Search results for: statistical learning
2095 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield
Authors: Ákos Tótin
Abstract:
In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.Keywords: germination, maize, sowing date, yield
Procedia PDF Downloads 2312094 'How to Change Things When Change is Hard' Motivating Libyan College Students to Play an Active Role in Their Learning Process
Authors: Hameda Suwaed
Abstract:
Group work, time management and accepting others' opinions are practices rooted in the socio-political culture of democratic nations. In Libya, a country transitioning towards democracy, what is the impact of encouraging college students to use such practices in the English language classroom? How to encourage teachers to use such practices in educational system characterized by using traditional methods of teaching? Using action research and classroom research gathered data; this study investigates how teachers can use education to change their students' understanding of their roles in their society by enhancing their belonging to it. This study adjusts a model of change that includes giving students clear directions, sufficient motivation and supportive environment. These steps were applied by encouraging students to participate actively in the classroom by using group work and variety of activities. The findings of the study showed that following the suggested model can broaden students' perception of their belonging to their environment starting with their classroom and ending with their country. In conclusion, although this was a small scale study, the students' participation in the classroom shows that they gained self confidence in using practices such as group work, how to present their ideas and accepting different opinions. What was remarkable is that most students were aware that is what we need in Libya nowadays.Keywords: educational change, students' motivation, group work, foreign language teaching
Procedia PDF Downloads 4222093 Modulation of the Innate Immune Response in Bovine Udder Tissue by Epigenetic Modifiers
Authors: Holm Zerbe, Laura Macias, Hans-Joachim Schuberth, Wolfram Petzl
Abstract:
Mastitis is among the most important production diseases in cows. It accounts for large parts of antimicrobial drug use in the dairy industry worldwide. Due to the imminent normative to reduce the use of antimicrobial drugs in livestock, new ways for therapy and prophylaxis of mastitis are needed. Recently epigenetic regulation of inflammation by chromatin modifications has increasingly drawn attention. Currently, some epigenetic modifiers have already been approved for the use in humans, however little is known about their actions in the bovine system. The aim of our study was to investigate whether three selected epigenetic modifiers (Vitamin D3, SAHA and S2101) influence the initial immune response towards mastitis pathogens in bovine udder tissue in vitro. Tissue explants of the teat cistern and udder parenchyma were collected from 21 cows and were incubated for 36 hours in the absence and presence of epigenetic modifiers. Additionally, the tissue was stimulated with heat-inactivated particles of Escherichia coli and Staphylococcus aureus, which are regarded as two of the most important mastitis pathogens. After incubation, the explants were tested by RT-qPCR for transcript abundances of immune-related candidate genes. Gene expression was validated in culture supernatants by an AlphaLISA assay. Furthermore, the culture supernatants were analyzed for their chemotactic capacity through a chemotaxis assay. Statistical analysis of data was performed with the program ‘R’ version 3.2.3. Vitamin D3 had no effect on the immune response of udder tissue in vitro after stimulation with mastitis pathogens. The epigenetic modifiers SAHA and S2101 however significantly blocked the pathogen-induced upregulation of CXCL8, TNFα, S100A9 and LAP (P < 0.05). The regulation of IL10 was not affected by treatment with SAHA and S2101. Transcript abundances for CXCL8 were reflected by IL8 contents and chemotactic activity in culture supernatants. In conclusion, these data show the potential of epigenetic modifiers (SAHA and S2101) to block overshooting inflammation in the udder. Thus epigenetic modifiers may serve in future as immune modulators for the treatment and/or prophylaxis of clinical mastitis. (Funded by Deutsche Forschungsgemeinschaft PE 1495/2-1).Keywords: mastitis, cattle, epigenetics, immunomodulation
Procedia PDF Downloads 2352092 Comparing Two Interventions for Teaching Math to Pre-School Students with Autism
Authors: Hui Fang Huang Su, Jia Borror
Abstract:
This study compared two interventions for teaching math to preschool-aged students with autism spectrum disorder (ASD). The first is considered the business as usual (BAU) intervention, which uses the Strategies for Teaching Based on Autism Research (STAR) curriculum and discrete trial teaching as the instructional methodology. The second is the Math is Not Difficult (Project MIND) activity-embedded, naturalistic intervention. These interventions were randomly assigned to four preschool students with ASD classrooms and implemented over three months for Project Mind. We used measurement gained during the same three months for the STAR intervention. In addition, we used A quasi-experimental, pre-test/post-test design to compare the effectiveness of these two interventions in building mathematical knowledge and skills. The pre-post measures include three standardized instruments: the Test of Early Math Ability-3, the Problem Solving and Calculation subtests of the Woodcock-Johnson Test of Achievement IV, and the Bracken Test of Basic Concepts-3 Receptive. The STAR curriculum-based assessment is administered to all Baudhuin students three times per year, and we used the results in this study. We anticipated that implementing these two approaches would improve the mathematical knowledge and skills of children with ASD. Still, it is crucial to see whether a behavioral or naturalistic teaching approach leads to more significant results.Keywords: early learning, autism, math for pre-schoolers, special education, teaching strategies
Procedia PDF Downloads 1652091 Role of Internal and External Factors in Preventing Risky Sexual Behavior, Drug and Alcohol Abuse
Authors: Veronika Sharok
Abstract:
Research relevance on psychological determinants of risky behaviors is caused by high prevalence of such behaviors, particularly among youth. Risky sexual behavior, including unprotected and casual sex, frequent change of sexual partners, drug and alcohol use lead to negative social consequences and contribute to the spread of HIV infection and other sexually transmitted diseases. Data were obtained from 302 respondents aged 15-35 which were divided into 3 empirical groups: persons prone to risky sexual behavior, drug users and alcohol users; and 3 control groups: the individuals who are not prone to risky sexual behavior, persons who do not use drugs and the respondents who do not use alcohol. For processing, we used the following methods: Qualitative method for nominative data (Chi-squared test) and quantitative methods for metric data (student's t-test, Fisher's F-test, Pearson's r correlation test). Statistical processing was performed using Statistica 6.0 software. The study identifies two groups of factors that prevent risky behaviors. Internal factors, which include the moral and value attitudes; significance of existential values: love, life, self-actualization and search for the meaning of life; understanding independence as a responsibility for the freedom and ability to get attached to someone or something up to a point when this relationship starts restricting the freedom and becomes vital; awareness of risky behaviors as dangerous for the person and for others; self-acknowledgement. External factors (prevent risky behaviors in case of absence of the internal ones): absence of risky behaviors among friends and relatives; socio-demographic characteristics (middle class, marital status); awareness about the negative consequences of risky behaviors; inaccessibility to psychoactive substances. These factors are common for proneness to each type of risky behavior, because it usually caused by the same reasons. It should be noted that if prevention of risky behavior is based only on elimination of external factors, it is not as effective as it may be if we pay more attention to internal factors. The results obtained in the study can be used to develop training programs and activities for prevention of risky behaviors, for using values preventing such behaviors and promoting healthy lifestyle.Keywords: existential values, prevention, psychological features, risky behavior
Procedia PDF Downloads 2562090 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients
Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg
Abstract:
Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis
Procedia PDF Downloads 3392089 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform
Procedia PDF Downloads 3092088 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 72087 Pediatric Hearing Aid Use: A Study Based on Data Logging Information
Authors: Mina Salamatmanesh, Elizabeth Fitzpatrick, Tim Ramsay, Josee Lagacé, Lindsey Sikora, JoAnne Whittingham
Abstract:
Introduction: Hearing loss (HL) is one of the most common disorders that presents at birth and in early childhood. Universal newborn hearing screening (UNHS) has been adopted based on the assumption that with early identification of HL, children will have access to optimal amplification and intervention at younger ages, therefore, taking advantage of the brain’s maximal plasticity. One particular challenge for parents in the early years is achieving consistent hearing aid (HA) use which is critical to the child’s development and constitutes the first step in the rehabilitation process. This study examined the consistency of hearing aid use in young children based on data logging information documented during audiology sessions in the first three years after hearing aid fitting. Methodology: The first 100 children who were diagnosed with bilateral HL before 72 months of age since 2003 to 2015 in a pediatric audiology clinic and who had at least two hearing aid follow-up sessions with available data logging information were included in the study. Data from each audiology session (age of child at the session, average hours of use per day (for each ear) in the first three years after HA fitting) were collected. Clinical characteristics (degree of hearing loss, age of HA fitting) were also documented to further understanding of factors that impact HA use. Results: Preliminary analysis of the results of the first 20 children shows that all of them (100%) have at least one data logging session recorded in the clinical audiology system (Noah). Of the 20 children, 17(85%) have three data logging events recorded in the first three years after HA fitting. Based on the statistical analysis of the first 20 cases, the median hours of use in the first follow-up session after the hearing aid fitting in the right ear is 3.9 hours with an interquartile range (IQR) of 10.2h. For the left ear the median is 4.4 and the IQR is 9.7h. In the first session 47% of the children use their hearing aids ≤5 hours, 12% use them between 5 to 10 hours and 22% use them ≥10 hours a day. However, these children showed increased use by the third follow-up session with a median (IQR) of 9.1 hours for the right ear and 2.5, and of 8.2 hours for left ear (IQR) IQR is 5.6 By the third follow-up session, 14% of children used hearing aids ≤5 hours, while 38% of children used them ≥10 hours. Based on the primary results, factors like age and level of HL significantly impact the hours of use. Conclusion: The use of data logging information to assess the actual hours of HA provides an opportunity to examine the: a) challenges of families of young children with HAs, b) factors that impact use in very young children. Data logging when used collaboratively with parents, can be a powerful tool to identify problems and to encourage and assist families in maximizing their child’s hearing potential.Keywords: hearing loss, hearing aid, data logging, hours of use
Procedia PDF Downloads 2302086 Spatio-Temporal Risk Analysis of Cancer to Assessed Environmental Exposures in Coimbatore, India
Authors: Janani Selvaraj, M. Prashanthi Devi, P. B. Harathi
Abstract:
Epidemiologic studies conducted over several decades have provided evidence to suggest that long-term exposure to elevated ambient levels of particulate air pollution is associated with increased mortality. Air quality risk management is significant in developing countries and it highlights the need to understand the role of ecologic covariates in the association between air pollution and mortality. Several new methods show promise in exploring the geographical distribution of disease and the identification of high risk areas using epidemiological maps. However, the addition of the temporal attribute would further give us an in depth idea of the disease burden with respect to forecasting measures. In recent years, new methods developed in the reanalysis were useful for exploring the spatial structure of the data and the impact of spatial autocorrelation on estimates of risk associated with exposure to air pollution. Based on this, our present study aims to explore the spatial and temporal distribution of the lung cancer cases in the Coimbatore district of Tamil Nadu in relation to air pollution risk areas. A spatio temporal moving average method was computed using the CrimeStat software and visualized in ArcGIS 10.1 to document the spatio temporal movement of the disease in the study region. The random walk analysis performed showed the progress of the peak cancer incidences in the intersection regions of the Coimbatore North and South taluks that include major commercial and residential regions like Gandhipuram, Peelamedu, Ganapathy, etc. Our study shows evidence that daily exposure to high air pollutant concentration zones may lead to the risk of lung cancer. The observations from the present study will be useful in delineating high risk zones of environmental exposure that contribute to the increase of cancer among daily commuters. Through our study we suggest that spatially resolved exposure models in relevant time frames will produce higher risks zones rather than solely on statistical theory about the impact of measurement error and the empirical findings.Keywords: air pollution, cancer, spatio-temporal analysis, India
Procedia PDF Downloads 5132085 Food Sharing App and the Ubuntu Ssharing Economy: Accessing the Impact of Technology of Food Waste Reduction
Authors: Gabriel Sunday Ayayia
Abstract:
Food waste remains a critical global challenge with significant environmental, economic, and ethical implications. In an era where food waste and food insecurity coexist, innovative technology-driven solutions have emerged, aiming to bridge the gap between surplus food and those in need. Simultaneously, disparities in food access persist, exacerbating issues of hunger and malnutrition. Emerging food-sharing apps offer a promising avenue to mitigate these problems but require further examination within the context of the Ubuntu sharing economy. This study seeks to understand the impact of food-sharing apps, guided by the principles of Ubuntu, on reducing food waste and enhancing food access. The study examines how specific food-sharing apps within the Ubuntu sharing economy could contribute to fostering community resilience and reducing food waste. Ubuntu underscores the idea that we are all responsible for the well-being of our community members. In the context of food waste, this means that individuals and businesses have a collective responsibility to ensure that surplus food is shared rather than wasted. Food-sharing apps align with this principle by facilitating the sharing of excess food with those in need, transforming waste into a communal resource. This research employs a mixed-methods approach of both quantitative analysis and qualitative inquiry. Large-scale surveys will be conducted to assess user behavior, attitudes, and experiences with food-sharing apps, focusing on the frequency of use, motivations, and perceived impacts. Qualitative interviews with app users, community organizers, and stakeholders will explore the Ubuntu-inspired aspects of food-sharing apps and their influence on reducing food waste and improving food access. Quantitative data will be analyzed using statistical techniques, while qualitative data will undergo thematic analysis to identify key patterns and insights. This research addresses a critical gap in the literature by examining the role of food-sharing apps in reducing food waste and enhancing food access, particularly within the Ubuntu sharing economy framework. Findings will offer valuable insights for policymakers, technology developers, and communities seeking to leverage technology to create a more just and sustainable food system.Keywords: sharing economy, food waste reduction, technology, community- based approach
Procedia PDF Downloads 682084 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment
Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian
Abstract:
Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB
Procedia PDF Downloads 5192083 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.Keywords: children, insulin resistance indices, metabolic syndrome, obesity
Procedia PDF Downloads 1222082 Sustainable Development in Orthodontics: Orthodontic Archwire Waste
Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers
Abstract:
Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.Keywords: archwire, orthodontics, sustainability, waste
Procedia PDF Downloads 1952081 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3662080 A Systematic Review Of Literature On The Importance Of Cultural Humility In Providing Optimal Palliative Care For All Persons
Authors: Roseanne Sharon Borromeo, Mariana Carvalho, Mariia Karizhenskaia
Abstract:
Healthcare providers need to comprehend cultural diversity for optimal patient-centered care, especially near the end of life. Although a universal method for navigating cultural differences would be ideal, culture’s high complexity makes this strategy impossible. Adding cultural humility, a process of self-reflection to understand personal and systemic biases and humbly acknowledging oneself as a learner when it comes to understanding another's experience leads to a meaningful process in palliative care generating respectful, honest, and trustworthy relationships. This study is a systematic review of the literature on cultural humility in palliative care research and best practices. Race, religion, language, values, and beliefs can affect an individual’s access to palliative care, underscoring the importance of culture in palliative care. Cultural influences affect end-of-life care perceptions, impacting bereavement rituals, decision-making, and attitudes toward death. Cultural factors affecting the delivery of care identified in a scoping review of Canadian literature include cultural competency, cultural sensitivity, and cultural accessibility. As the different parts of the world become exponentially diverse and multicultural, healthcare providers have been encouraged to give culturally competent care at the bedside. Therefore, many organizations have made cultural competence training required to expose professionals to the special needs and vulnerability of diverse populations. Cultural competence is easily standardized, taught, and implemented; however, this theoretically finite form of knowledge can dangerously lead to false assumptions or stereotyping, generating poor communication, loss of bonds and trust, and poor healthcare provider-patient relationship. In contrast, Cultural humility is a dynamic process that includes self-reflection, personal critique, and growth, allowing healthcare providers to respond to these differences with an open mind, curiosity, and awareness that one is never truly a “cultural” expert and requires life-long learning to overcome common biases and ingrained societal influences. Cultural humility concepts include self-awareness and power imbalances. While being culturally competent requires being skilled and knowledgeable in one’s culture, being culturally humble involves the sometimes-uncomfortable position of healthcare providers as students of the patient. Incorporating cultural humility emphasizes the need to approach end-of-life care with openness and responsiveness to various cultural perspectives. Thus, healthcare workers need to embrace lifelong learning in individual beliefs and values on suffering, death, and dying. There have been different approaches to this as well. Some adopt strategies for cultural humility, addressing conflicts and challenges through relational and health system approaches. In practice and research, clinicians and researchers must embrace cultural humility to advance palliative care practices, using qualitative methods to capture culturally nuanced experiences. Cultural diversity significantly impacts patient-centered care, particularly in end-of-life contexts. Cultural factors also shape end-of-life perceptions, impacting rituals, decision-making, and attitudes toward death. Cultural humility encourages openness and acknowledges the limitations of expertise in one’s culture. A consistent self-awareness and a desire to understand patients’ beliefs drive the practice of cultural humility. This dynamic process requires practitioners to learn continuously, fostering empathy and understanding. Cultural humility enhances palliative care, ensuring it resonates genuinely across cultural backgrounds and enriches patient-provider interactions.Keywords: cultural competency, cultural diversity, cultural humility, palliative care, self-awareness
Procedia PDF Downloads 622079 Preliminary Report on the Assessment of the Impact of the Kinesiology Taping Application versus Placebo Taping on the Knee Joint Position Sense
Authors: Anna Hadamus, Patryk Wasowski, Anna Mosiolek, Zbigniew Wronski, Sebastian Wojtowicz, Dariusz Bialoszewski
Abstract:
Introduction: Kinesiology Taping is a very popular physiotherapy method, often used for healthy people, especially athletes, in order to stimulate the muscles and improve their performance. The aim of this study was to determine the effect of the muscle application of Kinesiology Taping on the joint position sense in active motion. Material and Methods: The study involved 50 healthy people - 30 men and 20 women, mean age was 23.2 years (range 18-30 years). The exclusion criteria were injuries and operations of the knee, which could affect the test results. The participants were divided randomly into two equal groups. The first group consisted of individuals with the applied Kinesiology Taping muscle application (KT group), whereas in the rest of the individuals placebo application from red adhesive tape was used (placebo group). Both applications were to enhance the effects of quadriceps muscle activity. Joint position sense (JPS) was evaluated in this study. Error of Active Reproduction of the Joint Position (EARJP) of the knee was measured in 45° flexion. The test was performed prior to applying the patch, with the applied application, then 24 hours after wearing, and after removing the tape. The interval between trials was not less than 30 minutes. Statistical analysis was performed using Statistica 12.0. We calculated distribution characteristics, Wilcoxon test, Friedman‘s ANOVA and Mann-Whitney U test. Results. In the KT group and the placebo group average test score of JPS before applying application KT were 3.48° and 5.16° respectively, after its application it was 4.84° and 4.88°, then after 24 hours of experiment JPS was 5.12° and 4.96°, and after application removal we measured 3.84° and 5.12° respectively. Differences over time in any of the groups were not statistically significant. There were also no significant differences between the groups. Conclusions: 1. Applying Kinesiology Taping to quadriceps muscle had no significant effect on the knee joint proprioception. Its use in order to improve sensorimitor skills seems therefore to be unreasonable. 2. No differences between applications of KT and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous study groups.Keywords: joint position sense, kinesiology taping, kinesiotaping, knee
Procedia PDF Downloads 3392078 A New Development Pathway And Innovative Solutions Through Food Security System
Authors: Osatuyi Kehinde Micheal
Abstract:
There is much research that has contributed to an improved understanding of the future of food security, especially during the COVID-19 pandemic. A pathway was developed by using a local community kitchen in Muizenberg in western cape province, cape town, south Africa, a case study to map out the future of food security in times of crisis. This kitchen aims to provide nutritious, affordable, plant-based meals to our community. It is also a place of diverse learning, sharing, empowering the volunteers, and growth to support the local economy and future resilience by sustaining our community kitchen for the community. This document contains an overview of the story of the community kitchen on how we create self-sustainability as a new pathway development to sustain the community and reduce Zero hunger in the regional food system. This paper describes the key elements of how we respond to covid-19 pandemic by sharing food parcels and creating 13 soup kitchens across the community to tackle the immediate response to covid-19 pandemic and agricultural systems by growing home food gardening in different homes, also having a consciousness Dry goods store to reduce Zero waste and a local currency as an innovation to reduce food crisis. Insights gained from our article and outreach and their value in how we create adaptation, transformation, and sustainability as a new development pathway to solve any future problem crisis in the food security system in our society.Keywords: sustainability, food security, community development, adapatation, transformation
Procedia PDF Downloads 772077 Topics of Blockchain Technology to Teach at Community College
Authors: Penn P. Wu, Jeannie Jo
Abstract:
Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.Keywords: blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies
Procedia PDF Downloads 1332076 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6922075 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices
Authors: Ganesh B. Shinde, Vijaya B. Musande
Abstract:
Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices
Procedia PDF Downloads 3182074 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 1182073 The Challenges to Information Communication Technology Integration in Mathematics Teaching and Learning
Authors: George Onomah
Abstract:
Background: The integration of information communication technology (ICT) in Mathematics education faces notable challenges, which this study aimed to dissect and understand. Objectives: The primary goal was to assess the internal and external factors affecting the adoption of ICT by in-service Mathematics teachers. Internal factors examined included teachers' pedagogical beliefs, prior teaching experience, attitudes towards computers, and proficiency with technology. External factors included the availability of technological resources, the level of ICT training received, the sufficiency of allocated time for technology use, and the institutional culture within educational environments. Methods: A descriptive survey design was employed to methodically investigate these factors. Data collection was carried out using a five-point Likert scale questionnaire, administered to a carefully selected sample of 100 in-service Mathematics teachers through a combination of purposive and convenience sampling techniques. Findings: Results from multiple regression analysis revealed a significant underutilization of ICT in Mathematics teaching, highlighting a pronounced deficiency in current classroom practices. Recommendations: The findings suggest an urgent need for educational department heads to implement regular and comprehensive ICT training programs aimed at enhancing teachers' technological capabilities and promoting the integration of ICT in Mathematics teaching methodologies.Keywords: ICT, Mathematics, integration, barriers
Procedia PDF Downloads 402072 Investigating the Efficacy of Developing Critical Thinking through Literature Reading
Authors: Julie Chuah Suan Choo
Abstract:
Due to the continuous change in workforce and the demands of the global workplace, many employers had lamented that the majority of university graduates were not prepared in the key areas of employment such as critical thinking, writing, self-direction and global knowledge which are most needed for the purposes of promotion. Further, critical thinking skills are deemed as integral parts of transformational pedagogy which aims at having a more informed society. To add to this, literature teaching has recently been advocated for enhancing students’ critical thinking and reasoning. Thus this study explored the effects of incorporating a few strategies in teaching literature, namely a Shakespeare play, into a course design to enhance these skills. An experiment involving a pretest and posttest using the California Critical Thinking Skills Test (CCTST) were administered on 80 first-year students enrolled in the Bachelor of Arts programme who were randomly assigned into the control group and experimental group. For the next 12 weeks, the experimental group was given intervention which included guided in-class discussion with Socratic questioning skills, learning log to detect their weaknesses in logical reasoning; presentations and quizzes. The results of CCTST which included paired T-test using SPSS version 22 indicated significant differences between the two groups. Findings have significant implications on the course design as well as pedagogical practice in using literature to enhance students’ critical thinking skills.Keywords: literature teaching, critical thinking, California critical thinking skills test (CCTST), course design
Procedia PDF Downloads 4622071 Evaluation and Proposal for Improvement of the Flow Measurement Equipment in the Bellavista Drinking Water System of the City of Azogues
Authors: David Quevedo, Diana Coronel
Abstract:
The present article carries out an evaluation of the drinking water system in the Bellavista sector of the city of Azogues, with the purpose of determining the appropriate equipment to record the actual consumption flows of the inhabitants in said sector. Taking into account that the study area is located in a rural and economically disadvantaged area, there is an urgent need to establish a control system for the consumption of drinking water in order to conserve and manage the vital resource in the best possible way, considering that the water source supplying this sector is approximately 9km away. The research began with the collection of cartographic, demographic, and statistical data of the sector, determining the coverage area, population projection, and a provision that guarantees the supply of drinking water to meet the water needs of the sector's inhabitants. By using hydraulic modeling through the United States Environmental Protection Agency Application for Modeling Drinking Water Distribution Systems EPANET 2.0 software, theoretical hydraulic data were obtained, which were used to design and justify the most suitable measuring equipment for the Bellavista drinking water system. Taking into account a minimum service life of the drinking water system of 30 years, future flow rates were calculated for the design of the macro-measuring device. After analyzing the network, it was evident that the Bellavista sector has an average consumption of 102.87 liters per person per day, but considering that Ecuadorian regulations recommend a provision of 180 liters per person per day for the geographical conditions of the sector, this value was used for the analysis. With all the collected and calculated information, the conclusion was reached that the Bellavista drinking water system needs to have a 125mm electromagnetic macro-measuring device for the first three quinquenniums of its service life and a 150mm diameter device for the following three quinquenniums. The importance of having equipment that provides real and reliable data will allow for the control of water consumption by the population of the sector, measured through micro-measuring devices installed at the entrance of each household, which should match the readings of the macro-measuring device placed after the water storage tank outlet, in order to control losses that may occur due to leaks in the drinking water system or illegal connections.Keywords: macrometer, hydraulics, endowment, water
Procedia PDF Downloads 732070 Toward Green Infrastructure Development: Dispute Prevention Mechanisms along the Belt and Road and Beyond
Authors: Shahla Ali
Abstract:
In the context of promoting green infrastructure development, new opportunities are emerging to re-examine sustainable development practices. This paper presents an initial exploration of the development of community-investor dispute prevention and facilitation mechanisms in the context of the Belt and Road Initiative (BRI) spanning Asia, Africa, and Europe. Given the widescale impact of China’s multi-jurisdictional development initiative, learning how to coordinate with local communities is vital to realizing inclusive and sustainable growth. In the 20 years since the development of the first multilateral community-investor dispute resolution mechanism developed by the International Finance Centre/World Bank, much has been learned about public facilitation, community engagement, and dispute prevention during the early stages of major infrastructure development programs. This paper will explore initial findings as they relate to initiatives underway along the BRI within the Asian Infrastructure Investment Bank and the Asian Development Bank. Given the borderless nature of sustainability concerns, insights from diverse regions are critical to deepening insights into best practices. Drawing on a case-based methodology, this paper will explore the achievements, challenges, and lessons learned in community-investor dispute prevention and resolution for major infrastructure projects in the greater China region.Keywords: law and development, dispute prevention, sustainable development, mitigation
Procedia PDF Downloads 1062069 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 592068 Interrelationship of Socio-Demographic Factors, Health Belief Dimensions and Compliance to Measles Vaccination among Filipino Mothers
Authors: Beryl Rene R. Lopez, Lesley Anne M. Lipat, Rhogene Barbette C. Lirio, Laurice Joy H. Llanes, Karl Philippe M. Llapitan, Einstein James R. Lopez, Socorro S. GuanHing
Abstract:
Background: Measles remain as one of the most common childhood diseases despite the availability of the vaccine that is safe and cost-effective. Because of morbidity and mortality associated with the recent measles outbreak in the Philippines, there is an increasing concern from the health care professionals. Objective: The purpose of this study is to determine the relationship between the compliance of Filipino mothers to measles vaccination and their health beliefs when grouped according to the given socio-demographic factors using a researcher-made questionnaire. Research Methodology: This research utilized the descriptive-correlational research design. With the use of purposive sampling technique, the study involved 200 Filipino mothers aged 18 years old and above excluding those who are healthcare professionals with children aged 2-3 years old with either urban or rural as their settlements. Pre-testing was done prior to the actual data gathering. A questionnaire composed of 26 items involving socio-demographic, compliance, and health beliefs was distributed to the sample population. Statistical analysis was done with the use of Exploratory Factor Analysis (EFA) for the first research question and Structural Equation Model (SEM) for the second research question. Results: Four dimensions were generated with the use of EFA namely: Vulnerability-Oriented Beliefs (VOB), Knowledge-Oriented Beliefs (KOB), Accessibility-Oriented Beliefs (AOB), and Outcomes-Oriented Beliefs (OOB). These were then correlated with the mothers’ socio-demographic factors (age, educational attainment, the area of residence, the number of children, and family income) and their compliance to the measles vaccination schedule. Results showed significant and direct relationships between area of residence and compliance, family income and compliance, KOB and compliance, education and KOB, KOB and VOB, KOB and OOB, AOB and KOB, AOB and OOB, AOB and VOB, and lastly, OOB and VOB. Conclusion: The Knowledge – Oriented Belief dimension greatly influence compliance to measles vaccination. Other determinants of compliance like the area of residence, educational attainment, and family income significantly increase the Filipino mothers’ likelihood of compliance to measles vaccination, which have implications to health education.Keywords: socio-demographic, health beliefs, compliance, measles vaccination
Procedia PDF Downloads 3752067 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 1052066 Twitter Sentiment Analysis during the Lockdown on New-Zealand
Authors: Smah Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia PDF Downloads 190