Search results for: exergy analysis in heat pumps
29152 A Study on the Synthetic Resin of Fire Risk Using the Room Corner Test
Authors: Ji Hun Choi, Seung Un Chae, Kyeong Suk Cho
Abstract:
Synthetic resins are widely used in various fields including electricity, engineering, construction and agriculture. Many of interior and exterior finishing materials for buildings are synthetic resin products. In this study, full-scale fire tests were conducted on polyvinyl chloride, polypropylene and urethane in accordance with the “ISO 9705: Fire test - Full-scale room test for surface products” to measure heat release rate, toxic gas emission and smoke production rate. Based on the tests, fire growth pattern and fire risk were analyzed. Findings from the tests conducted on polyvinyl chloride and urethane are as follows. The total heat release rate and total smoke production rate of polyvinyl chloride were 98.89MW and 5284.41m2, respectively and its highest CO2 concentration was 0.149%. The values obtained from the test with urethane were 469.94 MW, 3396.28 m2 and 1.549%. While heat release rate and CO2 concentration were higher in urethane implying its high combustibility, smoke production rate was 1.5 times higher in polyvinyl chloride. Follow-up tests are planned to be conducted to accumulate data for the evaluation of heat emission and fire risk associated with synthetic resins.Keywords: synthetic resins, fire test, full-scale test, heat release rate, smoke production rate, polyvinyl chloride, polypropylene, urethane
Procedia PDF Downloads 43129151 Numerical Simulation of Erosion Control in Slurry Pump Casing by Geometrical Flow Pattern Modification Analysis
Authors: A. R. Momeninezhad
Abstract:
Erosion of Slurry Pumps in Related Industries, is one of the major costs in their production process. Many factories in extractive industries try to find ways to diminish this cost. In this paper, we consider the flow pattern modifications by geometric variations made of numerical simulation of flow inside pump casing, which is one of the most important parts analyzed for erosion. The mentioned pump is a cyclone centrifugal slurry pump, which is operating in Sarcheshmeh Copper Industries in Kerman-Iran, named and tagged as HM600 cyclone pump. Simulation shows many improvements in local wear information and situations for better and more qualified design of casing shape and impeller position, before and after geometric corrections. By theory of liquid-solid two-phase flow, the local wear defeats are analyzed and omitted.Keywords: flow pattern, slurry pump, simulation, wear
Procedia PDF Downloads 45729150 Soybean Oil Based Phase Change Material for Thermal Energy Storage
Authors: Emre Basturk, Memet Vezir Kahraman
Abstract:
In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing
Procedia PDF Downloads 38229149 Optimizing Fire Suppression Time in Buildings by Forming a Fire Feedback Loop
Authors: Zhdanova A. O., Volkov R. S., Kuznetsov G. V., Strizhak P. A.
Abstract:
Fires in different types of facilities are a serious problem worldwide.It is still an unaccomplished science and technology objective to establish the minimum number and type of sensors in automatic systems of compartment fire suppression which would turn the fire-extinguishing agent spraying on and off in real time depending on the state of the fire, minimize the amount of agent applied, delay time in fire suppression and system response, as well as the time of combustion suppression. Based on the results of experimental studies, the conclusion was made that it is reasonable to use a gas analysis system and heat sensors (in the event of their prior activation) to determine the effectiveness of fire suppression (fire-extinguishing composition interacts with the fire). Thus, the concentration of CO in the interaction of the firefighting liquid with the fire increases to 0.7–1.2%, which indicates a slowdown in the flame combustion, and heat sensors stop responding at a gas medium temperature below 80 ºC, which shows a gradual decrease in the heat release from the fire. The evidence from this study suggests that the information received from the video recording equipment (video camera) should be used in real time as an additional parameter confirming fire suppression. Research was supported by Russian Science Foundation (project No 21-19-00009, https://rscf.ru/en/project/21-19-00009/).Keywords: compartment fires, fire suppression, continuous control of fire behavior, feedback systems
Procedia PDF Downloads 12929148 Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System
Authors: Mehdi Bakhtiarzadeh, Reza Efatnejad, Kambiz Rezapour Rezapour
Abstract:
Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency.Keywords: solar water desalination, heat exchanger, photovoltaic system, technical and economic evaluation
Procedia PDF Downloads 17029147 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System
Authors: Jacob T. Liberty, Wilfred I. Okonkwo
Abstract:
The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage
Procedia PDF Downloads 30729146 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice
Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer
Abstract:
The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.Keywords: method of lines, brine-spongy ice, heat conduction, salt water
Procedia PDF Downloads 21729145 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study
Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti
Abstract:
This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss
Procedia PDF Downloads 6629144 A Study on the Performance Improvement of Zeolite Catalyst for Endothermic Reaction
Authors: Min Chang Shin, Byung Hun Jeong, Jeong Sik Han, Jung Hoon Park
Abstract:
In modern times, as flight speeds have increased due to improvements in aircraft and missile engine performance, thermal loads have also increased. Because of the friction heat of air flow with high speed on the surface of the vehicle, it is not easy to cool the superheat of the vehicle by the simple air cooling method. For this reason, a cooling method through endothermic heat is attracting attention by using a fuel that causes an endothermic reaction in a high-speed vehicle. There are two main ways of cooling the fuel through the endothermic reaction. The first is physical heat absorption. When the temperature rises, there is a sensible heat that accompanies it. The second is the heat of reaction corresponding to the chemical heat absorption, which absorbs heat during the fuel decomposes. Generally, since the decomposition reaction of the fuel proceeds at a high temperature, it does not achieve a great efficiency in cooling the high-speed flight body. However, when the catalyst is used, decomposition proceeds at a low temperature thereby increasing the cooling efficiency. However, when the catalyst is used as a powder, the catalyst enters the engine and damages the engine or the catalyst can deteriorate the performance due to the sintering. On the other hand, when used in the form of pellets, catalyst loss can be prevented. However, since the specific surface of pellet is small, the efficiency of the catalyst is low. And it can interfere with the flow of fuel, resulting in pressure loss and problems with fuel injection. In this study, we tried to maximize the performance of the catalyst by preparing a hollow fiber type pellet for zeolite ZSM-5, which has a higher amount of heat absorption, than other conventional pellets. The hollow fiber type pellet was prepared by phase inversion method. The hollow fiber type pellet has a finger-like pore and sponge-like pore. So it has a higher specific surface area than conventional pellets. The crystal structure of the prepared ZSM-5 catalyst was confirmed by XRD, and the characteristics of the catalyst were analyzed by TPD/TPR device. This study was conducted as part of the Basic Research Project (Pure-17-20) of Defense Acquisition Program Administration.Keywords: catalyst, endothermic reaction, high-speed vehicle cooling, zeolite, ZSM-5
Procedia PDF Downloads 31229143 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube
Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan
Abstract:
Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity
Procedia PDF Downloads 14729142 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.Keywords: cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method
Procedia PDF Downloads 20029141 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column
Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon
Abstract:
When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 15229140 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System
Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel
Abstract:
Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics
Procedia PDF Downloads 25929139 Investigation the Effect of Quenching Media on Abrasive Wear in Grade Medium Carbon Steel
Authors: Abbas S. Alwan, Waleed K. Hussan
Abstract:
In this paper, a general verification of possible heat treatment of steel has been done with the view of conditions of real abrasive wear of rotivater with soil texture. This technique is found promising to improve the quality of agriculture components working with the soil in dry condition. Abrasive wear resistance is very important in many applications and in most cases it is directly correlated with the hardness of materials surface. Responded of heat treatments were carried out in various media (Still air, Cottonseed oil, and Brine water 10 %) and follow by low-temperature tempering (250°C) was applied on steel type (AISI 1030). After heat treatment was applied wear with soil texture by using tillage process to determine the (actual wear rate) of the specimens depending on weight loss method. It was found; the wear resistance Increases with increase hardness with varying quenching media as follows; 30 HRC, 45 HRC, 52 HRC, and 60 HRC for nontreated (as received) cooling media as still air, cottonseed oil, and Brine water 10 %, respectively. Martensitic structure with retained austenite can be obtained depending on the quenching medium. Wear was presented on the worn surfaces of the steels which were used in this work.Keywords: microstructures, hardness, abrasive wear, heat treatment, soil texture
Procedia PDF Downloads 38829138 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction
Authors: Motahar Reza, Rajni Chahal, Neha Sharma
Abstract:
This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation
Procedia PDF Downloads 39929137 Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test
Authors: Abdul Murad Zainal Abidin, Azahar Mohd, Nor Idayu Arifin, Siti Nor Azila Khalid, Mohd Julzaha Zahari Mohamad Yusof
Abstract:
A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages.Keywords: energy efficiency, thermoelectric cooling, pre-cooling device, heat flow meter, sustainable technology, thermal conductivity
Procedia PDF Downloads 15529136 Effect of Prandtl Number on Flow and Heat Transfer Across a Confined Equilateral Triangular Cylinder
Authors: Tanveer Rasool, A. K. Dhiman
Abstract:
The paper reports 2-D numerical study used to investigate the effect of changing working fluids with Prandtl numbers 0.71, 10 and 50 on the flow and convective heat transfer across an equilateral triangular cylinder placed in a horizontal channel with its apex facing the flow. Numerical results have been generated for fixed blockage ratio of 50% and for three Reynolds numbers of 50, 75, and 100 for each Prandtl numbers respectively. The studies show that for above range of Reynolds numbers, the overall drag coefficient is insensitive to the Prandtl number changes while as the heat transfer characteristics change drastically with changing Prandtl number of the working fluid. The results generated are in complete agreement with the previous literature available.Keywords: Prandtl number, Reynolds number, drag coefficient, flow and isothermal patterns
Procedia PDF Downloads 39829135 Chromium Adsorption by Modified Wood
Authors: I. Domingos, B. Esteves, A. Figueirinha, Luísa P. Cruz-Lopes, J. Ferreira, H. Pereira
Abstract:
Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies.Keywords: adsorption, chromium, heat treatment, wood modification
Procedia PDF Downloads 49929134 Impact of Green Roofs on Hot and Humid Climate-Vijayawada
Authors: Santhosh Kumar Sathi
Abstract:
In India, Growth and spread of cities lead to the reduction of forests and green areas of the urban center with built structures. This is one of the reasons for increasing temperature about 2-5% in an urban environment and consequently also one of the key causes of urban heat island effects. Green roofs are one option that can reduce the negative impact of urban development providing numerous environmental benefits. In this paper, Vijayawada city is taken as case to study as it is experiencing rapid urbanization because of new capital Amaravati. That has resulted in remarkable urban heat island; which once recorded a highest temperature of 49°c. This paper focuses on the change in quality of the local environment with the introduction of green roofs. An in-depth study has to be carried out to understand the distribution of land surface temperature and land use of Vijayawada. Delineation of an area which has the highest temperature has been selected to adopt green roof retrofitting. Latest technologies of green roof retrofitting have to be implemented in the selected region. The results of the study indicate a significant temperature reduction in the local environment of that region, confirming the potential of green roofs as urban heat island mitigation strategy.Keywords: energy consumption, green roofs, retrofitting, urban heat island
Procedia PDF Downloads 37629133 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method
Authors: S. Nandal, R. Bhargava
Abstract:
The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure
Procedia PDF Downloads 15829132 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting
Authors: Karim Kheloufi, El Hachemi Amara
Abstract:
In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.Keywords: laser cutting, numerical simulation, heat transfer, fluid flow
Procedia PDF Downloads 33929131 The Interaction of Climate Change and Human Health in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta
Abstract:
The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.Keywords: heat waves, Italy, local warming, temperature
Procedia PDF Downloads 24329130 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions
Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani
Abstract:
Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration
Procedia PDF Downloads 34629129 Microstructure and Mechanical Properties of Boron-Containing AZ91D Mg Alloys
Authors: Ji Chan Kim, Seok Hong Min, Tae Kwon Ha
Abstract:
Effect of boron addition on the microstructure and mechanical properties of AZ91D Mg alloy was investigated in this study. Through calculation of phase equilibria, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as 420 °C where supersaturated solid solution can be obtained. Solid solution treatment was conducted at 420 °C for 24 hrs followed by hot rolling at 420 °C and the total reduction was about 60%. Recrystallization heat treatment was followed at 420 °C for 6 hrs to obtain equiaxed microstructure. After recrystallization treatment, aging heat treatment was conducted at temperature of 200 °C for time intervals from 1 min to 200 hrs and hardness of each condition was measured by micro-Vickers method. Peak hardness was observed after 20 hrs. Tensile tests were also conducted on the specimens aged for various time intervals and the results were compared with hardness.Keywords: AZ91D Mg alloy, boron, heat treatment, microstructure, mechanical properties, hardness
Procedia PDF Downloads 31629128 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis
Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone
Abstract:
The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21◦C and 25◦C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.Keywords: dehumidification, nodal calculation, radiant cooling panel, system sizing
Procedia PDF Downloads 17529127 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry
Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar
Abstract:
The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.Keywords: complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number
Procedia PDF Downloads 49329126 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh
Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter
Abstract:
Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island
Procedia PDF Downloads 27229125 Nonlinear Waves in Two-Layer Systems with Heat Release/Consumption at the Interface
Authors: Ilya Simanovskii
Abstract:
Nonlinear convective flows developed under the joint action of buoyant and thermo-capillary effects in a two-layer system with periodic boundary conditions on the lateral walls have been investigated. The influence of an interfacial heat release on oscillatory regimes has been studied. The computational regions with different lengths have been considered. It is shown that the development of oscillatory instability can lead to the appearance of different no steady flows.Keywords: interface, instabilities, two-layer systems, bioinformatics, biomedicine
Procedia PDF Downloads 40129124 Effects of Roughness Elements on Heat Transfer During Natural Convection
Abstract:
The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines.Keywords: natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann method
Procedia PDF Downloads 54029123 Coping Heat Stress By Crushed Fennel (Foeniculum Vulgare) Seeds in Broilers: Growth, Redox Balance, and Humoral Immune Response
Authors: Adia Fatima, Naila Chand, Rifat Ullah Khan
Abstract:
The goal of this study was to determine how fennel seed supplementation affected broiler growth, carcass quality, antioxidant status, and antibody titer in heat-stressed broilers. A total of 720 one-day-old broiler chickens were weighed and assigned to 28-floor pens (25 broiler chickens per pen). The broiler chickens were housed in a thermoneutral (TN) environment and were exposed to heat stress (HS). For 23 hours, the broiler chickens were kept under fluorescent lighting. For 35d, HS broiler chickens were fed a control diet and three levels of fennel seeds powder at rates of 15g/kg (Fen-15), 20 g/kg (Fen-20), and 25 g/kg (Fen-25). Overall feed intake, weight gain, and dressing % were considerably greater (P < 0.05) in Fen-25 and TN, but FCR was significantly reduced (P<0.01) in the same groups. When TN, Fen-20, and Fen-25 were compared to the control, malondialdehyde (MDA), paraoxonase (PON1), and antibody titer against New Castle disease (ND) were considerably (P < 0.05) greater. Further, the linear and quadratic response was for feed intake, weight gain, FCR, MDA, PON1, and ND titer. It was concluded that Fen-20 and Fen-25 increased broiler growth, carcass quality, antioxidant status, and immunological response under HS conditions.Keywords: heat stress, growth, antioxidant, immunity
Procedia PDF Downloads 101