Search results for: markov chain approach
6885 Safety of Ports, Harbours, Marine Terminals: Application of Quantitative Risk Assessment
Authors: Dipak Sonawane, Sudarshan Daga, Somesh Gupta
Abstract:
Quantitative risk assessment (QRA) is a very precise and consistent approach to defining the likelihood, consequence and severity of a major incident/accident. A variety of hazardous cargoes in bulk, such as hydrocarbons and flammable/toxic chemicals, are handled at various ports. It is well known that most of the operations are hazardous, having the potential of damaging property, causing injury/loss of life and, in some cases, the threat of environmental damage. In order to ensure adequate safety towards life, environment and property, the application of scientific methods such as QRA is inevitable. By means of these methods, comprehensive hazard identification, risk assessment and appropriate implementation of Risk Control measures can be carried out. In this paper, the authors, based on their extensive experience in Risk Analysis for ports and harbors, have exhibited how QRA can be used in practice to minimize and contain risk to tolerable levels. A specific case involving the operation for unloading of hydrocarbon at a port is presented. The exercise provides confidence that the method of QRA, as proposed by the authors, can be used appropriately for the identification of hazards and risk assessment of Ports and Terminals.Keywords: quantitative risk assessment, hazard assessment, consequence analysis, individual risk, societal risk
Procedia PDF Downloads 846884 The Jordanian Traditional Dress of Women as a Form of Cultural Heritage
Authors: Sarah Alkhateeb
Abstract:
This research explores the Jordanian traditional dress of women as a form of cultural heritage. The dress of the Jordanian woman expresses her social and cultural functions and reflects the local environment in its social and cultural frameworks and the determinants of the natural formation of climate and terrain, in addition to what is expressed by the person’s social status and position in the social ladder of any society. Therefore, the traditional dress of Jordanian women is distinguished by its abundance and diversity. Few studies have been conducted on the Jordanian traditional dress of women, the lack of studies about the Jordanian traditional dress of women needs highlighting and the characteristics of this dress have to be featured and documented as a part of cultural heritage. The main aim of this research is to contribute or to develop a conservation strategy to save this part of cultural heritage from loss. In this research, the qualitative method approach will be used and will follow the ethnographic method. The data will be gathered from a primary source which is the single focus group discussion with the TIRAZ museum team; the Jordanian traditional dress will be explored across three regions: The North, Middle and South of Jordan, investigating the regional differences and focusing on the details of the individual garment.Keywords: Jordanian traditional dress, cultural heritage, tiraz museum, ethnographic method
Procedia PDF Downloads 1726883 Performance Evaluation and Dear Based Optimization on Machining Leather Specimens to Reduce Carbonization
Authors: Khaja Moiduddin, Tamer Khalaf, Muthuramalingam Thangaraj
Abstract:
Due to the variety of benefits over traditional cutting techniques, the usage of laser cutting technology has risen substantially in recent years. Hot wire machining can cut the leather in the required shape by controlling the wire by generating thermal energy. In the present study, an attempt has been made to investigate the effects of performance measures in the hot wire machining process on cutting leather specimens. Carbonization and material removal rates were considered as quality indicators. Burning leather during machining might cause carbon particles, reducing product quality. Minimizing the effect of carbon particles is crucial for assuring operator and environmental safety, health, and product quality. Hot wire machining can efficiently cut the specimens by controlling the current through it. Taguchi- DEAR-based optimization was also performed in the process, which resulted in a required Carbonization and material removal rate. Using the DEAR approach, the optimal parameters of the present study were found with 3.7% prediction error accuracy.Keywords: cabronization, leather, MRR, current
Procedia PDF Downloads 676882 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations
Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn
Abstract:
Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis
Procedia PDF Downloads 4526881 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus
Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan
Abstract:
Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing
Procedia PDF Downloads 136880 Investigation of the Field Trip Method’s Effectiveness: As a Way of Improving Pre-Service Teachers’ Views on Environmental Education
Authors: Abuzer Akgün, Ümit Duruk
Abstract:
This study was carried out in a period of four weeks thanks to voluntarily participation of twenty eight pre-service teachers enrolled diverse departments in Faculty of Education. The purpose of the study was to point out how pre-service teachers views on environmental education were affected by field trips. Prior to data collection, four open-ended questions were prepared and administered to all pre-service teachers in the working group. Data gathered at first and final week of the field trip were compared in a qualitative approach using content analysis. In conclusion, it is obvious that most of the participants don’t feel themselves quiet enough about environmental education and state this reason as a providing justification to participate voluntarily in the study. In the secondary school teaching context, they mostly emphasize on the vital importance of the environmental awareness level of the pupils in the schools. They also seem to think that they get a detailed knowledge of environmental education and claim that they will use this knowledge in order to bring up next generations in their professional career as teachers. Lastly, they state that observing the deteriorating materials directly in their own settings, might be more effective as regards improving environmental awareness.Keywords: science education, environmental education, environmental issues, field trip method
Procedia PDF Downloads 3606879 Motor Controller Implementation Using Model Based Design
Authors: Cau Tran, Tu Nguyen, Tien Pham
Abstract:
Model-based design (MBD) is a mathematical and visual technique for addressing design issues in the fields of communications, signal processing, and complicated control systems. It is utilized in several automotive, aerospace, industrial, and motion control applications. Virtual models are at the center of the software development process with model based design. A method used in the creation of embedded software is model-based design. In this study, the LAT motor is modeled in a simulation environment, and the LAT motor control is designed with a cascade structure, a speed and current control loop, and a controller that is used in the next part. A PID structure serves as this controller. Based on techniques and motor parameters that match the design goals, the PID controller is created for the model using traditional design principles. The MBD approach will be used to build embedded software for motor control. The paper will be divided into three distinct sections. The first section will introduce the design process and the benefits and drawbacks of the MBD technique. The design of control software for LAT motors will be the main topic of the next section. The experiment's results are the subject of the last section.Keywords: model based design, limited angle torque, intellectual property core, hardware description language, controller area network, user datagram protocol
Procedia PDF Downloads 986878 Investigating the Correlation Between Customer Satisfaction Components and Reaching Competitive Advantage, Using SEM Approach
Authors: Samaneh Pouyanfar, Michael Oliff
Abstract:
Nowadays, customer satisfaction and discovering the superior services, are counted as vital issues in most manufacturing and services companies. In these terms, gaining the competitive advantage by a business depends on products and services which are able to cause the customer satisfaction. Given the importance of this subject, this paper tries to investigate the correlation between components of customer satisfaction and gaining the competitive advantage by the business. For this purpose, after reviewing the research literature and doing deep interviews with authors and active people in the industry, based on the variables affecting the customer satisfaction and determinant components of business competitive advantage, research questionnaire was prepared. In sum, 96 executives of PARS-KHAZAR Company were asked in a survey. The results of P.L.S. Test for the research structure analysis showed that the measuring tools in terms of technical features, like convergent and divergent validity and compound reliability were very appropriate. Moreover the results showed that, the structure of products and factors related to foundation, has affected the competitive advantage performance positively and significantly; but the influence of structure of services and business environment on competitive advantage was not confirmed.Keywords: customer satisfaction, competitive advantage, products, foundation, home appliances
Procedia PDF Downloads 2756877 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 5246876 Traffic Management Using Artificial Intelligence
Authors: Vamsi Krishna Movva
Abstract:
Artificial intelligence (AI) has revolutionized traffic management in modern cities by enhancing efficiency, safety, and sustainability. This study explores the transformative role of AI-driven systems, including adaptive traffic lights, real-time incident detection, and coordinated signals, in improving urban traffic flow. Additionally, AI-powered navigation systems utilizing real-time GPS and sensor data offer more efficient and safer travel options. This study employs a mixed-methods approach combining quantitative traffic data analysis and qualitative surveys from traffic management authorities. The study also delves into AI’s application in law enforcement, monitoring traffic violations, detecting distracted driving, and reconstructing accidents to analyze causes and responsibilities. Furthermore, the research highlights the environmental and economic benefits of AI in traffic management, such as reduced emissions and energy savings, while addressing challenges like data privacy concerns and high implementation costs. Ultimately, this paper emphasizes AI’s potential to shape sustainable traffic systems and promote efficient transportation networks.Keywords: artificial intelligence, traffic management, urban congestion, traffic safety, real-time data
Procedia PDF Downloads 116875 Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow
Authors: Jaber Masoud Alyami, Abdelsalam H. Alsrkhi
Abstract:
Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated.Keywords: multiphase flow, gas-liquid flow, slippage, void farction
Procedia PDF Downloads 886874 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool
Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad
Abstract:
In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling
Procedia PDF Downloads 2716873 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 1656872 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry
Authors: Maryam Kiani
Abstract:
The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.Keywords: 2D materials, geopolymers, electrical properties, self-sensing
Procedia PDF Downloads 1426871 ADHD: Assessment of Pragmatic Skills in Adults
Authors: Elena Even-Simkin
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most frequently diagnosed disorders in children, but in many cases, the diagnosis is not provided until adulthood. Diagnosing adults with ADHD faces different obstacles due to numerous factors, such as educational or under-resourced familial environment, high intelligence compensating for stress-inducing difficulties, and additional comorbidities. Undiagnosed children and adolescents with ADHD may become undiagnosed adults with ADHD, who miss out on the early treatment and may experience significant social and pragmatic difficulties, leading to functional problems that subsequently affect their lifestyle, education, and occupational functioning. The proposed study presents a cost-effective and unique consideration of the pragmatic aspect among adults with ADHD. It provides a systematic and standardized evaluation of the pragmatic level in adults with ADHD, based on a comprehensive approach introduced by Arcara & Bambini (2016) for the assessment of pragmatic abilities in neuro-typical individuals. This assessment tool can promote the inclusion of pragmatic skills in the cognitive profile in the diagnostic practice of ADHD, and, thus, the proposed instrument can help not only identify the pragmatic difficulties in the ADHD population but also advance effective intervention programs that specifically focus on pragmatic skills in the targeted population.Keywords: ADHD, adults, assessment, pragmatics
Procedia PDF Downloads 806870 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors
Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira
Abstract:
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance
Procedia PDF Downloads 3536869 Conflict Causes within Construction Projects; Conflict Interaction across Project Phases
Authors: Abdullah Mohammed Alshehri
Abstract:
The projects in the construction industry have significantly increased, given its contribution to the overall Gross Domestic Product (GDP) of the countries. Reflecting upon the complex nature and involvement of various agents, the study aims to analyze the conflicts cause within construction projects. Therefore, the study strived to come out with understanding the levels of conflict interaction across project phases. However, this conducted by investigating the association between antecedents and apparent conflicts inherent in. The study used a qualitative approach for collecting the data through a quantitative, semi-structured method. Formation of a questionnaire survey has been conducted for over 30 respondents. However, the survey came out with the identification of 25 conflict cause categories, which can take place in different construction project phases, including pre-design phase, pre-construction phase, construction phase, commissioning, and completion phase. For example, conflicts associated with inconsistencies or discrepancies within or between project documents, which took place at tendering time in the pre-construction phase were relatable with the selection of material specifications that should be supplied or used in the construction projects at the construction phase. Its analysis can provide comprehensive understanding, trace the root of the problem, which offers a roadmap to deepen the understanding of the conflict conditions and ‘course of action’ necessary for project management strategy actions toward avoiding or minimizing conflict causes at project life.Keywords: construction, conflict causes, levels, interaction, phases
Procedia PDF Downloads 1846868 Impact of Dietary L-Threonine Supplementation on Performance and Health of Broiler Chickens, a Review
Authors: Mandana Hoseini
Abstract:
During last decades, intensive selection for higher growth rate in broiler chickens has accelerated daily body weight gain, which this has changed/increased the trends and amounts of nutrient requirements in the diet. As a result, considerable studies have been focused on the better determination of protein/amino acids requirements in modern broiler diets. One approach to minimize dietary crude protein inclusion levels is substitution of some of the dietary crude protein with synthetic amino acids. In addition, using synthetic forms of limiting essential amino acids in the diet could help better coincidence of dietary protein with ideal protein concept, which this in turn, minimizes nitrogen dissipation and environmental pollution. Threonine is usually considered as the third limiting amino acid in broiler diets. Recent studies have been demonstrated that dietary supplemental threonine would optimize growth performance, immune system, intestinal morphology, as well as oxidative defense in broiler chickens. In this review, threonine metabolism and its effects in relation with different aspects of broiler performance have been discussed.Keywords: immune system, intestine, performance, requirement, threonine
Procedia PDF Downloads 1166867 Examining the Impact of Training on Turnover Intention in Project-Based Organizations
Authors: Muhammad Safder Shafi, Uzma Javed, Tooba Qasim
Abstract:
The purpose of this paper is to find out the relationship between training and turnover intention in the presence of mediating variables promotion opportunities and job satisfaction among IT professionals in project based industry. It investigates the relationship directly between 1 independent variable training and dependent variable turnover intention. It also investigates the relationship between independent variable to the mediating variables and mediating variables to the turnover intention. Promotion opportunities and job satisfaction act as a mediator. The study sample comprised of 186 IT professionals from Pakistan, who work on different IT projects. Linear regression and Baron and Kenny approach were used to test the direct and mediated relationship between variables. The survey results demonstrated that job satisfaction fully mediate the relationship between promotion opportunities and turnover intention. Promotion opportunities fully mediate the relationship between employee training and job satisfaction. Promotion opportunities and job satisfaction mediates the relationship between training and turnover intention. The findings from the collected data may help top management to improve organizational strategies to cope up with improving different HR practices like training, pay structure and promotions in order to retain their workforce.Keywords: HCT, SET, career growth opportunities, job satisfaction, training, turnover intention
Procedia PDF Downloads 3636866 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method
Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt
Abstract:
Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS
Procedia PDF Downloads 1566865 The Use of Language as a Cognitive Tool in French Immersion Teaching
Authors: Marie-Josée Morneau
Abstract:
A literacy-based approach, centred on the use of the language of instruction as a cognitive tool, can increase the L2 communication skills of French immersion students. Academic subject areas such as science and mathematics offer an authentic language learning context where students can become more proficient speakers while using specific vocabulary and language structures to learn, interact and communicate their reasoning, when provided the opportunities and guidance to do so. In this Canadian quasi-experimental study, the effects of teaching specific language elements during mathematic classes through literacy-based activities in Early French Immersion programming were compared between two Grade 7/8 groups: the experimental group, which received literacy-based teaching for a 6-week period, and the control group, which received regular teaching instruction. The results showed that the participants from the experimental group made more progress in their mathematical communication skills, which suggests that targeting L2 language as a cognitive tool can be beneficial to immersion learners who learn mathematic concepts and remind us that all L2 teachers are language teachers.Keywords: mathematics, French immersion, literacy-based, oral communication, L2
Procedia PDF Downloads 806864 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2956863 A Comparative Performance of Polyaspartic Acid and Sodium Polyacrylate on Silicate Scale Inhibition
Authors: Ismail Bin Mohd Saaid, Abubakar Abubakar Umar
Abstract:
Despite the successes recorded by Alkaline/Surfactant/Polymer (ASP) flooding as an effective chemical EOR technique, the combination CEOR is not unassociated with stern glitches, one of which is the scaling of downhole equipment. One of the major issues inside the oil industry is how to control scale formation, regardless of whether it is in the wellhead equipment, down-hole pipelines or even the actual field formation. The best approach to handle the challenge associated with oilfield scale formation is the application of scale inhibitors to avert the scale formation. Chemical inhibitors have been employed in doing such. But due to environmental regulations, the industry have focused on using green scale inhibitors to mitigate the formation of scales. This paper compares the scale inhibition performance of Polyaspartic acid and sodium polyacrylic acid, both commercial green scale inhibitors, in mitigating silicate scales formed during Alkaline/Surfactant/polymer flooding under static conditions. Both PASP and TH5000 are non-threshold inhibitors, therefore their efficiency was only seeing in delaying the deposition of the silicate scales.Keywords: alkaline/surfactant/polymer flooding (ASP), polyaspartic acid (PASP), sodium polyacrylate (SPA)
Procedia PDF Downloads 3556862 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 5096861 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 1656860 The Functions of Music in Animated Short Films: Analysing the Scores of the Skeleton Dance, Fox and the Whale and la Vieille Dame et les Pigeons
Authors: Shally Pais
Abstract:
Film music holds a special relationship with the narrative systems and dramaturgical operations in animation. Though the roles of cartoon music closely resemble those fulfilled by traditional film scores, which have been extensively studied, there is a large knowledge gap regarding non-mainstream or non-Hollywood animation music. This paper is an investigation of the understudied compositional materials and narrative contexts in three distinct films by exploring the main narrative and dramaturgical effects of music in The Skeleton Dance, Fox and The Whale, and La Vieille Dame et les Pigeons. The study uses a Neoformalist approach towards qualitative analysis of the music in these films to document ways in which music can be made to function differently depending on the individual films’ contexts and the desired effects to be had on the audience. Consequently, the paper highlights these factors’ influence on the films’ narratives and aims to widen the discourse on composition for animation film scores, suggesting the further study of non-mainstream film music.Keywords: animation film music, film score analysis, Fox and The Whale, La Vieille Dame et les Pigeons, Neoformalist analysis, The Skeleton Dance
Procedia PDF Downloads 1696859 Assessment of Air Pollution Impacts On Population Health in Béjaia City
Authors: Benaissa Fatima, Alkama Rezak, Annesi-Maesano Isabella
Abstract:
To assess the health impact of the air pollution on the population of Béjaia, we carried out a descriptive epidemiologic inquiry near the medical establishments of three areas. From the registers of hospital admissions, we collected data on the hospital mortality and admissions relating to the various cardiorespiratory pathologies generated by this type of pollution. In parallel, data on the automobile fleet of Bejaia and other measurements were exploited to show that the concentrations of the pollutants are strongly correlated with the concentration the urban traffic. This study revealed that the whole of the population is touched, but the sensitivity to pollution can show variations according to the age, the sex and the place of residence. So the under population of the town of Bejaia marked the most raised death and morbidity rates, followed that of Kherrata. Weak rates are recorded for under rural population of Feraoun. This approach enables us to conclude that the population of Béjaia could not escape the urban pollution generated by her old automobile fleet. To install a monitoring and measuring site of the air pollution in this city could provide a beneficial tool to protect its inhabitants by them informing on quality from the air that they breathe and measurements to follow to minimize the impacts on their health and by alerting the authorities during the critical situations.Keywords: air, urban pollution, health, impacts
Procedia PDF Downloads 3636858 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing
Authors: Sawsan J. Al-husseini, Talib A. Dosa
Abstract:
Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.Keywords: top management support, knowledge sharing, innovation, structural equation modelling
Procedia PDF Downloads 3306857 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids
Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci
Abstract:
The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD
Procedia PDF Downloads 4916856 The Use of Artificial Intelligence in Language Learning and Teaching: A New Frontier in Education
Authors: Abdulaziz Fageeh
Abstract:
This study investigates the integration of artificial intelligence (AI) within the landscape of language learning and teaching, exploring its potential benefits and challenges. Employing a mixed-methods approach, the research draws upon a comprehensive literature review, case studies, user reviews, and in-depth interviews with educators and students. Findings demonstrate that AI tools, including language learning apps and writing assistants, can enhance personalization, improve writing skills, and increase accessibility to language learning resources. However, the study also highlights concerns regarding over-reliance on AI, potential accuracy and reliability issues, and ethical implications such as data privacy and potential bias. User and educator perspectives emphasize the importance of balancing AI with traditional teaching methods, fostering critical thinking skills, and addressing potential misuse. The study concludes by underscoring the need for ongoing research and development to ensure responsible AI integration in language learning, focusing on pedagogical strategies, ethical frameworks, and the long-term impact of AI on learning outcomes.Keywords: artificial intelligence, language learning, education, technology, ethical considerations, user perceptions
Procedia PDF Downloads 24