Brazil, its diffusion is closely linked to higher education conglomerates and other sectors of the economy forming oligopolies, which began to expand in the 1990s with strong state support and through political reforms that redefined its role, transforming it into a fundamental agent in the formation of guidelines to boost the incorporation of neoliberal logic. This expansion occurred through the objectification of education, commodifying it and transforming students into consumer clients. Financial power combined with the neo-liberalization of state public policies allowed the profusion of social exclusion, the increase of individuals without access to basic services, deindustrialization, automation, capital volatility and the indetermination of the economy; in addition, this process causes capital to be valued and devalued at rates never seen before, which together generates various impacts such as the precariousness of work. Understanding the connection between these processes, which engender the economy, allows us to see their consequences in labor relations and in the territory. In this sense, it is necessary to analyze the geographic-economic context and the role of the facilitating agents of this process, which can give us clues about the ongoing transformations and the directions of education in the national and even international scenario since this process is linked to the multiple scales of financial globalization. Therefore, the present research has the general objective of analyzing the socio-spatial impacts of financialization and the formation of oligopolies in Brazilian basic education. For this, the survey of laws, data, and public policies on the subject in question was used as a methodology. As a methodology, the work was based on some data from these companies available on websites for investors. Survey of information from global and national companies that operate in Brazilian basic education. In addition to mapping the expansion of educational oligopolies using public data on the location of schools. With this, the research intends to provide information about the ongoing commodification process in the country. Discuss the consequences of the oligopolization of education, considering the impacts that financialization can bring to teaching work.

Keywords: financialization, oligopolies, education, Brazil

Procedia PDF Downloads 64
443 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 259
442 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 187
441 Nursing Education in the Pandemic Time: Case Study

Authors: Jaana Sepp, Ulvi Kõrgemaa, Kristi Puusepp, Õie Tähtla

Abstract:

COVID-19 was officially recognized as a pandemic in late 2019 by the WHO, and it has led to changes in the education sector. Educational institutions were closed, and most schools adopted distance learning. Estonia is known as a digitally well-developed country. Based on that, in the pandemic time, nursing education continued, and new technological solutions were implemented. To provide nursing education, special focus was paid on quality and flexibility. The aim of this paper is to present administrative, digital, and technological solutions which support Estonian nursing educators to continue the study process in the pandemic time and to develop a sustainable solution for nursing education for the future. This paper includes the authors’ analysis of the documents and decisions implemented in the institutions through the pandemic time. It is a case study of Estonian nursing educators. Results of the analysis show that the implementation of distance learning principles challenges the development of innovative strategies and technics for the assessment of student performance and educational outcomes and implement new strategies to encourage student engagement in the virtual classroom. Additionally, hospital internships were canceled, and the simulation approach was deeply implemented as a new opportunity to develop and assess students’ practical skills. There are many other technical and administrative changes that have also been carried out, such as students’ support and assessment systems, the designing and conducting of hybrid and blended studies, etc. All services were redesigned and made more available, individual, and flexible. Hence, the feedback system was changed, the information was collected in parallel with educational activities. Experiences of nursing education during the pandemic time are widely presented in scientific literature. However, to conclude our study, authors have found evidence that solutions implemented in Estonian nursing education allowed the students to graduate within the nominal study period without any decline in education quality. Operative information system and flexibility provided the minimum distance between the students, support, and academic staff, and likewise, the changes were implemented quickly and efficiently. Institution memberships were updated with the appropriate information, and it positively affected their satisfaction, motivation, and commitment. We recommend that the feedback process and the system should be permanently changed in the future to place all members in the same information area, redefine the hospital internship process, implement hybrid learning, as well as to improve the communication system between stakeholders inside and outside the organization. The main limitation of this study relates to the size of Estonia. Nursing education is provided by two institutions only, and similarly, the number of students is low. The result could be generated to the institutions with a similar size and administrative system. In the future, the relationship between nurses’ performance and organizational outcomes should be deeply investigated and influences of the pandemic time education analyzed at workplaces.

Keywords: hybrid learning, nursing education, nursing, COVID-19

Procedia PDF Downloads 120
440 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 277
439 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 198
438 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation

Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis

Abstract:

The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.

Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement

Procedia PDF Downloads 421
437 Hybridization of Mathematical Transforms for Robust Video Watermarking Technique

Authors: Harpal Singh, Sakshi Batra

Abstract:

The widespread and easy accesses to multimedia contents and possibility to make numerous copies without loss of significant fidelity have roused the requirement of digital rights management. Thus this problem can be effectively solved by Digital watermarking technology. This is a concept of embedding some sort of data or special pattern (watermark) in the multimedia content; this information will later prove ownership in case of a dispute, trace the marked document’s dissemination, identify a misappropriating person or simply inform user about the rights-holder. The primary motive of digital watermarking is to embed the data imperceptibly and robustly in the host information. Extensive counts of watermarking techniques have been developed to embed copyright marks or data in digital images, video, audio and other multimedia objects. With the development of digital video-based innovations, copyright dilemma for the multimedia industry increases. Video watermarking had been proposed in recent years to serve the issue of illicit copying and allocation of videos. It is the process of embedding copyright information in video bit streams. Practically video watermarking schemes have to address some serious challenges as compared to image watermarking schemes like real-time requirements in the video broadcasting, large volume of inherently redundant data between frames, the unbalance between the motion and motionless regions etc. and they are particularly vulnerable to attacks, for example, frame swapping, statistical analysis, rotation, noise, median and crop attacks. In this paper, an effective, robust and imperceptible video watermarking algorithm is proposed based on hybridization of powerful mathematical transforms; Fractional Fourier Transform (FrFT), Discrete Wavelet transforms (DWT) and Singular Value Decomposition (SVD) using redundant wavelet. This scheme utilizes various transforms for embedding watermarks on different layers by using Hybrid systems. For this purpose, the video frames are portioned into layers (RGB) and the watermark is being embedded in two forms in the video frames using SVD portioning of the watermark, and DWT sub-band decomposition of host video, to facilitate copyright safeguard as well as reliability. The FrFT orders are used as the encryption key that allows the watermarking method to be more robust against various attacks. The fidelity of the scheme is enhanced by introducing key generation and wavelet based key embedding watermarking scheme. Thus, for watermark embedding and extraction, same key is required. Therefore the key must be shared between the owner and the verifier via some safe network. This paper demonstrates the performance by considering different qualitative metrics namely Peak Signal to Noise ratio, Structure similarity index and correlation values and also apply some attacks to prove the robustness. The Experimental results are presented to demonstrate that the proposed scheme can withstand a variety of video processing attacks as well as imperceptibility.

Keywords: discrete wavelet transform, robustness, video watermarking, watermark

Procedia PDF Downloads 224
436 Rehabilitation of Orthotropic Steel Deck Bridges Using a Modified Ortho-Composite Deck System

Authors: Mozhdeh Shirinzadeh, Richard Stroetmann

Abstract:

Orthotropic steel deck bridge consists of a deck plate, longitudinal stiffeners under the deck plate, cross beams and the main longitudinal girders. Due to the several advantages, Orthotropic Steel Deck (OSD) systems have been utilized in many bridges worldwide. The significant feature of this structural system is its high load-bearing capacity while having relatively low dead weight. In addition, cost efficiency and the ability of rapid field erection have made the orthotropic steel deck a popular type of bridge worldwide. However, OSD bridges are highly susceptible to fatigue damage. A large number of welded joints can be regarded as the main weakness of this system. This problem is, in particular, evident in the bridges which were built before 1994 when the fatigue design criteria had not been introduced in the bridge design codes. Recently, an Orthotropic-composite slab (OCS) for road bridges has been experimentally and numerically evaluated and developed at Technische Universität Dresden as a part of AIF-FOSTA research project P1265. The results of the project have provided a solid foundation for the design and analysis of Orthotropic-composite decks with dowel strips as a durable alternative to conventional steel or reinforced concrete decks. In continuation, while using the achievements of that project, the application of a modified Ortho-composite deck for an existing typical OSD bridge is investigated. Composite action is obtained by using rows of dowel strips in a clothoid (CL) shape. Regarding Eurocode criteria for different fatigue detail categories of an OSD bridge, the effect of the proposed modification approach is assessed. Moreover, a numerical parametric study is carried out utilizing finite element software to determine the impact of different variables, such as the size and arrangement of dowel strips, the application of transverse or longitudinal rows of dowel strips, and local wheel loads. For the verification of the simulation technique, experimental results of a segment of an OCS deck are used conducted in project P1265. Fatigue assessment is performed based on the last draft of Eurocode 1993-2 (2024) for the most probable detail categories (Hot-Spots) that have been reported in the previous statistical studies. Then, an analytical comparison is provided between the typical orthotropic steel deck and the modified Ortho-composite deck bridge in terms of fatigue issues and durability. The load-bearing capacity of the bridge, the critical deflections, and the composite behavior are also evaluated and compared. Results give a comprehensive overview of the efficiency of the rehabilitation method considering the required design service life of the bridge. Moreover, the proposed approach is assessed with regard to the construction method, details and practical aspects, as well as the economic point of view.

Keywords: composite action, fatigue, finite element method, steel deck, bridge

Procedia PDF Downloads 84
435 Racial Distress in the Digital Age: A Mixed-Methods Exploration of the Effects of Social Media Exposure to Police Brutality on Black Students

Authors: Amanda M. McLeroy, Tiera Tanksley

Abstract:

The 2020 movement for Black Lives, ignited by anti-Black police brutality and exemplified by the public execution of George Floyd, underscored the dual potential of social media for political activism and perilous exposure to traumatic content for Black students. This study employs Critical Race Technology Theory (CRTT) to scrutinize algorithmic anti-blackness and its impact on Black youth's lives and educational experiences. The research investigates the consequences of vicarious exposure to police brutality on social media among Black adolescents through qualitative interviews and quantitative scale data. The findings reveal an unprecedented surge in exposure to viral police killings since 2020, resulting in profound physical, socioemotional, and educational effects on Black youth. CRTT forms the theoretical basis, challenging the notion of digital technologies as post-racial and neutral, aiming to dismantle systemic biases within digital systems. Black youth, averaging over 13 hours of daily social media use, face constant exposure to graphic images of Black individuals dying. The study connects this exposure to a range of physical, socioemotional, and mental health consequences, emphasizing the urgent need for understanding and support. The research proposes questions to explore the extent of police brutality exposure and its effects on Black youth. Qualitative interviews with high school and college students and quantitative scale data from undergraduates contribute to a nuanced understanding of the impact of police brutality exposure on Black youth. Themes of unprecedented exposure to viral police killings, physical and socioemotional effects, and educational consequences emerge from the analysis. The study uncovers how vicarious experiences of negative police encounters via social media lead to mistrust, fear, and psychosomatic symptoms among Black adolescents. Implications for educators and counselors are profound, emphasizing the cultivation of empathy, provision of mental health support, integration of media literacy education, and encouragement of activism. Recognizing family and community influences is crucial for comprehensive support. Professional development opportunities in culturally responsive teaching and trauma-informed approaches are recommended for educators. In conclusion, creating a supportive educational environment that addresses the emotional impact of social media exposure to police brutality is crucial for the well-being and development of Black adolescents. Counselors, through safe spaces and collaboration, play a vital role in supporting Black youth facing the distressing effects of social media exposure to police brutality.

Keywords: black youth, mental health, police brutality, social media

Procedia PDF Downloads 54