Search results for: trained athletes
633 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 389632 A Graph-Based Retrieval Model for Passage Search
Authors: Junjie Zhong, Kai Hong, Lei Wang
Abstract:
Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model
Procedia PDF Downloads 150631 Testing Serum Proteome between Elite Sprinters and Long-Distance Runners
Authors: Hung-Chieh Chen, Kuo-Hui Wang, Tsu-Lin Yeh
Abstract:
Proteomics represent the performance of genomic complement proteins and the protein level on functional genomics. This study adopted proteomic strategies for comparing serum proteins among three groups: elite sprinter (sprint runner group, SR), long-distance runners (long-distance runner group, LDR), and the untrained control group (control group, CON). Purposes: This study aims to identify elite sprinters and long-distance runners’ serum protein and to provide a comparison of their serum proteome’ composition. Methods: Serum protein fractionations that separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by a quantitative nano-LC-MS/MS-based proteomic profiling. The one-way analysis of variance (ANOVA) and Scheffe post hoc comparison (α= 0.05) was used to determine whether there is any significant difference in each protein level among the three groups. Results: (1) After analyzing the 307 identified proteins, there were 26 unique proteins in the SR group, and 18 unique proteins in the LDR group. (2) For the LDR group, 7 coagulation function-associated proteins’ expression levels were investigated: vitronectin, serum paraoxonase/arylesterase 1, fibulin-1, complement C3, vitamin K-dependent protein, inter-alpha-trypsin inhibitor heavy chain H3 and von Willebrand factor, and the findings show the seven coagulation function-associated proteins were significantly lower than the group of SR. (3) Comparing to the group of SR, this study found that the LDR group’s expression levels of the 2 antioxidant proteins (afamin and glutathione peroxidase 3) were also significantly lower. (4) The LDR group’s expression levels of seven immune function-related proteins (Ig gamma-3 chain C region, Ig lambda-like polypeptide 5, clusterin, complement C1s subcomponent, complement factor B, complement C4-A, complement C1q subcomponent subunit A) were also significantly lower than the group of SR. Conclusion: This study identified the potential serum protein markers for elite sprinters and long-distance runners. The changes in the regulation of coagulation, antioxidant, or immune function-specific proteins may also provide further clinical applications for these two different track athletes.Keywords: biomarkers, coagulation, immune response, oxidative stress
Procedia PDF Downloads 117630 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 384629 The Impact of Artificial Intelligence on Higher Education in Latin America
Authors: Luis Rodrigo Valencia Perez, Francisco Flores Aguero, Gibran Aguilar Rangel
Abstract:
Artificial Intelligence (AI) is rapidly transforming diverse sectors, and higher education in Latin America is no exception. This article explores the impact of AI on higher education institutions in the region, highlighting the imperative need for well-trained teachers in emerging technologies and a cultural shift towards the adoption and efficient use of these tools. AI offers significant opportunities to improve learning personalization, optimize administrative processes, and promote more inclusive and accessible education. However, the effectiveness of its implementation depends largely on the preparation and willingness of teachers to integrate these technologies into their pedagogical practices. Furthermore, it is essential that Latin American countries develop and implement public policies that encourage the adoption of AI in the education sector, thus ensuring that institutions can compete globally. Policies should focus on the continuous training of educators, investment in technological infrastructure, and the creation of regulatory frameworks that promote innovation and the ethical use of AI. Only through a comprehensive and collaborative approach will it be possible to fully harness the potential of AI to transform higher education in Latin America, thereby boosting the region's development and competitiveness on the global stage.Keywords: artificial intelligence (AI), higher education, teacher training, public policies, latin america, global competitiveness
Procedia PDF Downloads 28628 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 160627 Medical Ethics: Knowledge, Attitude and Practices among Young Healthcare Professionals – A Survey from Islamabad, Pakistan
Authors: Asima Mehaboob Khan, Rizwan Taj
Abstract:
Purpose: This study aims to estimate the knowledge, attitude and practices of medical ethics among young healthcare professionals. Method: A qualitative descriptive study was conducted among young healthcare professionals from both public and private sector medical institutions. Using the convenience sampling technique, 272 healthcare professionals participated in this study. A pre-structured modified questionnaire was used to collect the data. Descriptive analyses were executed for each variable. Result: About 76.47% of healthcare professional considers the importance of adequate knowledge of medical ethics, and 82.24% declared lecture, seminars and clinical discussion as the source of their medical knowledge of biomedical ethics. About 42.44% of healthcare professionals exhibited a negative attitude toward medical ethics, 57.72% showed a mildly positive attitude, whereas 1.10% and 0.74% indicated a moderately positive attitude and a highly positive attitude towards medical ethics. Similarly, the level of practice according to medical ethics is also very poor among young healthcare professionals. 34.56% of healthcare professionals deviated from medical ethics during their clinical practices, whereas 0.74% showed a good level of medical practice according to medical ethics. Conclusion: It is concluded in this research study that young healthcare professionals have adequate theoretical knowledge of medical ethics but are not properly trained to perform their clinical practices according to the guidelines of medical ethics. Furthermore, their professional attitude is poorly developed to maintain medical ethics during their clinical practices.Keywords: knowledge, attitude, practices, medical ethics
Procedia PDF Downloads 105626 Economies of Scale of Worker's Continuing Professional Development in Selected Universities in South- South, Nigeria
Authors: Jonathan E. Oghenekohwo
Abstract:
The return to scale constitutes a significant investment index in the determination of the quantum of resources that is deployed in investment decision on worker’s continuing professional development. Such investment decision is always predicted on the expected outcomes to the individual, institution and the society in context. Several investments in the development of human capacity on the job have been made, but the return to the scale of such seems not to have been correlated positively with the quantum of resources invested in terms of productivity and performance among workers in many universities. This paper thus found out that, despite the commitment and policy instrument to avail workers the right of continuing professional development, the multiplier effects are not evident in diligence, commitment, honesty, dedication, productivity and improved performance on the job among most administrative staff in Nigerian Universities This author, therefore concludes that, given the policy on the right of workers to get trained on-the job, the outcomes of such training must reflect on the overall performance indices, otherwise, institutions should carry out a forensic analysis of the types of continuing professional development programmes that workers participate in, whether or not, they are consistent with the vision and mission of the institutions in terms of economies of scale of workers professional development to the individual, institution and the nation in context.Keywords: continuing, professional development, economies of scale, worker’s education, administrative staff
Procedia PDF Downloads 327625 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 161624 Examining the Challenges Faced by Passengers Using Arik Air for International and Domestic Travel
Authors: Mahmud Hafsat Hussaini, Eldah Ephraim Eldah, Bata Zoakah Amina
Abstract:
This research work was aimed at examining the challenges faced by passengers using Arik air for domestic and international travels. Passengers do complain of delay flights, theft and rude behavior by Arik staff while on transit or in the process of travelling using the aircraft. Being the national carrier in Nigeria these behaviors have tarnished the image of the airline and makes travel experience to be challenging. Hundred survey questionnaires were administered to travellers who have used the airline for domestic and international flights. Findings show that the staff of the airline do lack customer care skills and are sometimes rude to customers. The airline does have different agents that book for international flights who delays confirming bookings even after payment. The website of the airline is mostly down and makes bookings difficult. Other findings related to the study are a delay of domestic flights within Nigeria. Passengers are sometimes kept for 8 hours in the airport due to delay of flights. The study, therefore, recommends that flight schedule should be adhered to and staff should be trained to meet of with passengers demand. The security of guest luggage at the airport should be put in place to avoid theft. An effective booking platform should be accessible to passengers for easy booking.Keywords: examining, challenges, domestic, international, travels
Procedia PDF Downloads 216623 Impact Logistic Management to Reduce Costs
Authors: Waleerak Sittisom
Abstract:
The objectives of this research were to analyze transportation route management, to identify potential cost reductions in logistic operation. In-depth interview techniques and small group discussions were utilized with 25 participants from various backgrounds in the areas of logistics. The findings of this research revealed that there were four areas that companies are able to effectively manage a logistic cost reduction: managing the space within the transportation vehicles, managing transportation personnel, managing transportation cost, and managing control of transportation. On the other hand, there were four areas that companies were unable to effectively manage a logistic cost reduction: the working process of transportation, the route planning of transportation, the service point management, and technology management. There are five areas that cost reduction is feasible: personnel management, process of working, map planning, service point planning, and technology implementation. To be able to reduce costs, the transportation companies should suggest that customers use a file system to save truck space. Also, the transportation companies need to adopt new technology to manage their information system so that packages can be reached easy, safe, and fast. Staff needs to be trained regularly to increase knowledge and skills. Teamwork is required to effectively reduce the costs.Keywords: cost reduction, management, logistics, transportation
Procedia PDF Downloads 498622 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 316621 To What Extent Does Physical Activity and Standard of Competition Affect Quantitative Ultrasound (QUS) Measurements of Bone in Accordance with Muscular Strength and Anthropometrics in British Young Males?
Authors: Joseph Shanks, Matthew Taylor, Foong Kiew Ooi, Chee Keong Chen
Abstract:
Introduction: Evidences of relationship between bone, muscle and standard of competition among young British population is limited in literature. The current literature recognises the independent and synergistic effects of fat free and fat mass as the stimulus for osteogenesis. This study assessed the extent to which physical activity (PA) and standard of competition (CS) influences quantitative ultrasound (QUS) measurements of bone on a cross-sectional basis accounting for muscular strength and anthropometrics in British young males. Methods: Pre-screening grouped 66 males aged 18-25 years into controls (n=33) and district level athletes (DLAs) (n=33) as well as low (n=21), moderate (n=23) and high (n=22) physical activity categories (PACs). All participants underwent QUS measurements of bone (4 sites, i.e. dominant distal radius (DR), dominant mid-shaft tibia (DT), non-dominant distal radius (NR) and non-dominant mid-shaft tibia (NT)), isokinetic strength tests (dominant and non-dominant knee flexion and extension) and anthropometric measurements. Results: There were no significant differences between any of the groups with respect to QUS measurements of bone at all sites with regards to PACs or CS. Significant higher isokinetic strength values were observed in DLAs than controls (p < 0.05), and higher than low PACs (p < 0.05) at 60o.s-1 of concentric and eccentric measurements. No differences in subcutaneous fat thickness were found between all the groups (CS or PACs). Percentages of body fat were significantly higher (p < .05) in low than high PACs and CS groups. There were significant positive relationships between non dominant radial speed of sound and fat free mass at both DR (r=0.383, p=0.001) and NR (r=0.319, p=0.009) sites in all participants. Conclusion: The present study findings indicated that muscular strength and body fat are closely related to physical activity level and standard of competition. However, bone health status reflected by quantitative ultrasound (QUS) measurements of bone is not related to physical activity level and standard of competition in British young males.Keywords: bone, muscular strength, physical activity, standard of competition
Procedia PDF Downloads 515620 Quality Standards for Emergency Response: A Methodological Framework
Authors: Jennifer E. Lynette
Abstract:
This study describes the development process of a methodological framework for quality standards used to measure the efficiency and quality of response efforts of trained personnel at emergency events. This paper describes the techniques used to develop the initial framework and its potential application to professions under the broader field of emergency management. The example described in detail in this paper applies the framework specifically to fire response activities by firefighters. Within the quality standards framework, the fire response process is chronologically mapped. Individual variables within the sequence of events are identified. Through in-person data collection, questionnaires, interviews, and the expansion of the incident reporting system, this study identifies and categorizes previously unrecorded variables involved in the response phase of a fire. Following a data analysis of each variable using a quantitative or qualitative assessment, the variables are ranked pertaining to the magnitude of their impact to the event outcome. Among others, key indicators of quality performance in the analysis involve decision communication, resource utilization, response techniques, and response time. Through the application of this framework and subsequent utilization of quality standards indicators, there is potential to increase efficiency in the response phase of an emergency event; thereby saving additional lives, property, and resources.Keywords: emergency management, fire, quality standards, response
Procedia PDF Downloads 318619 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression
Procedia PDF Downloads 172618 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 613617 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 232616 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 123615 A Dialectical Behavioral Therapy Adaptation in Reducing Depression, Anxiety, and Self-Harm in Older Adults
Authors: Valerie Alexander, Amanda Gutierrez, Veronica Campbell, Dara Schwartz, B. Charles Tatum
Abstract:
It has long been assumed that personality disorders (PD) originate in adolescence or early adulthood and that the maladaptive behaviors significantly attenuate over time. The Diagnostic and Statistical Manual of Mental Disorders-5 supports early onset of PD and views the pattern of behaviors as enduring and stable. The premise of this study is that PD may not always begin early in life, that behaviors may change over the lifespan, and that current treatment modalities may be beneficial in seniors. Self-injurious behaviors (SIB) exhibited earlier in life may, in older adults, be manifested in less overt high-risk behaviors but by refusal to take medication and get necessary medical treatment. Dialectical Behavioral Therapy is a well-known treatment modality for teaching emotional regulation and distress tolerance and thus reducing self-injurious behaviors yet very little has been studied about SIB and treatment in older adults. The population for this study was older adults, with a history of SIB, a PD, and depression and/or anxiety. Participants learned an adapted version of Dialectical Behavioral Therapy (DBT) as developed by DBT trained therapists. The results provided clinical potentials for the efficacy of DBT to reduce SIB, decrease depression and anxiety in the older adult population.Keywords: anxiety, depression, dialectical behavioral therapy, personality disorders, self-harm behavior, treatment in older adults
Procedia PDF Downloads 303614 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 478613 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 124612 Serum Anti-Oxidation Enzymes Response to L-Carnitine Supplementation
Authors: Farah Nameni, Hamidreza Poursadra, Maasumeh Nurani Pilehrud
Abstract:
Exercise training induced Inflammation and stress. Antioxidant, for example L- Carnitine has beneficial effects in immune system and increased antioxidant enzymes activity. L- Carnitine protects the tissue against the oxidative side effect and helps the body to protect against stress during and after acute exercise. The aim of this study was to determine the effect of L-Carnitine on the blood enzymes: GPX SOD, CAT and GR response. In this study, 20 basketball players girls participated. Subjects were randomly assigned into two groups; placebo and supplementation. Antioxidadision enzymes (Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase) evaluated. L-Carnitine supplement group orally daily received 3000 mg powder for 14 dys. Then all participates trained basketball exercise acute. Blood samples were drawn vein before and immediately after exercise. Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase were measured, and data was analyzed using repeated measure ANOVA, Bonferroni and t-test. Our results showed: SOD, GPX and GPX (P < 0.05) have a significant increase. These results suggest L-Carnitine supplementation may increase GPX SOD, CAT, and basal anti oxidative capacity. L-Carnitine can modulate the alterations of exercise oxidative damage in girl basketball players.Keywords: l-carnitine, GPX, SOD, CAT, exercise, GR, anti-oxidant
Procedia PDF Downloads 190611 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria
Authors: Juliet Sorensen, Anna Maitland
Abstract:
Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria
Procedia PDF Downloads 248610 Onco@Home: Comparing the Costs, Revenues, and Patient Experience of Cancer Treatment at Home with the Standard of Care
Authors: Sarah Misplon, Wim Marneffe, Johan Helling, Jana Missiaen, Inge Decock, Dries Myny, Steve Lervant, Koen Vaneygen
Abstract:
The aim of this study was twofold. First, we investigated whether the current funding from the national health insurance (NHI) of home hospitalization (HH) for oncological patients is sufficient in Belgium. Second, we compared patient’s experiences and preferences of HH to the standard of care (SOC). Two HH models were examined in three Belgian hospitals and three home nursing organizations. In a first HH model, the blood draw and monitoring prior to intravenous therapy were performed by a trained home nurse at the patient’s home the day before the visit to the day hospital. In a second HH model, the administration of two subcutaneous treatments was partly provided at home instead of in the hospital. Therefore, we conducted (1) a bottom-up micro-costing study to compare the costs and revenues for the providers (hospitals and home care organizations), and (2) a cross-sectional survey to compare patient’s experiences and preferences of the SOC group and the HH group. Our results show that HH patients prefer HH and none of them wanted to return to SOC, although the satisfaction of patients was not significantly different between the two categories. At the same time, we find that costs associated to HH are higher overall. Comparing revenues with costs, we conclude that the current funding from NHI of HH for oncological patients is insufficient.Keywords: cost analysis, health insurance, preference, home hospitalization
Procedia PDF Downloads 122609 Innovation in the Provision of Medical Services in the Field of Qualified Sports and Services Related to the Therapy of Metabolism Disorders and the Treatment of Obesity
Authors: Jerzy Slowik, Elzbieta Grochowska-Niedworok
Abstract:
The analysis of the market needs and trends in both treatment and prophylaxis shows the growing need to implement comprehensive solutions that would enable safe contact of the beneficiaries with the therapeutic and diagnostic support group. Based on the evaluation of the medical and sports industry services market, projects co-financed by the EFRR in the form of comprehensive care systems using IT tools for patients under treatment in the field of obesity and metabolism using the system were implemented under the Regional Operational Program of the Silesian Voivodeship for 2014-2020. SFAO 1.0 (Support for the Fight Against Obesity) number of the WND-RPSL project. 01.02.00-24-06EA / 16) as well as for competitors in qualified sports SK system (qualified sports) project number WND-RPSL. 01.02.00-24-0630 / 17-002. The service provided in accordance with SFAO 1.0 has shown a wide range of therapy possibilities - from monitoring the body's reactions during sports activities of healthy people to remote care for sick patients. As a result of the introduction of an innovative service, it was possible to increase the effectiveness of the therapy, which was manifested in the reduction of the starting doses of drugs by 10%, improvement of the efficiency of the respiratory and blood circulation system, and a 10% increase in bone density. Innovation in the provision of medical services in the field of qualified sports SK was a response to the needs of the athletes and their parents, coaches, physiotherapists, dieticians, and doctors who take care of people actively practicing qualified sports. The creation of the platform made it possible to constantly monitor the trainers necessary for both the proper training process and the control over the health of patients. Monitoring the patient's health by a specialized team in the field of various specialties allows for the proper targeting of the treatment and training process due to the increase in the availability of medical counseling. Specialists taking care of the patient can provide additional advice and modify the medical treatment of the patient on an ongoing basis, which is why we are dealing with a holistic approach.Keywords: innovation of medical services, sport, obesity, innovation
Procedia PDF Downloads 127608 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 164607 Accessibility of Youth-Friendly Sexual and Reproductive Health Services to Secondary School Adolescents in Southern Cross River, Nigeria
Authors: Rosemary I. Eneji, Stephen Adi Odey, Edem Carole, Eucharia Nwagbara
Abstract:
Sexual and reproductive health behaviors are the main causes of death, disability, and disease among adolescents in Nigeria. In this study, we determined the accessibility of youth-friendly sexual and reproductive health services to secondary school adolescents in southern Cross River state, Nigeria. Nineteen randomly selected public secondary schools across the seven local government areas in the zone were used. The respondents were four hundred senior secondary (classes SSI - SS3) students aged 15-19 years, comprising 63.7% females and 36.3% males. A 50-item structured questionnaire was used for the study. There was a strong influence of age and sex of adolescents, income and occupation of parents, knowledge and awareness of adolescents, and tradition on the accessibility and use of youth-friendly sexual and reproductive health services (YFSRHS) to the adolescents. The attitude of health workers towards accessibility was of little effect. Overall, youth-friendly sexual and reproductive health services were not easily accessible to adolescents in the study area. Thus, there is need to enforce adolescent reproductive health policies in the area. Training and use of trained caregivers and peer educators to attend to adolescents and the inclusion of adolescent reproductive health as a subject in the curriculum are strongly recommended.Keywords: youth, reproductive health, cross river state, secondary schools, Nigeria
Procedia PDF Downloads 72606 Needs Analysis Survey of Hearing Impaired Students’ Teachers in Elementary Schools for Designing Curriculum Plans and Improving Human Resources
Authors: F. Rashno Seydari, M. Nikafrooz
Abstract:
This paper intends to study needs analysis of hearing-impaired students’ teachers in elementary schools all over Iran. The subjects of this study were 275 teachers who were teaching hearing-impaired students in elementary schools. The participants were selected by a quota sampling method. To collect the data, questionnaires of training needs consisting of 41 knowledge items and 31 performance items were used. The collected data were analyzed by using SPSS software in the form of descriptive analyses (frequency and mean) and inferential analyses (one sample t-test, paired t-test, independent t-test, and Pearson correlation coefficient). The findings of the study indicated that teachers generally have considerable needs in knowledge and performance domains. In 32 items out of the total 41 knowledge domain items and in the 27 items out of the total 31 performance domain items, the teachers had considerable needs. From the quantitative point of view, the needs of the performance domain were more than those of the knowledge domain, so they have to be considered as the first priority in training these teachers. There was no difference between the level of the needs of male and female teachers. There was a significant difference between the knowledge and performance domain needs and the teachers’ teaching experience, 0.354 and 0.322 respectively. The teachers who had been trained in working with hearing-impaired students expressed more training needs (both knowledge and performance).Keywords: educational needs analysis, teachers of hearing impaired students, knowledge domain, function domain
Procedia PDF Downloads 96605 Sports and Exercise Medicine: A Public Health Tool in Combating and Preventing the Side Effects of a Sedentary Lifestyle
Authors: Shireen Ibish
Abstract:
Physical inactivity and unhealthy diets have contributed to a global burden of disease with increased relation to non-communicable diseases, increased risk of colon and breast cancer, high prevalence of depression, reduced quality of life and early death. The World Health Organisation’s facts on Obesity show a tripling in prevalence across the European Region since the 1980s. This has lead to a huge public health burden, being responsible for and 10-13% of deaths (fourth largest cause of global mortality) and 2-8% of health costs in the Region. In the UK alone, the present cost of physical inactivity has been estimated to be £8.2 billion. In 2002 a paper published in the International Journal of Epidemiology on ‘sedentary’ lifestyle, put into figures the increasingly worrying statistics across European countries. “Percentages of sedentary lifestyles across European countries ranged between 43.3% (Sweden) and 87.8% (Portugal)”. This was especially so amongst obese subjects, less- educated people, and smokers. While in the UK’s “50% of adult population in the UK is predicted to be obese by 2050.” Sports and Exercise Medicine, as a specialty, has a lot to offer in targeting this globally increasing epidemic. The worrying figures and the increasing knowledge of combating and preventing this issue have lead to increased awareness amongst the medical profession and more targeted interventions to reduce the burden of disease. “The public health element of the specialty is critical – this is not simply a specialty for the management of elite athletes’ medical conditions – it is central to the promotion of exercise as a means of disease prevention, to enhance well-being and in the management of disease.” WHO advised on creating National policies, encouraging and providing opportunities for greater physical activity, and improve the affordability, availability and accessibility of healthy foods. In the UK various different movements have been established to target this problem. The Motivate2Move, Move Eat Treat and guidelines advising specialties on targeting and encouraging exercise in the population (Sport and Exercise Medicine A Fresh Approach).Keywords: sedentary lifestyle, obesity, public health burden, medicine
Procedia PDF Downloads 566604 Differential Expression of Arc in the Mesocorticolimbic System Is Involved in Drug and Natural Rewarding Behavior in Rats
Authors: Yuhua Wang, Mu Li, Jinggen Liu
Abstract:
Aim: To investigate the different effects of heroin and milk in activating the corticostriatal system that plays a critical role in reward reinforcement learning. Methods: Male SD rats were trained daily for 15 d to self-administer heroin or milk tablets in a classic runway drug self-administration model. Immunohistochemical assay was used to quantify Arc protein expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc), the dorsomedial striatum (DMS) and the ventrolateral striatum (VLS) in response to chronic self-administration of heroin or milk tablets. NMDA receptor antagonist MK801 (0.1 mg/kg) or dopamine D1 receptor antagonist SCH23390 (0.03 mg/kg) were intravenously injected at the same time as heroin was infused intravenously. Results: Runway training with heroin resulted in robust enhancement of Arc expression in the mPFC, the NAc and the DMS on d 1, 7, and 15, and in the VLS on d 1 and d 7. However, runway training with milk led to increased Arc expression in the mPFC, the NAc and the DMS only on d 7 and/or d 15 but not on d 1. Moreover, runway training with milk failed to induce increased Arc protein in the VLS. Both heroin-seeking behavior and Arc protein expression were blocked by MK801 or SCH23390 administration. Conclusion: The VLS is likely to be critically involved in drug-seeking behavior. The NMDA and D1 receptor-dependent Arc expression is important in drug-seeking behavior.Keywords: arc, mesocorticolimbic system, drug rewarding behavior, NMDA receptor
Procedia PDF Downloads 391