Search results for: flow batteries
4314 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)
Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini
Abstract:
Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria
Procedia PDF Downloads 1034313 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction
Authors: Motahar Reza, Rajni Chahal, Neha Sharma
Abstract:
This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation
Procedia PDF Downloads 3994312 Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement
Authors: Hamad Alhajeri, Abdulrahman Almutairi, A. H. Alenezi, M. H. Alhajeri, Ayedh Alajmi
Abstract:
The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder.Keywords: porous cylinders, CFD, fluid flow, filtration
Procedia PDF Downloads 4844311 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry
Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar
Abstract:
The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.Keywords: complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number
Procedia PDF Downloads 4934310 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics
Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact
Procedia PDF Downloads 4034309 Structural Design of a Relief Valve Considering Strength
Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee
Abstract:
A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.Keywords: relief valve, structural analysis, structural design, strength, safety factor
Procedia PDF Downloads 3034308 Turbulent Flow Characteristics and Bed Morphology around Circular Bridge Pier
Authors: Pratik Acharya
Abstract:
Scour is the natural phenomenon brought about by erosive action of the flowing stream in alluvial channels. Frequent scouring around bridge piers may cause damage to the structures. In alluvial channels, a complex interaction between the streamflow and the bed particles results in scouring around piers. Thus, the study of characteristics of flow around piers can give sound knowledge about the scouring process. The present research has been done to investigate the turbulent flow characteristics around bridge piers and corresponding changes in bed morphology. Laboratory experiments were carried out in a tilting flume with a sand bed. The velocities around the pier are measured by Acoustic Doppler Velocimeter. Measurements show that at upstream of the pier velocity and Reynolds stresses are negative near the bed and near the free surface at downstream of the pier. At the downstream of the pier, Reynolds stresses changes rapidly due to the formation of wake vortices. Experimental results show that secondary currents are more predominant at the downstream of the pier. As the flowing stream hits the pier, the flow gets separated in the form of downflow along the face of the pier due to a strong pressure gradient and along the sides of the piers. Separation of flow around the pier leads to scour the bed material and develop the vortex. The downflow hits the bed and removes the bed material, which can be carried forward by the flow circulations along sides of the piers. Eroded bed material is deposited along the centerline at the rear side of the pier and produces hump in the downstream region. Initially, the rate of scouring is high and reduces gradually with increasing time. After a certain limit, equilibrium sets between the erosive capacity of the flowing stream and resistance to the motion by bed particles.Keywords: acoustic doppler velocimeter, pier, Reynolds stress, scour depth, velocity
Procedia PDF Downloads 1484307 Experimental Study of Discharge with Sharp-Crested Weirs
Authors: E. Keramaris, V. Kanakoudis
Abstract:
In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.Keywords: sharp-crested weir, weir height, flow measurement, open channel flow
Procedia PDF Downloads 1394306 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units
Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani
Abstract:
There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation
Procedia PDF Downloads 4164305 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow
Authors: Kirti Singh, Kesheo Prasad
Abstract:
A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress
Procedia PDF Downloads 1074304 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers
Authors: Elena Carcano, James Ball, Betty Tiko
Abstract:
Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow
Procedia PDF Downloads 404303 Numerical Analysis of Supersonic Impinging Jets onto Resonance Tube
Authors: Shinji Sato, M. M. A. Alam, Manabu Takao
Abstract:
In recent, investigation of an unsteady flow inside the resonance tube have become a strongly motivated research field for their potential application as high-frequency actuators. By generating a shock wave inside the resonance tube, a high temperature and pressure can be achieved inside the tube, and this high temperature can also be used to ignite a jet engine. In the present research, a computational fluid dynamics (CFD) analysis was carried out to investigate the flow inside the resonance tube. The density-based solver of rhoCentralFoam in OpenFOAM was used to numerically simulate the flow. The supersonic jet that was driven by a cylindrical nozzle with a nominal exit diameter of φd = 20.3 mm impinged onto the resonance tube. The jet pressure ratio was varied between 2.6 and 7.8. The gap s between the nozzle exit and tube entrance was changed between 1.5d and 3.0d. The diameter and length of the tube were taken as D = 1.25d and L=3.0D, respectively. As a result, when a supersonic jet has impinged onto the resonance tube, a compression wave was found generating inside the tube and propagating towards the tube end wall. This wave train resulted in a rise in the end wall gas temperature and pressure. While, in an outflow phase, the gas near tube enwall was found cooling back isentropically to its initial temperature. Thus, the compression waves repeated a reciprocating motion in the tube like a piston, and a fluctuation in the end wall pressures and temperatures were observed. A significant change was found in the end wall pressures and temperatures with a change of jet flow conditions. In this study, the highest temperature was confirmed at a jet pressure ratio of 4.2 and a gap of s=2.0dKeywords: compressible flow, OpenFOAM, oscillations, a resonance tube, shockwave
Procedia PDF Downloads 1494302 Integration of the Battery Passport into the eFTI Platform to Improve Digital Data Exchange in the Context of Battery Transport
Authors: Max Plotnikov, Arkadius Schier
Abstract:
To counteract climate change, the European Commission adopted the European Green Deal (EDG) in 2019. Some of the main objectives of the EDG are climate neutrality by 2050, decarbonization, sustainable mobility, and the shift from a linear economy to a circular economy in the European Union. The mobility turnaround envisages, among other things, the switch from classic internal combustion vehicles to electromobility. The aforementioned goals are therefore accompanied by increased demand for lithium-ion batteries (LIBs) and the associated logistics. However, this inevitably gives rise to challenges that need to be addressed. Depending on whether the LIB is transported by road, rail, air, or sea, there are different regulatory frameworks in the European Union that relevant players in the value chain must adhere to. LIBs are classified as Dangerous Goods Class 9, and against this backdrop, there are various restrictions that need to be adhered to when transporting them for various actors. Currently, the exchange of information in the value chain between the various actors is almost entirely paper-based. Especially in the transport of dangerous goods, this often leads to a delay in the transport or to incorrect data. The exchange of information with the authorities is particularly essential in this context. A solution for the digital exchange of information is currently being developed. Electronic freight transport information (eFTI) enables fast and secure exchange of information between the players in the freight transport process. This concept is to be used within the supply chain from 2025. Another initiative that is expected to improve the monitoring of LIB in this context, among other things, is the battery pass. In July 2023, the latest battery regulation was adopted in the Official Journal of the European Union. This battery pass gives different actors static as well as dynamic information about the batteries depending on their access rights. This includes master data such as battery weight or battery category or information on the state of health or the number of negative events that the battery has experienced. The integration of the battery pass with the eFTI platform will be investigated for synergy effects in favor of the actors for battery transport.Keywords: battery logistics, battery passport, data sharing, eFTI, sustainability
Procedia PDF Downloads 804301 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies
Authors: Dmitry V. Fomichev, Vladimir V. Solonin
Abstract:
This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics
Procedia PDF Downloads 3824300 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement
Authors: Arash Mir Abdolah Lavasani, M. Ebrahimisabet
Abstract:
In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.Keywords: cam shaped, tandem, numerical, drag coefficient, turbulent
Procedia PDF Downloads 4634299 Numerical Analysis of the Effect of Height and Rate of Fluid Flow on a Stepped Spillway
Authors: Amir Abbas Kamanbedast, Abbas Saki
Abstract:
Stepped spillways are composed of several steps, which start from around the spillway crest and continue to the downstream heel. Recently, such spillways have been receiving increasing attention due to the significant effect of the associated stairs on the flow’s rate of energy dissipation. Energy dissipation in the stepped spillways across the overflow can be explained by the watercourse contact with the stairs (i.e., large, harsh surfaces). In this context, less energy must be dissipated at the end of the spillway, and, hence, a smaller (less expensive) energy-dissipating structure is required. In this study, a stepped spillway was simulated using the model Fluent 3, and a standard model was used to model the flow disturbance. For this purpose, the energy dissipation from the stepped spillway was investigated in terms of the different numbers of stairs involved. Using k-ε, the disturbances of the numerical method for velocity and of flow depth at the downstream overflow were obtained, and, then, the energy that was dissipated throughout the spillway was calculated. Our results showed that an increase in the number of stairs can considerably increase the amount of energy dissipation for the fixed, upstream energy. In addition, the results of the numerical analyses were provided as isobar and velocity curves so points that were sensitive to cavitation could be determined.Keywords: stepped spillway, fluent software, turbulence model of k-ε, VOF model
Procedia PDF Downloads 2994298 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel
Authors: Binyam Teferi
Abstract:
In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction
Procedia PDF Downloads 914297 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes
Authors: R. Faiez, M. Mashhoudi, F. Najafi
Abstract:
Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.Keywords: computer simulation, fluid flow, interface shape, thermos-capillary effect
Procedia PDF Downloads 2464296 A Computational Analysis of Flow and Acoustics around a Car Wing Mirror
Authors: Aidan J. Bowes, Reaz Hasan
Abstract:
The automotive industry is continually aiming to develop the aerodynamics of car body design. This may be for a variety of beneficial reasons such as to increase speed or fuel efficiency by reducing drag. However recently there has been a greater amount of focus on wind noise produced while driving. Designers in this industry seek a combination of both simplicity of approach and overall effectiveness. This combined with the growing availability of commercial CFD (Computational Fluid Dynamics) packages is likely to lead to an increase in the use of RANS (Reynolds Averaged Navier-Stokes) based CFD methods. This is due to these methods often being simpler than other CFD methods, having a lower demand on time and computing power. In this investigation the effectiveness of turbulent flow and acoustic noise prediction using RANS based methods has been assessed for different wing mirror geometries. Three different RANS based models were used, standard k-ε, realizable k-ε and k-ω SST. The merits and limitations of these methods are then discussed, by comparing with both experimental and numerical results found in literature. In general, flow prediction is fairly comparable to more complex LES (Large Eddy Simulation) based methods; in particular for the k-ω SST model. However acoustic noise prediction still leaves opportunities for more improvement using RANS based methods.Keywords: acoustics, aerodynamics, RANS models, turbulent flow
Procedia PDF Downloads 4464295 Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection
Abstract:
Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness.Keywords: remote displacement, inverse problem, boundary element method, BEM, reservoir process
Procedia PDF Downloads 1184294 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry
Authors: Balraju Vadlakonda, Narasimha Mangadoddy
Abstract:
The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy
Procedia PDF Downloads 5104293 Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation
Authors: Mabrouka Morri, Amel Soualmia, Philippe Belleudy
Abstract:
Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.Keywords: analytic models, comparison, mean velocity, vegetation
Procedia PDF Downloads 2764292 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan
Procedia PDF Downloads 1314291 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation
Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi
Abstract:
In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.Keywords: CFD, RANS, cavitation, fuel, injector
Procedia PDF Downloads 2094290 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations
Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge
Abstract:
Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism
Procedia PDF Downloads 684289 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD
Procedia PDF Downloads 3954288 Investigating the Motion of a Viscous Droplet in Natural Convection Using the Level Set Method
Authors: Isadora Bugarin, Taygoara F. de Oliveira
Abstract:
Binary fluids and emulsions, in general, are present in a vast range of industrial, medical, and scientific applications, showing complex behaviors responsible for defining the flow dynamics and the system operation. However, the literature describing those highlighted fluids in non-isothermal models is currently still limited. The present work brings a detailed investigation on droplet migration due to natural convection in square enclosure, aiming to clarify the effects of drop viscosity on the flow dynamics by showing how distinct viscosity ratios (droplet/ambient fluid) influence the drop motion and the final movement pattern kept on stationary regimes. The analysis was taken by observing distinct combinations of Rayleigh number, drop initial position, and viscosity ratios. The Navier-Stokes and Energy equations were solved considering the Boussinesq approximation in a laminar flow using the finite differences method combined with the Level Set method for binary flow solution. Previous results collected by the authors showed that the Rayleigh number and the drop initial position affect drastically the motion pattern of the droplet. For Ra ≥ 10⁴, two very marked behaviors were observed accordingly with the initial position: the drop can travel either a helical path towards the center or a cyclic circular path resulting in a closed cycle on the stationary regime. The variation of viscosity ratio showed a significant alteration of pattern, exposing a large influence on the droplet path, capable of modifying the flow’s behavior. Analyses on viscosity effects on the flow’s unsteady Nusselt number were also performed. Among the relevant contributions proposed in this work is the potential use of the flow initial conditions as a mechanism to control the droplet migration inside the enclosure.Keywords: binary fluids, droplet motion, level set method, natural convection, viscosity
Procedia PDF Downloads 1194287 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks
Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale
Abstract:
Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.Keywords: current deflecting wall, eddies, hydraulic model, macro tide, siltation
Procedia PDF Downloads 2984286 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis
Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal
Abstract:
This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.Keywords: e-wastes, Delhi, desktops, estimation
Procedia PDF Downloads 2584285 Roles of Aquatic Plants on Erosion Relief of Stream Bed
Authors: Jin-Hong Kim
Abstract:
Roles of the vegetation to mitigate the erosion of the stream bed or to facilitate the deposition of the fine sediments by the species of the aquatic plants were presented. Field investigation on the estimation of the change of the bed level and the estimation of the flow characteristics were performed. The results showed that Phragmites japonica has the mitigation function of 0.3m-0.4m of the erosion in the range of higher than 1.0m/s of flow velocity at the vegetated region. Phragmites communis has the mitigation function of 0.2m-0.3m of the erosion in the range of higher than 0.7m/s of flow velocity at the vegetated region. Salix gracilistyla has greater role than Phragmites japonica and Phragmites communis to sustain the stable channel. It has the mitigation function of 0.4m-0.5m of the erosion in the range of higher than 1.4m/s of flow velocity. Miscanthus sacchariflorus has a weak role compared with that of Phragmites japonica and Salix gracilistyla, but it has still function for sustaining the stable bed. From these results, the vegetation has effective roles to mitigate the erosion or to facilitate the deposition of the stream bed.Keywords: aquatic plants, Phragmites japonica, Phragmites communis, Salix gracilistyla
Procedia PDF Downloads 385