Search results for: nurssery production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7432

Search results for: nurssery production

6682 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.

Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands

Procedia PDF Downloads 62
6681 Challenges Affecting the Livelihoods of Small-Scale, Aggregate Miners, Vhembe District, Limpopo Province, South Africa

Authors: Ndivhudzannyi Rembuluwani, Francis Dacosta, Emmanuel Mhlongo

Abstract:

The small-scale rock aggregate sector of the mining industry is a major source of employment for a significant number of people, particularly in remote rural areas, where alternative livelihoods are rare. It contributes to local economy by generating income and producing major and essential materials for the building, construction, and other industries. However, the sector is confronted with many challenges that hamper productivity and growth. The problems that confront this sector includes: health and safety, environmental impacts, low production and low adherence to mining legislations. This study investigated the challenges confronting selected small-scale rock aggregate mines in the Vhembe District of Limpopo province of South Africa, assesses the health, safety, low production and environmental impacts associated with aggregate production and to develop an integrated approach of addressing the multi-faceted challenges.

Keywords: health and safety, legislative framework, productivity, rock aggregate, small-scale mining

Procedia PDF Downloads 503
6680 Perspective Shifting in the Elicited Language Production Can Defy with Aging

Authors: Tuyuan Cheng

Abstract:

As we age, many things become more difficult. Among the abilities are the linguistic and cognitive ones. Competing theories have shown that these two functions could diminish together or that one is selectively affected by the other. In other words, some proposes aging affects sentence production in the same way it affects sentence comprehension and other cognitive functions, while some argues it does not.To address this question, the current investigation is conducted into the critical aspect of sentences as well as cognitive abilities – the syntactic complexity and the number of perspective shifts being contained in the elicited production. Healthy non-pathological aging is often characterized by a cognitive and neural decline in a number of cognitive abilities. Although the language is assumed to be of the more stable domain, a variety of findings in the cognitive aging literature would suggest otherwise. Older adults often show deficits in language production and multiple aspects of comprehension. Nevertheless, while some age differences likely reflect cognitive decline, others might reflect changes in communicative goals, and some even display cognitive advantages. In the domain of language processing, research efforts have been made in tests that probed a variety of communicative abilities. In general, there exists a distinction: Comprehension seems to be selectively unaffected, while production does not. The current study raises a novel question and investigates whether aging affects the production of relative clauses (RCs) under the cognitive factor of perspective shifts. Based on Perspective Hypothesis (MacWhinney, 2000, 2005), our cognitive processes build upon a fundamental system of perspective-taking, and language provides a series of cues to facilitate the construction and shifting of perspectives. These cues include a wide variety of constructions, including RCs structures. In this regard, linguistic complexity can be determined by the number of perspective shifts, and the processing difficulties of RCs can be interpreted within the theory of perspective shifting. Two experiments were conducted to study language production under controlled conditions. In Experiment 1, older healthy participants were tested on standard measures of cognitive aging, including MMSE (Mini-Mental State Examination), ToMI-2 (a simplified Theory of Mind Inventory-2), and a perspective-shifting comprehension task programmed with E-Prime. The results were analyzed to examine if/how they are correlated with aging people’s subsequent production data. In Experiment 2, the production profile of differing RCs, SRC vs. ORC, were collected with healthy aging participants who perform a picture elicitation task. Variable containing 0, 1, or 2 perspective shifts were juxtaposed respectively to the pictures and counterbalanced presented for elicitation. In parallel, a controlled group of young adults were recruited to examine the linguistic and cognitive abilities in question. The results lead us to the discussion whetheraging affects RCs production in a manner determined by its semantic structure or the number of perspective shifts it contains or the status of participants’ mental understanding. The major findingsare: (1) Elders’ production on Chinese RCtypes did not display intrinsic difficulty asymmetry. (2) RC types (the linguistic structural features) and the cognitiveperspective shifts jointly play important roles in the elders’ RCproduction. (3) The production of RC may defy the aging in the case offlexibly preserved cognitive ability.

Keywords: cognition aging, perspective hypothesis, perspective shift, relative clauses, sentence complexity

Procedia PDF Downloads 118
6679 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry

Authors: John M. Ikome

Abstract:

In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.

Keywords: scheduling, heuristics, branch, integrated

Procedia PDF Downloads 407
6678 Production of Pour Point Depressant for Paraffinic Crude Oils

Authors: Mosaad Attia Elkasaby

Abstract:

The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration.

Keywords: PPD, aniline, paraffinic crude oils, polymers

Procedia PDF Downloads 91
6677 Profit Efficiency and Technology Adoption of Boro Rice Production in Bangladesh

Authors: Fazlul Hoque, Tahmina Akter Joya, Asma Akter, Supawat Rungsuriyawiboon

Abstract:

Rice is the staple food in Bangladesh, and therefore, self-sufficiency in rice production remains a major concern. However, Bangladesh is experiencing insufficiency in rice production due to high production cost and low national average productivity of 2.848 ton/ha in comparison to other rice-growing countries in the world. This study aims to find out the profit efficiency and determinants of profit efficiency in Boro rice cultivation in Manikganj and Dhaka districts of Bangladesh. It also focuses on technology adoption and effect of technology adoption on profit efficiency of Boro rice cultivation in Bangladesh. The data were collected from 300 households growing Boro rice through face to face interviews by one set structured questionnaire; Frontier Version 4.1 and STATA 15 software were employed to analyze the data according to the purpose of the study. Maximum likelihood estimates of the specified profit model showed that profit efficiency of the farmer varied between 23% and 97% with a mean of 76% which implied as 24% of the profit is lost due to a combination of technical and allocative inefficiencies in Boro rice cultivation in the study area. The inefficiency model revealed that the education level of the farmer, farm size, variety of seed, and training and extension service influence the profit inefficiency significantly. The study also explained that the level of technology adoption index affects profit efficiency. The technology adoption in Boro rice cultivation is influenced by the education level of the farmer, farm size and farm capital.

Keywords: farmer, maximum likelihood estimation, profit efficiency, rice

Procedia PDF Downloads 131
6676 Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactant, biodegradability, critical micelle concentration, lagoon Marchika

Procedia PDF Downloads 358
6675 Determinants of Risk Perceptions and Risk Attitude among Flue-Cured Virginia Tobacco Growers: A Case Study of Pakistan

Authors: Wencong Lu, Abdul Latif, Raza Ullah, Subhan Ullah

Abstract:

Agricultural production is subject to risk and the attitudes of producers toward risk, in turn, may be affected by certain socioeconomic characteristics of producers. Although, it is important to assess the risk attitude of farmers and their perception towards different calamitous risk sources for better understanding of their risk management adoption decisions, to the best of our knowledge no studies have been carried out to analyze the risk attitude and risk perceptions in the context of tobacco production in Pakistan. Therefore the study in hand is conducted with an attempt to overcome the gap in existing literature by analyzing different catastrophic risk sources faced by tobacco growers, their attitude towards risk and the effect of socioeconomic and demographic characteristics, farmers’ participation in contract farming and off-farm diversification on their risk attitude and risk perception. Around 78% of Pakistan’s entire tobacco crop and nearly all of the country’s Flue-Cured Virginia (FCV) tobacco is produced in Khyber Pakhtunkhwa (KPK) province alone. The yield/hectare of tobacco produced in KPK province is 14% higher than the global average and 22 % higher than national average. Khyber Pakhtunkhwa province was selected as main study area as nearly all of the country’s Flue-Cured Virginia (FCV) tobacco is produced in Khyber Pakhtunkhwa (KPK) province alone. Six districts were purposely selected based on their contribution in overall production for the last five years which accounts for more than 94.84% of the tobacco production in KPK province. Specific objectives taken into considerations for this study are the risk attitude of the farmers for growing FCV tobacco crop, farmers’ risk perception for different risk sources related to tobacco production (as far as the incidence and severity of each risk source is concerned) and the effect of socioeconomic characteristics, contract farming participation and off-farm diversification (income) on the risk attitude and risk perception of FCV tobacco growers.

Keywords: risk attitude, risk perception, contract farming, off-farm diversification, probit model

Procedia PDF Downloads 361
6674 Appropriate Nutrient Management for Wheat Production in Afghanistan

Authors: Azizurahman Sakhizadah, Tsugiyuki Masunaga

Abstract:

The use of sulfur fertilizer by Afghanistan farmers for wheat production has never been practiced, although sulfur deficiency has been expected for wheat production. A field experiment was conducted at Poza e Ishan Research Station Farm, Baghlan province, Afghanistan to examine the effect of sulfur fertilizer on growth and yield components of wheat. The experiment was laid out in randomize complete block design (RCBD), having three replications and eight treatments. The initial soil of experiment was alkaline (pH8.4), with textural class of sandy clay loam, available sulfur (40.8) mg kg-1, and Olsen-P (28.8) mg kg-1. Wheat variety, Kabul 013 was cultivated from November 2015 to June 2016. The recommended doses of nitrogen and Phosphors (Urea and DAP at 250 and 125 kg ha-1) were applied by broadcasting except control plot. Sulfur was applied by foliar spray (K2 SO4) at the rate of 10, 20, and 30 kg ha-1, split at tillering and flowering stages. The results demonstrated that sulfur application positively influenced on growth and yield of wheat crop with combination of nitrogen. Plant did not respond to sole sulfur application. Plant height, spike length, spikelet's number spike-1, were increased and yield g m-2 was also increased by 1.2, 19.1 and 25.1 % for 10, 20 and 30 kg sulfur ha-1 application.

Keywords: sulfur, nitrogen, wheat, foliar

Procedia PDF Downloads 144
6673 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production

Authors: Lubomir Machuca, Vit Fara

Abstract:

Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.

Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry

Procedia PDF Downloads 239
6672 Investigation of Diseases and Enemies of Bees of Breeding Apis mellifera intermissa (Buttel-Reepen, 1906)

Authors: S. Zenia, L. Bitta, O. Bouhamam, H. Brines, M. Boudriaa, F. Haddadj, F. Marniche, A. Milla, H. Saadi, A. Smai

Abstract:

The bee Apis mellifera intermissa is a major social insect, in addition to its honey production, it is a pillar of our biodiversity. Several living organisms can come into contact with it: bacteria, viruses, protozoa, fungi, mites, and insects. In Algeria, many beekeepers have reported unusual mortality of local bees, loss of foragers and significant losses of their livestock. Despite the presence of a varied honey-bearing flora and a favourable Mediterranean climate, honey production remains low. This phenomenon can be attributed to the excess winter mortality, but also to the increasing difficulties that beekeepers face in maintaining healthy bee colonies, particularly bee diseases and their transmission facilitated by trade and beekeeping practices. Our survey is based on a questionnaire composed of several parts. The results obtained show that the disease that most affects bees according to beekeepers is varroa mite with 93% followed by fungi with 26%. The most replied enemy of bees is the false ringworm with 73%, followed by the bee-eater with 63%. Our goal is to determine the causes of this low production in two areas: Bejaia and Tizi-Ouzou.

Keywords: diseases, Apis mellifera L., varroa, European foulbrood

Procedia PDF Downloads 160
6671 Comparison of Small Ruminants (Sheep) Production Efficiency of Nomadic and Transhumance Flocks in Malakand, Pakistan

Authors: Akbar Nawaz Khan, Abdul Ghaffar, Abdur Rehman, Muhammad Naeem Riaz, Sayed Muhammad Hassan Andrabi

Abstract:

The present study was conducted to compare sheep rearing in nomadic with transhumance system in term of production parameters. The following parameters which studied for comparison were household size, landholding area, flock size, body condition score, fecal egg count and live weight change in sheep under nomadic and transhumance systems of management in Malakand since October 2010 to March 2011. Further the effects of Body Condition Score (BCS) and Fecal Egg Count (FEC) on production were also examined. Two systems were checked for the purpose to check the efficiency of production. A total of eight flocks, four each from nomadic and transhumance system were selected for the study; each flock was divided into treatment and controlled groups to check the effect of treatment or de-wormers. A total of 160 animals were selected randomly (80 treated, 80 controlled). The adult ram average weight transhumance system was 55.58 kg while in nomadic that was 54.16 kg, weight change was positive, and the highest change was recorded in transhumance treated which was 13%. Fecal egg count was record low (75 EPG) in transhumance treated group while high (330 EPG) in nomadic controlled. Body condition score was recorded 3.6 for transhumance treated and 3.32 for nomadic treated. It is concluded from the present study that transhumance system performed significantly (p < 0.05) better in respect of live weight, BCS, FEC, family size, Landholding area, number of animals in a flock, offspring record, culling, and mortality. Mean values are 7.367 ± 0221, 0.900 ± 0.071, 63.167 ± 1.559, 55.600 ± 1.480, 8.300 ± 0.321 and 2.500 ± 0.158 respectively. De-wormer effect on FEC showed a significant reduction in egg load in mature sheep on both systems.

Keywords: small ruminant, sheep, nomadic, transhumance, Malakand, production efficiency

Procedia PDF Downloads 222
6670 Planning of Construction Material Flow Using Hybrid Simulation Modeling

Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid

Abstract:

Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.

Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation

Procedia PDF Downloads 205
6669 Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia

Authors: Djordjevic J. Sladjana, Djordjevic-Milošević B. Suzana, Milošević M. Slobodan

Abstract:

The potential of biomass as a renewable energy source leads Serbia to be the top of European countries by the amount of available but unused biomass. Technologies for its use are available and ecologically acceptable. Moreover, they are not expensive high-tech solutions even for the poor investment environment of Serbia, while other options seem to be less achievable. From the other point of view, Serbia has a huge percentage of unused agriculture land. Agricultural production in Serbia languishes: a large share of agricultural land therefore remains untreated, and there is a significant proportion of degraded land. From all the above, biomass intended for energy production is becoming an increasingly important factor in the stabilization of agricultural activities. Orientation towards the growing bioenergy crops versus conventional crop cultivation becomes an interesting option. The aim of this paper is to point out the possibility of growing energy crops in accordance with the conditions and cultural practice in rural areas of Serbia. First of all, the cultivation of energy crops on lower quality land is being discussed, in order to revitalize the rural areas of crops through their inclusion into potential energy sector. Next is the theme of throwing more light on the increase in the area under this competitive agricultural production to correct land use in terms of climate change in Serbia. The goal of this paper is to point out the contribution of the share of biomass in energy production and consumption, and the effect of reducing the negative environmental impact.

Keywords: agro-energy crops, conditions for plantation, revitalization of rural areas, degraded and unused soils

Procedia PDF Downloads 262
6668 Nanotechnology: A New Revolution to Increase Agricultural Production

Authors: Reshu Chaudhary, R. S. Sengar

Abstract:

To increase the agricultural production Indian farmer needs to aware of the latest technology i.e. precision farming to maximize the crop yield and minimize the input (fertilizer, pesticide etc.) through monitoring the environmental factors. Biotechnology and information technology have provided lots of opportunities for the development of agriculture. But, still we have to do much more for increasing our agricultural production in order to achieve the target growth of agriculture to secure food, to eliminate poverty and improve living style, to enhance agricultural exports and national income and to improve quality of agricultural products. Nanotechnology can be a great element to satisfy these requirements and to boost the multi-dimensional development of agriculture in order to fulfill the dream of Indian farmers. Nanotechnology is the most rapidly growing area of science and technology with its application in physical science, chemical science, life science, material science and earth science. Nanotechnology is a part of any nation’s future. Research in nanotechnology has extremely high potential to benefit society through application in agricultural sciences. Nanotechnology has greater potential to bring revolution in the agricultural sector.

Keywords: agriculture, biotechnology, crop yield, nanotechnology

Procedia PDF Downloads 357
6667 Designing Form, Meanings, and Relationships for Future Industrial Products. Case Study Observation of PAD

Authors: Elisabetta Cianfanelli, Margherita Tufarelli, Paolo Pupparo

Abstract:

The dialectical mediation between desires and objects or between mass production and consumption continues to evolve over time. This relationship is influenced both by variable geometries of contexts that are distant from the mere design of product form and by aspects rooted in the very definition of industrial design. In particular, the overcoming of macro-areas of innovation in the technological, social, cultural, formal, and morphological spheres, supported by recent theories in critical and speculative design, seems to be moving further and further away from the design of the formal dimension of advanced products. The articulated fabric of theories and practices that feed the definition of “hyperobjects”, and no longer objects describes a common tension in all areas of design and production of industrial products. The latter are increasingly detached from the design of the form and meaning of the same in mass productions, thus losing the quality of products capable of social transformation. For years we have been living in a transformative moment as regards the design process in the definition of the industrial product. We are faced with a dichotomy in which there is, on the one hand, a reactionary aversion to the new techniques of industrial production and, on the other hand, a sterile adoption of the techniques of mass production that we can now consider traditional. This ambiguity becomes even more evident when we talk about industrial products, and we realize that we are moving further and further away from the concepts of "form" as a synthesis of a design thought aimed at the aesthetic-emotional component as well as the functional one. The design of forms and their contents, as statutes of social acts, allows us to investigate the tension on mass production that crosses seasons, trends, technicalities, and sterile determinisms. The design culture has always determined the formal qualities of objects as a sum of aesthetic characteristics functional and structural relationships that define a product as a coherent unit. The contribution proposes a reflection and a series of practical experiences of research on the form of advanced products. This form is understood as a kaleidoscope of relationships through the search for an identity, the desire for democratization, and between these two, the exploration of the aesthetic factor. The study of form also corresponds to the study of production processes, technological innovations, the definition of standards, distribution, advertising, the vicissitudes of taste and lifestyles. Specifically, we will investigate how the genesis of new forms for new meanings introduces a change in the relative innovative production techniques. It becomes, therefore, fundamental to investigate, through the reflections and the case studies exposed inside the contribution, also the new techniques of production and elaboration of the forms of the products, as new immanent and determining element inside the planning process.

Keywords: industrial design, product advanced design, mass productions, new meanings

Procedia PDF Downloads 120
6666 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption

Authors: I. O. Nascimento, J. T. Manzi

Abstract:

The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.

Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers

Procedia PDF Downloads 257
6665 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.

Keywords: conjoint analysis, order prioritization, profit management, structural steel firm

Procedia PDF Downloads 384
6664 Production of Soy Yoghurt Using Soymilk-Based Lactic Acid Bacteria as Starter Culture

Authors: Ayobami Solomon Popoola, Victor N. Enujiugha

Abstract:

Production of soy-yogurt by fermentation of soymilk with lactic acid bacteria isolated from soymilk was studied. Soymilk was extracted from dehulled soybean seeds and pasteurized at 95 °C for 15 min. The soymilk was left to naturally ferment (temperature 40 °C; time 8 h) and lactic acid bacteria were isolated, screened and selected for yogurt production. Freshly prepared soymilk was pasteurized (95 °C, 15 min), inoculated with the lactic acid bacteria isolated (3% w/v starter culture) and incubated at 40 °C for 8 h. The yogurt produced was stored at 4 °C. Investigations were carried out with the aim of improving the sensory qualities and acceptability of soy yogurt. Commercial yogurt was used as a control. The percentage of soymilk inoculated was 70% of the broth. Soy-yoghurt samples produced were subsequently subjected to biochemical and microbiological assays which included total viable counts of fresh milk and soy-based yoghurt; proximate composition of functional soy-based yoghurt fermented with Lactobacillus plantarum; changes in pH, Titratable acidity, and lactic acid bacteria during a 14 day period of storage; as well as morphological and biochemical characteristics of lactic acid bacteria isolated. The results demonstrated that using Lactobacillus plantarum to inoculate soy milk for yogurt production takes about 8 h. The overall acceptability of the soy-based yogurt produced was not significantly different from that of the control sample. The use of isolate from soymilk had the added advantage of reducing the cost of yogurt starter culture, thereby making soy-yogurt, a good source of much desired good quality protein. However, more experiments are needed to improve the sensory qualities such as beany or astringent flavor and color.

Keywords: soy, soymilk, yoghurt, starter culture

Procedia PDF Downloads 261
6663 Simultaneous Saccharification and Co-Fermentation of Paddy Straw and Fruit Wastes into Ethanol Production

Authors: Kamla Malik

Abstract:

For ethanol production from paddy straw firstly pretreatment was done by using sodium hydroxide solution (2.0%) at 15 psi for 1 hr. The maximum lignin removal was achieved with 0.5 mm mesh size of paddy straw. It contained 72.4 % cellulose, 15.9% hemicelluloses and 2.0 % lignin after pretreatment. Paddy straw hydrolysate (PSH) with fruits wastes (5%), such as sweet lime, apple, sapota, grapes, kinnow, banana, papaya, mango, and watermelon were subjected to simultaneous saccharification and co-fermentation (SSCF) for 72 hrs by co-culture of Saccharomyces cerevisiae HAU-1 and Candida sp. with 0.3 % urea as a cheap nitrogen source. Fermentation was carried out at 35°C and determined ethanol yield at 24 hours interval. The maximum production of ethanol was produced within 72 hrs of fermentation in PSH + sapota peels (3.9% v/v) followed by PSH + kinnow peels (3.6%) and PSH+ papaya peels extract (3.1 %). In case of PSH+ banana peels and mango peel extract the ethanol produced were 2.8 % and 2.2 % (v/v). The results of this study suggest that wastes from fruits that contain fermentable sugar should not be discarded into our environment, but should be supplemented in paddy straw which converted to useful products like bio-ethanol that can serve as an alternative energy source.

Keywords: ethanol, fermentation, fruit wastes, paddy straw

Procedia PDF Downloads 387
6662 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 269
6661 Design of a Dietetic Food: Case of Lebanese Kishk

Authors: Henri El Zakhem, Dona Shalhoub, Elias Atallah, Jessica Koura

Abstract:

Due to the increase of demand on dietetic food and the need for more types of diet food, the production of dietetic food is increasing and improving. This demand on dietetic food has triggered us to study the market in which we found that Kishk (Lebanese dairy product) diet is not available. Production of a low fat product which is diet Kishk was our concern. A strategy was followed to choose the right idea that will satisfy the need of the market. The whole process was studied and explained thoroughly. The percentage of fat was found to be 32.52 % in regular Kishk and 3.84 % in the diet Kishk produced. The new product has the advantage to be high in protein, low in fat.

Keywords: design and industrialization, dietetic, diet Kishk, fat

Procedia PDF Downloads 371
6660 Comparative Assessment of a Distributed Model and a Lumped Model for Estimating of Sediments Yielding in Small Urban Areas

Authors: J.Zambrano Nájera, M.Gómez Valentín

Abstract:

Increases in urbanization during XX century, have brought as one major problem the increased of sediment production. Hydraulic erosion is one of the major causes of increasing of sediments in small urban catchments. Such increments in sediment yielding in header urban catchments can caused obstruction of drainage systems, making impossible to capture urban runoff, increasing runoff volumes and thus exacerbating problems of urban flooding. For these reasons, it is more and more important to study of sediment production in urban watershed for properly analyze and solve problems associated to sediments. The study of sediments production has improved with the use of mathematical modeling. For that reason, it is proposed a new physically based model applicable to small header urban watersheds that includes the advantages of distributed physically base models, but with more realistic data requirements. Additionally, in this paper the model proposed is compared with a lumped model, reviewing the results, the advantages and disadvantages between the both of them.

Keywords: erosion, hydrologic modeling, urban runoff, sediment modeling, sediment yielding, urban planning

Procedia PDF Downloads 344
6659 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition

Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri

Abstract:

Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.

Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation

Procedia PDF Downloads 324
6658 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 110
6657 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 55
6656 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 194
6655 Use of Anti-Stick to Reduce Bitterness in Ultra Filtrated Chees-es(Single Packaged)

Authors: B. Khorram, M. Taslikh, R. Sattarzadeh, M. Ghazanfari

Abstract:

Bitterness is one of the most important problems in cheese processing industry all over the world. There are several reasons that bitterness may develop in cheese. With a few exceptions bitterness is generally associated with proteolysis. In this investigation, anti-stick as a neutral substance in proteolysis were considered and studied for reducing the problem. This vast survey was conducted in a big cheese production factory (in Neyshabur) and in the same procedure anti-stick as interested factor in cheeses packaging compared to standard cheeses production, one line productions (65200 packs with anti-stick were tested by 2953 persons for bitterness and another line was included the same procedure with standard cheese. In this investigate: 83% of standard packaging cheeses, compared with only28% of consumers cheese with anti-stick which confirmed bitterness. Although bitterness is generally associated with proteolysis and Microbial factors, Somatic cell, Starters play important role in generating bitterness in ultra filtrated cheeses, but based on the results the other factors such as anti-stick in packaging can be effective methods for reducing and removing unfavorable bitterness in cheese production.

Keywords: bitterness, uf cheese, anti-stick, single packaged

Procedia PDF Downloads 471
6654 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 143
6653 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron

Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora

Abstract:

Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.

Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model

Procedia PDF Downloads 151