Search results for: energy conversion efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13409

Search results for: energy conversion efficiency

12659 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 64
12658 Correlation Analysis of Energy Use, Architectural Design and Residential Lifestyle in Japan Smart Community

Authors: Tran Le Na, Didit Novianto, Yoshiaki Ushifusa, Weijun Gao

Abstract:

This paper introduces the characteristics of Japanese residential lifestyle and Japanese Architectural housing design, meanwhile, summarizes the results from an analysis of energy use of 12 households in electric-only multi dwellings in Higashida Smart Community, Kitakyushu, Japan. Using hourly load and daily load data collected from smart meter, we explore correlations of energy use in households according to the incentive of different levels of architectural characteristics and lifestyle, following three factors: Space (Living room, Kitchen, Bedroom, Bathroom), Time (daytime and night time, weekdays and weekend) and User (Elderly, Parents, Kids). The energy consumption reports demonstrated that the essential demand of household’s response to variable factors. From that exploratory analysis, we can define the role of housing equipment layout and spatial layout in residential housing design. Likewise, determining preferred spaces and time use can help to optimize energy consumption in households. This paper contributes to the application of Smart Home Energy Management System in Smart Community in Japan and provides a good experience to other countries.

Keywords: smart community, energy efficiency, architectural housing design, residential lifestyle

Procedia PDF Downloads 194
12657 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 342
12656 Impact of Egypt’s Energy Demand on Oil and Gas Power Systems Environment

Authors: Moustafa Osman Mohamed

Abstract:

This paper will explore the influence of energy sector in Arab Republic of Egypt which has shared its responsibilities of many environmental challenges as the second largest economy in the Middle East (after Iran). Air and water pollution, desertification, inadequate disposal of solid waste and damage to coral reefs are serious problems that influence environmental management in Egypt. The intensive reliance of high population density and strong industrial growth are wearing Egypt's resources, and the rapidly-growing population has forced Egypt to breakdown agricultural land to residential and relevant use of commercial ingestion. The depletion effects of natural resources impose the government to apply innovation techniques in emission control and focus on sustainability. The cogeneration will be presented to control thermal losses and increase efficiency of energy power system.

Keywords: cogeneration, environmental management, power electricity, energy indicators

Procedia PDF Downloads 256
12655 Implementation of Renewable Energy Technologies in Rural Africa

Authors: Joseph Levodo, Andy Ford, ISSA Chaer

Abstract:

Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in wanting renewable energy based technologies. However to-date, implementation of Modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. It was initially speculated that the low uptake of solar technology in Africa was associated with the continent’s high poverty levels and limitations in technical capacity as well as awareness. Nonetheless, this is not an academic based speculation and the exact reasons for this low trend in technology adoption are unclear and require further investigation. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature review would include the following four main categories: design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems, Then it looks at the role of policy and potential future of technological development of photovoltaic (PV) by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic (PV) in Africa.

Keywords: Africa Solar Potential, policy, photovoltaic, technologies

Procedia PDF Downloads 536
12654 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks

Authors: Anuradha Banerjee

Abstract:

A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.

Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery

Procedia PDF Downloads 330
12653 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 52
12652 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 109
12651 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: energy efficiency, heritage, historical building, renovation

Procedia PDF Downloads 285
12650 Co-Alignment of Comfort and Energy Saving Objectives for U.S. Office Buildings and Restaurants

Authors: Lourdes Gutierrez, Eric Williams

Abstract:

Post-occupancy research shows that only 11% of commercial buildings met the ASHRAE thermal comfort standard. Many buildings are too warm in winter and/or too cool in summer, wasting energy and not providing comfort. In this paper, potential energy savings in U.S. offices and restaurants if thermostat settings are calculated according the updated ASHRAE 55-2013 comfort model that accounts for outdoor temperature and clothing choice for different climate zones. eQUEST building models are calibrated to reproduce aggregate energy consumption as reported in the U.S. Commercial Building Energy Consumption Survey. Changes in energy consumption due to the new settings are analyzed for 14 cities in different climate zones and then the results are extrapolated to estimate potential national savings. It is found that, depending on the climate zone, each degree increase in the summer saves 0.6 to 1.0% of total building electricity consumption. Each degree the winter setting is lowered saves 1.2% to 8.7% of total building natural gas consumption. With new thermostat settings, national savings are 2.5% of the total consumed in all office buildings and restaurants, summing up to national savings of 69.6 million GJ annually, comparable to all 2015 total solar PV generation in US. The goals of improved comfort and energy/economic savings are thus co-aligned, raising the importance of thermostat management as an energy efficiency strategy.

Keywords: energy savings quantifications, commercial building stocks, dynamic clothing insulation model, operation-focused interventions, energy management, thermal comfort, thermostat settings

Procedia PDF Downloads 297
12649 Energy Consumption Optimization of Electric Vehicle by Using Machine Learning: A Comparative Literature Review and Lessons Learned

Authors: Sholeh Motaghian, Pekka Toivanen, Keiji Haataja

Abstract:

The swift expansion of the transportation industry and its associated emissions have captured the focus of policymakers who are dedicated to upholding ecological sustainability. As a result, understanding the key contributors to transportation emissions is of utmost significance. Amidst the escalating transportation emissions, the significance of electric vehicles cannot be overstated. Electric vehicles play a critical role in steering us towards a low-carbon economy and a sustainable ecological setting. The effective integration of electric vehicles hinges on the development of energy consumption models capable of accurately and efficiently predicting energy usage. Enhancing the energy efficiency of electric vehicles will play a pivotal role in reducing driver concerns and establishing a vital framework for the efficient operation, planning, and management of charging infrastructure. In this article, the works done in this field are reviewed, and the advantages and disadvantages of each are stated.

Keywords: deep learning, electrical vehicle, energy consumption, machine learning, smart grid

Procedia PDF Downloads 61
12648 Improved Technology Portfolio Management via Sustainability Analysis

Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef

Abstract:

The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.

Keywords: sustainability, oil& gas, technology portfolio, key performance indicator

Procedia PDF Downloads 170
12647 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 303
12646 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine

Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra

Abstract:

The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.

Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting

Procedia PDF Downloads 359
12645 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition

Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen

Abstract:

Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.

Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains

Procedia PDF Downloads 93
12644 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) array-powered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: energy, inverter, losses, photovoltaic

Procedia PDF Downloads 622
12643 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes

Authors: S. Divya, M. Jose

Abstract:

Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.

Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process

Procedia PDF Downloads 46
12642 The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary

Authors: András Medve, Katalin Szabad, István Patkó

Abstract:

According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project.

Keywords: sustainable energy, renewable energy, development of geothermic energy in Hungary

Procedia PDF Downloads 585
12641 Effective Water Purification by Impregnated Carbon Nanotubes

Authors: Raviteja Chintala

Abstract:

Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.

Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot

Procedia PDF Downloads 324
12640 Lignin Pyrolysis to Value-Added Chemicals: A Mechanistic Approach

Authors: Binod Shrestha, Sandrine Hoppe, Thierry Ghislain, Phillipe Marchal, Nicolas Brosse, Anthony Dufour

Abstract:

The thermochemical conversion of lignin has received an increasing interest in the frame of different biorefinery concepts for the production of chemicals or energy. It is needed to better understand the physical and chemical conversion of lignin for feeder and reactor designs. In-situ rheology reveals the viscoelastic behaviour of lignin upon thermal conversion. The softening, re-solidification (char formation), swelling and shrinking behaviours are quantified during pyrolysis in real-time [1]. The in-situ rheology of an alkali lignin (Protobind 1000) was conducted in high torque controlled strain rheometer from 35°C to 400°C with a heating rate of 5°C.min-1. The swelling, through glass phase transition overlapped with depolymerization, and solidification (crosslinking and “char” formation) are two main phenomena observed during lignin pyrolysis. The onset of temperatures for softening and solidification for this lignin has been found to be 141°C and 248°C respectively. An ex-situ characterization of lignin/char residues obtained at different temperatures after quenching in the rheometer gives a clear understanding of the pathway of lignin degradation. The lignin residues were sampled from the mid-point temperatures of the softening range and solidification range to study the chemical transformations undergoing. Elemental analysis, FTIR and solid state NMR were conducted after quenching the solid residues (lignin/char). The quenched solid was also extracted by suitable solvent and followed by acetylation and GPC-UV analysis. The combination of 13C NMR and GPC-UV reveals the depolymerization followed by crosslinking of lignin/char. NMR and FTIR provide the evolution of functional moieties upon temperature. Physical and chemical mechanisms occurring during lignin pyrolysis are accounted in this study. Thanks to all these complementary methods.

Keywords: pyrolysis, bio-chemicals, valorization, mechanism, softening, solidification, cross linking, rheology, spectroscopic methods

Procedia PDF Downloads 412
12639 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

Authors: Hussain Ali Bekhet, Nor Hamisham Harun

Abstract:

The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.

Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy

Procedia PDF Downloads 381
12638 Combined Influence of Charge Carrier Density and Temperature on Open-Circuit Voltage in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Monishka Narayan, Jai Singh

Abstract:

One of the key parameters in determining the power conversion efficiency (PCE) of organic solar cells (OSCs) is the open-circuit voltage, however, it is still not well understood. In order to examine the performance of OSCs, it is necessary to understand the losses associated with the open-circuit voltage and how best it can be improved. Here, an analytical expression for the open-circuit voltage of bulk heterojunction (BHJ) OSCs is derived from the charge carrier densities without considering the drift-diffusion current. The open-circuit voltage thus obtained is dependent on the donor-acceptor band gap, the energy difference between the highest occupied molecular orbital (HOMO) and the hole quasi-Fermi level of the donor material, temperature, the carrier density (electrons), the generation rate of free charge carriers and the bimolecular recombination coefficient. It is found that open-circuit voltage increases when the carrier density increases and when the temperature decreases. The calculated results are discussed in view of experimental results and agree with them reasonably well. Overall, this work proposes an alternative pathway for improving the open-circuit voltage in BHJ OSCs.

Keywords: charge carrier density, open-circuit voltage, organic solar cells, temperature

Procedia PDF Downloads 355
12637 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case

Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa RodríGuez

Abstract:

Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including Exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67 %. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85, 59, 87, and 29 %, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09 % for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determinates the sustainability of the process.

Keywords: exergy analysis, life cycle assessment (LCA), renewability, sustainability

Procedia PDF Downloads 198
12636 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 135
12635 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: appliance, consumption, electricity, households

Procedia PDF Downloads 103
12634 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 111
12633 Design Analysis of Solar Energy Panels for Tropical Nigeria

Authors: Cyril Agochi Okorowo

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man have greatly influenced climate change over the years as a result of a consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discusses solar energy as the abundant renewable energy in the tropical Nigeria, processes of harvesting the energy and recommends solar energy as an alternative means of electric power generation in a time the demand for power in Nigeria supersedes supply.

Keywords: analysis, energy, design, solar

Procedia PDF Downloads 276
12632 Energy Management System with Temperature Rise Prevention on Hybrid Ships

Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy

Abstract:

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Keywords: energy storage system, power shipboard, hybrid ship, thermal runaway

Procedia PDF Downloads 183
12631 Numerical Study of Natural Convection in Isothermal Open Cavities

Authors: Gaurav Prabhudesai, Gaetan Brill

Abstract:

The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.

Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities

Procedia PDF Downloads 275
12630 Cognitive Behavior Therapy with a Migrant Pakistani in Malaysia: A Single Case Study of Conversion Disorder

Authors: Fahad R. Choudhry., Khadeeja Munawar

Abstract:

This clinical case presents a 24 years old, Muslim Pakistani girl with a history of conversion disorder. Her symptoms comprised fits, restlessness, numbness in legs, poor coordination and balance, burning during urination and retention. A cognitive-behavioral model was used for conceptualizing her problem and devising a management plan based on cognitive behavioral therapy (CBT) and culturally adapted coping statements. She took 13 therapy sessions and was presented with idiosyncratic case conceptualization. Psychoeducation, coping statements, extinction, verbal challenging, and behavioral activation techniques were practiced in a collaborative way for cognitive restructuring of the client. Focus of terminal sessions was on anger management. The client needed a couple of more sessions in order to help her manage her anger. However, the therapy was terminated on the part of the client after attainment of short term goals. The client reported to have a 75 % improvement in her overall condition and remained compliant throughout the therapy.

Keywords: cognitive behavioral therapy, conversion disorder, female, Muslim, Pakistani

Procedia PDF Downloads 182