Search results for: BIM application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8228

Search results for: BIM application

578 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 404
577 Linking Information Systems Capabilities for Service Quality: The Role of Customer Connection and Environmental Dynamism

Authors: Teng Teng, Christos Tsinopoulos

Abstract:

The purpose of this research is to explore the link between IS capabilities, customer connection, and quality performance in the service context, with investigation of the impact of firm’s stable and dynamic environments. The application of Information Systems (IS) has become a significant effect on contemporary service operations. Firms invest in IS with the presumption that they will facilitate operations processes so that their performance will improve. Yet, IS resources by themselves are not sufficiently 'unique' and thus, it would be more useful and theoretically relevant to focus on the processes they affect. One such organisational process, which has attracted a lot of research attention by supply chain management scholars, is the integration of customer connection, where IS-enabled customer connection enhances communication and contact processes, and with such customer resources integration comes greater success for the firm in its abilities to develop a good understanding of customer needs and set accurate customer. Nevertheless, prior studies on IS capabilities have focused on either one specific type of technology or operationalised it as a highly aggregated concept. Moreover, although conceptual frameworks have been identified to show customer integration is valuable in service provision, there is much to learn about the practices of integrating customer resources. In this research, IS capabilities have been broken down into three dimensions based on the framework of Wade and Hulland: IT for supply chain activities (ITSCA), flexible IT infrastructure (ITINF), and IT operations shared knowledge (ITOSK); and focus on their impact on operational performance of firms in services. With this background, this paper addresses the following questions: -How do IS capabilities affect the integration of customer connection and service quality? -What is the relationship between environmental dynamism and the relationship of customer connection and service quality? A survey of 156 service establishments was conducted, and the data analysed to determine the role of customer connection in mediating the effects of IS capabilities on firms’ service quality. Confirmatory factor analysis was used to check convergent validity. There is a good model fit for the structural model. Moderating effect of environmental dynamism on the relationship of customer connection and service quality is analysed. Results show that ITSCA, ITINF, and ITOSK have a positive influence on the degree of the integration of customer connection. In addition, customer connection positively related to service quality; this relationship is further emphasised when firms work in a dynamic environment. This research takes a step towards quelling concerns about the business value of IS, contributing to the development and validation of the measurement of IS capabilities in the service operations context. Additionally, it adds to the emerging body of literature linking customer connection to the operational performance of service firms. Managers of service firms should consider the strength of the mediating role of customer connection when investing in IT-related technologies and policies. Particularly, service firms developing IS capabilities should simultaneously implement processes that encourage supply chain integration.

Keywords: customer connection, environmental dynamism, information systems capabilities, service quality, service supply chain

Procedia PDF Downloads 140
576 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 370
575 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 92
574 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
573 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety

Authors: Hengameh Hosseini

Abstract:

Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.

Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety

Procedia PDF Downloads 116
572 Teaching Academic Writing for Publication: A Liminal Threshold Experience Towards Development of Scholarly Identity

Authors: Belinda du Plooy, Ruth Albertyn, Christel Troskie-De Bruin, Ella Belcher

Abstract:

In the academy, scholarliness or intellectual craftsmanship is considered the highest level of achievement, culminating in being consistently successfully published in impactful, peer-reviewed journals and books. Scholarliness implies rigorous methods, systematic exposition, in-depth analysis and evaluation, and the highest level of critical engagement and reflexivity. However, being a scholar does not happen automatically when one becomes an academic or completes graduate studies. A graduate qualification is an indication of one’s level of research competence but does not necessarily prepare one for the type of scholarly writing for publication required after a postgraduate qualification has been conferred. Scholarly writing for publication requires a high-level skillset and a specific mindset, which must be intentionally developed. The rite of passage to become a scholar is an iterative process with liminal spaces, thresholds, transitions, and transformations. The journey from researcher to published author is often fraught with rejection, insecurity, and disappointment and requires resilience and tenacity from those who eventually triumph. It cannot be achieved without support, guidance, and mentorship. In this article, the authors use collective auto-ethnography (CAE) to describe the phases and types of liminality encountered during the liminal journey toward scholarship. The authors speak as long-time facilitators of Writing for Academic Publication (WfAP) capacity development events (training workshops and writing retreats) presented at South African universities. Their WfAP facilitation practice is structured around experiential learning principles that allow them to act as critical reading partners and reflective witnesses for the writer-participants of their WfAP events. They identify three essential facilitation features for the effective holding of a generative, liminal, and transformational writing space for novice academic writers in order to enable their safe passage through the various liminal spaces they encounter during their scholarly development journey. These features are that facilitators should be agents of disruption and liminality while also guiding writers through these liminal spaces; that there should be a sense of mutual trust and respect, shared responsibility and accountability in order for writers to produce publication-worthy scholarly work; and that this can only be accomplished with the continued application of high levels of sensitivity and discernment by WfAP facilitators. These are key features for successful WfAP scholarship training events, where focused, individual input triggers personal and professional transformational experiences, which in turn translate into high-quality scholarly outputs.

Keywords: academic writing, liminality, scholarship, scholarliness, threshold experience, writing for publication

Procedia PDF Downloads 44
571 Zeolite 4A-confined Ni-Co Nanocluster: An Efficient and Durable Electrocatalyst for Alkaline Methanol Oxidation Reaction

Authors: Sarmistha Baruah, Akshai Kumar, Nageswara Rao Peela

Abstract:

The global energy crisis due to the dependence on fossil fuels and its limited reserves as well as environmental pollution are key concerns to the research communities. However, the implementation of alcohol-based fuel cells such as methanol is anticipated as a reliable source of future energy technology due to their high energy density, environment friendliness, ease of storage, transportation, etc. To drive the anodic methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), an active and long-lasting catalyst is necessary for efficient energy conversion from methanol. Recently, transition metal-zeolite-based materials have been considered versatile catalysts for a variety of industrial and lab-scale processes. Large specific surface area, well-organized micropores, and adjustable acidity/basicity are characteristics of zeolites that make them excellent supports for immobilizing small-sized and highly dispersed metal species. Significant advancement in the production and characterization of well-defined metal clusters encapsulated within zeolite matrix has substantially expanded the library of materials available, and consequently, their catalytic efficacy. In this context, we developed bimetallic Ni-Co catalysts encapsulated within LTA (also known as 4A) zeolite via a method combined with the in-situ encapsulation of metal species using hydrothermal treatment followed by a chemical reduction process. The prepared catalyst was characterized using advanced characterization techniques, such as X-ray diffraction (XRD), field emission transmission electron microscope (FETEM), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the catalyst for MOR was carried out in an alkaline medium at room temperature using techniques such as cyclic voltammetry (CV), and chronoamperometry (CA). The resulting catalyst exhibited better catalytic activity of 12.1 mA cm-2 at 1.12 V vs Ag/AgCl and retained remarkable stability (~77%) even after 1000 cycles CV test for the electro-oxidation of methanol in alkaline media without any significant microstructural changes. The high surface area, better Ni-Co species integration in the zeolite, and the ample amount of surface hydroxyl groups contribute to highly dispersed active sites and quick analyte diffusion, which provide notable MOR kinetics. Thus, this study will open up new possibilities to develop a noble metal-free zeolite-based electrocatalyst due to its simple synthesis steps, large-scale fabrication, improved stability, and efficient activity for DMFC application.

Keywords: alkaline media, bimetallic, encapsulation, methanol oxidation reaction, LTA zeolite.

Procedia PDF Downloads 65
570 The Environmental Concerns in Coal Mining, and Utilization in Pakistan

Authors: S. R. H. Baqri, T. Shahina, M. T. Hasan

Abstract:

Pakistan is facing acute shortage of energy and looking for indigenous resources of the energy mix to meet the short fall. After the discovery of huge coal resources in Thar Desert of Sindh province, focus has shifted to coal power generation. The government of Pakistan has planned power generation of 20000 MW on coal by the year 2025. This target will be achieved by mining and power generation in Thar coal Field and on imported coal in different parts of Pakistan. Total indigenous coal production of around 3.0 million tons is being utilized in brick kilns, cement and sugar industry. Coal-based power generation is only limited to three units of 50 MW near Hyderabad from nearby Lakhra Coal field. The purpose of this presentation is to identify and redressal of issues of coal mining and utilization with reference to environmental hazards. Thar coal resource is estimated at 175 billion tons out of a total resource estimate of 184 billion tons in Pakistan. Coal of Pakistan is of Tertiary age (Palaeocene/Eocene) and classified from lignite to sub-bituminous category. Coal characterization has established three main pollutants such as Sulphur, Carbon dioxide and Methane besides some others associated with coal and rock types. The element Sulphur occurs in organic as well as inorganic forms associated with coals as free sulphur and as pyrite, gypsum, respectively. Carbon dioxide, methane and minerals are mostly associated with fractures, joints local faults, seatearth and roof rocks. The abandoned and working coal mines give kerosene odour due to escape of methane in the atmosphere. While the frozen methane/methane ices in organic matter rich sediments have also been reported from the Makran coastal and offshore areas. The Sulphur escapes into the atmosphere during mining and utilization of coal in industry. The natural erosional processes due to rivers, streams, lakes and coastal waves erode over lying sediments allowing pollutants to escape into air and water. Power plants emissions should be controlled through application of appropriate clean coal technology and need to be regularly monitored. Therefore, the systematic and scientific studies will be required to estimate the quantity of methane, carbon dioxide and sulphur at various sites such as abandoned and working coal mines, exploratory wells for coal, oil and gas. Pressure gauges on gas pipes connecting the coal-bearing horizons will be installed on surface to know the quantity of gas. The quality and quantity of gases will be examined according to the defined intervals of times. This will help to design and recommend the methods and procedures to stop the escape of gases into atmosphere. The element of Sulphur can be removed partially by gravity and chemical methods after grinding and before industrial utilization of coal.

Keywords: atmosphere, coal production, energy, pollutants

Procedia PDF Downloads 435
569 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets using an OpenScience Energy System Optimization Model

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is be clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results is ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 73
568 Controlling Deforestation in the Densely Populated Region of Central Java Province, Banjarnegara District, Indonesia

Authors: Guntur Bagus Pamungkas

Abstract:

As part of a tropical country that is normally rich in forest land areas, Indonesia has always been in the world's spotlight due to its significantly increasing process of deforestation. In one hand, it is related to the mainstay for maintaining the sustainability of the earth's ecosystem functions. On the other hand, they also cover the various potential sources of the global economy. Therefore, it can always be the target of different scale of investors to excessively exploit them. No wonder the emergence of disasters in various characteristics always comes up. In fact, the deforestation phenomenon does not only occur in various forest land areas in the main islands of Indonesia but also includes Java Island, the most densely populated areas in the world. This island only remains the forest land of about 9.8% of the total forest land in Indonesia due to its long history of it, especially in Central Java Province, the most densely populated area in Java. Again, not surprisingly, this province belongs to the area with the highest frequency of disasters because of it, landslides in particular. One of the areas that often experience it is Banjarnegara District, especially in mountainous areas that lies in the range from 1000 to 3000 meters above sea level, where the remains of land forest area can easyly still be found. Even among them still leaves less untouchable tropical rain forest whose area also covers part of a neighboring district, Pekalongan, which is considered to be the rest of the world's little paradise on Earth. The district's landscape is indeed beautiful, especially in the Dieng area, a major tourist destination in Central Java Province after Borobudur Temple. However, annually hazardous always threatens this district due to this landslide disaster. Even, there was a tragic event that was buried with its inhabitants a few decades ago. This research aims to find part of the concept of effective forest management through monitoring the presence of remaining forest areas in this area. The research implemented monitoring of deforestation rates using the Stochastic Cellular Automata-Markov Chain (SCA-MC) method, which serves to provide a spatial simulation of land use and cover changes (LULCC). This geospatial process uses the Landsat-8 OLI image product with Thermal Infra-Red Sensors (TIRS) Band 10 in 2020 and Landsat 5 TM with TIRS Band 6 in 2010. Then it is also integrated with physical and social geography issues using the QGIS 2.18.11 application with the Mollusce Plugin, which serves to clarify and calculate the area of land use and cover, especially in forest areas—using the LULCC method, which calculates the rate of forest area reduction in 2010-2020 in Banjarnegara District. Since the dependence of this area on the use of forest land is quite high, concepts and preventive actions are needed, such as rehabilitation and reforestation of critical lands through providing proper monitoring and targeted forest management to restore its ecosystem in the future.

Keywords: deforestation, populous area, LULCC method, proper control and effective forest management

Procedia PDF Downloads 135
567 Global Digital Peer-to-Peer (P2P) Lending Platform Empowering Rural India: Determinants of Funding

Authors: Ankur Mehra, M. V. Shivaani

Abstract:

With increasing digitization, the world is coming closer, not only in terms of informational flow but also in terms of capital flows. And micro-finance institutions (MFIs) have perfectly leveraged this digital world by resorting to the innovative digital social peer-to-peer (P2P) lending platforms, such as, Kiva. These digital P2P platforms bring together micro-borrowers and lenders from across the world. The main objective of this study is to understand the funding preferences of social investors primarily from developed countries (such as US, UK, Australia), lending money to borrowers from rural India at zero interest rates through Kiva. Further, the objective of this study is to increase awareness about such a platform among various MFIs engaged in providing micro-loans to those in need. The sample comprises of India based micro-loan applications posted by various MFIs on Kiva lending platform over the period Sept 2012-March 2016. Out of 7,359 loans, 256 loans failed to get funded by social investors. On an average a micro-loan with 30 days to expiry gets fully funded in 7,593 minutes or 5.27 days. 62% of the loans raised on Kiva are related to livelihood, 32.5% of the loans are for funding basic necessities and balance 5.5% loans are for funding education. 47% of the loan applications have more than one borrower; while, currency exchange risk is on the social lenders for 45% of the loans. Controlling for the loan amount and loan tenure, the analyses suggest that those loan applications where the number of borrowers is more than one have a lower chance of getting funded as compared to the loan applications made by a sole borrower. Such group applications also take more time to get funded. Further, loan application by a solo woman not only has a higher chance of getting funded but as such get funded faster. The results also suggest that those loan applications which are supported by an MFI that has a religious affiliation, not only have a lower chance of getting funded, but also take longer to get funded as compared to the loan applications posted by secular MFIs. The results do not support cross-border currency risk to be a factor in explaining the determinants of loan funding. Finally, analyses suggest that loans raised for the purpose of earning livelihood and education have a higher chance of getting funded and such loans get funded faster as compared to the loans applied for purposes related to basic necessities such a clothing, housing, food, health, and personal use. The results are robust to controls for ‘MFI dummy’ and ‘year dummy’. The key implication from this study is that global social investors tend to develop an emotional connect with single woman borrowers and consequently they get funded faster Hence, MFIs should look for alternative ways for funding loans whose purpose is to meet basic needs; while, more loans related to livelihood and education should be raised via digital platforms.

Keywords: P2P lending, social investing, fintech, financial inclusion

Procedia PDF Downloads 144
566 Enhancing Emotional Regulation in Autistic Students with Intellectual Disabilities through Visual Dialogue: An Action Research Study

Authors: Tahmina Huq

Abstract:

This paper presents the findings of an action research study that aimed to investigate the efficacy of a visual dialogue strategy in assisting autistic students with intellectual disabilities in managing their immediate emotions and improving their academic achievements. The research sought to explore the effectiveness of teaching self-regulation techniques as an alternative to traditional approaches involving segregation. The study identified visual dialogue as a valuable tool for promoting self-regulation in this specific student population. Action research was chosen as the methodology due to its suitability for immediate implementation of the findings in the classroom. Autistic students with intellectual disabilities often face challenges in controlling their emotions, which can disrupt their learning and academic progress. Conventional methods of intervention, such as isolation and psychologist-assisted approaches, may result in missed classes and hindered academic development. This study introduces the utilization of visual dialogue between students and teachers as an effective self-regulation strategy, addressing the limitations of traditional approaches. Action research was employed as the methodology for this study, allowing for the direct application of the findings in the classroom. The study observed two 15-year-old autistic students with intellectual disabilities who exhibited difficulties in emotional regulation and displayed aggressive behaviors. The research question focused on the effectiveness of visual dialogue in managing the emotions of these students and its impact on their learning outcomes. Data collection methods included personal observations, log sheets, personal reflections, and visual documentation. The study revealed that the implementation of visual dialogue as a self-regulation strategy enabled the students to regulate their emotions within a short timeframe (10 to 30 minutes). Through visual dialogue, they were able to express their feelings and needs in socially appropriate ways. This finding underscores the significance of visual dialogue as a tool for promoting emotional regulation and facilitating active participation in classroom activities. As a result, the students' learning outcomes and social interactions were positively impacted. The findings of this study hold significant implications for educators working with autistic students with intellectual disabilities. The use of visual dialogue as a self-regulation strategy can enhance emotional regulation skills and improve overall academic progress. The action research approach outlined in this paper provides practical guidance for educators in effectively implementing self-regulation strategies within classroom settings. In conclusion, the study demonstrates that visual dialogue is an effective strategy for enhancing emotional regulation in autistic students with intellectual disabilities. By employing visual communication, students can successfully regulate their emotions and actively engage in classroom activities, leading to improved learning outcomes and social interactions. This paper underscores the importance of implementing self-regulation strategies in educational settings to cater to the unique needs of autistic students.

Keywords: action research, self-regulation, autism, visual communication

Procedia PDF Downloads 62
565 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 510
564 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 317
563 The Social Ecology of Serratia entomophila: Pathogen of Costelytra giveni

Authors: C. Watson, T. Glare, M. O'Callaghan, M. Hurst

Abstract:

The endemic New Zealand grass grub (Costelytra giveni, Coleoptera: Scarabaeidae) is an economically significant grassland pest in New Zealand. Due to their impacts on production within the agricultural sector, one of New Zealand's primary industries, several methods are being used to either control or prevent the establishment of new grass grub populations in the pasture. One such method involves the use of a biopesticide based on the bacterium Serratia entomophila. This species is one of the causative agents of amber disease, a chronic disease of the larvae which results in death via septicaemia after approximately 2 to 3 months. The ability of S. entomophila to cause amber disease is dependant upon the presence of the amber disease associated plasmid (pADAP), which encodes for the key virulence determinants required for the establishment and maintenance of the disease. Following the collapse of grass grub populations within the soil, resulting from either natural population build-up or application of the bacteria, non-pathogenic plasmid-free Serratia strains begin to predominate within the soil. Whilst the interactions between S. entomophila and grass grub larvae are well studied, less information is known on the interactions between plasmid-bearing and plasmid-free strains, particularly the potential impact of these interactions upon the efficacy of an applied biopesticide. Using a range of constructed strains with antibiotic tags, in vitro (broth culture) and in vivo (soil and larvae) experiments were conducted using inoculants comprised of differing ratios of isogenic pathogenic and non-pathogenic Serratia strains, enabling the relative growth of pADAP+ and pADAP- strains under competition conditions to be assessed. In nutrient-rich, the non-pathogenic pADAP- strain outgrew the pathogenic pADAP+ strain by day 3 when inoculated in equal quantities, and by day 5 when applied as the minority inoculant, however, there was an overall gradual decline in the number of viable bacteria for both strains over a 7-day period. Similar results were obtained in additional experiments using the same strains and continuous broth cultures re-inoculated at 24-hour intervals, although in these cultures, the viable cell count did not diminish over the 7-day period. When the same ratios were assessed in soil microcosms with limited available nutrients, the strains remained relatively stable over a 2-month period. Additionally, in vivo grass grub co-infections assays using the same ratios of tagged Serratia strains revealed similar results to those observed in the soil, but there was also evidence of horizontal transfer of pADAP from the pathogenic to the non-pathogenic strain within the larval gut after a period of 4 days. Whilst the influence of competition is more apparent in broth cultures than within the soil or larvae, further testing is required to determine whether this competition between pathogenic and non-pathogenic Serratia strains has any influence on efficacy and disease progression, and how this may impact on the ability of S. entomophila to cause amber disease within grass grub larvae when applied as a biopesticide.

Keywords: biological control, entomopathogen, microbial ecology, New Zealand

Procedia PDF Downloads 156
562 Fuzzy Availability Analysis of a Battery Production System

Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz

Abstract:

In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.

Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)

Procedia PDF Downloads 224
561 Navigating the Digital Landscape: An Ethnographic Content Analysis of Black Youth's Encounters with Racially Traumatic Content on Social Media

Authors: Tiera Tanksley, Amanda M. McLeroy

Abstract:

The advent of technology and social media has ushered in a new era of communication, providing platforms for news dissemination and cause advocacy. However, this digital landscape has also exposed a distressing phenomenon termed "Black death," or trauma porn. This paper delves into the profound effects of repeated exposure to traumatic content on Black youth via social media, exploring the psychological impacts and potential reinforcing of stereotypes. Employing Critical Race Technology Theory (CRTT), the study sheds light on algorithmic anti-blackness and its influence on Black youth's lives and educational experiences. Through ethnographic content analysis, the research investigates common manifestations of Black death encountered online by Black adolescents. Findings unveil distressing viral videos, traumatic images, racial slurs, and hate speech, perpetuating stereotypes. However, amidst the distress, the study identifies narratives of activism and social justice on social media platforms, empowering Black youth to engage in positive change. Coping mechanisms and community support emerge as significant factors in navigating the digital landscape. The study underscores the need for comprehensive interventions and policies informed by evidence-based research. By addressing algorithmic anti-blackness and promoting digital resilience, the paper advocates for a more empathetic and inclusive online environment. Understanding coping mechanisms and community support becomes imperative for fostering mental well-being among Black adolescents navigating social media. In education, the implications are substantial. Acknowledging the impact of Black death content, educators play a pivotal role in promoting media literacy and digital resilience. Creating inclusive and safe online spaces, educators can mitigate negative effects and encourage open discussions about traumatic content. The application of CRTT in educational technology emphasizes dismantling systemic biases and promoting equity. In conclusion, this study calls for educators to be cognizant of the impact of Black death content on social media. By prioritizing media literacy, fostering digital resilience, and advocating for unbiased technologies, educators contribute to an inclusive and just educational environment for all students, irrespective of their race or background. Addressing challenges related to Black death content proactively ensures the well-being and mental health of Black adolescents, fostering an empathetic and inclusive digital space.

Keywords: algorithmic anti-Blackness, digital resilience, media literacy, traumatic content

Procedia PDF Downloads 56
560 Urban Planning Patterns after (COVID-19): An Assessment toward Resiliency

Authors: Mohammed AL-Hasani

Abstract:

The Pandemic COVID-19 altered the daily habits and affected the functional performance of the cities after this crisis leaving remarkable impacts on many metropolises worldwide. It is so obvious that having more densification in the city leads to more threats altering this main approach that was called for achieving sustainable development. The main goal to achieve resiliency in the cities, especially in forcing risks, is to deal with a planning system that is able to resist, absorb, accommodate and recover from the impacts that had been affected. Many Cities in London, Wuhan, New York, and others worldwide carried different planning approaches and varied in reaction to safeguard the impacts of the pandemic. The cities globally varied from the radiant pattern predicted by Le Corbusier, or having multi urban centers more like the approach of Frank Lloyd Wright’s Broadacre City, or having linear growth or gridiron expansion that was common by Doxiadis, compact pattern, and many other hygiene patterns. These urban patterns shape the spatial distribution and Identify both open and natural spaces with gentrified and gentrifying areas. This crisis paid attention to reassess many planning approaches and examine the existing urban patterns focusing more on the aim of continuity and resiliency in managing the crises within the rapid transformation and the power of market forces. According to that, this paper hypothesized that those urban planning patterns determine the method of reaction in assuring quarantine for the inhabitance and the performance of public services and need to be updated through carrying out an innovative urban management system and adopt further resilience patterns in prospective urban planning approaches. This paper investigates the adaptivity and resiliency of variant urban planning patterns regarding selected cities worldwide that affected by COVID-19 and their role in applying certain management strategies in controlling the pandemic spread, finding out the main potentials that should be included in prospective planning approaches. The examination encompasses the spatial arrangement, blocks definition, plots arrangement, and urban space typologies. This paper aims to investigate the urban patterns to deliberate also the debate between densification as one of the more sustainable planning approaches and disaggregation tendency that was followed after the pandemic by restructuring and managing its application according to the assessment of the spatial distribution and urban patterns. The biggest long-term threat to dense cities proves the need to shift to online working and telecommuting, creating a mixture between using cyber and urban spaces to remobilize the city. Reassessing spatial design and growth, open spaces, urban population density, and public awareness are the main solutions that should be carried out to face the outbreak in our current cities that should be managed from global to tertiary levels and could develop criteria for designing the prospective cities

Keywords: COVID-19, densification, resiliency, urban patterns

Procedia PDF Downloads 130
559 Diversity and Use of Agroforestry Yards of Family Farmers of Ponte Alta – Gama, Federal District, Brazil

Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Martins

Abstract:

The home gardens areas are production systems, which are located near the homes and are quite common in the tropics. They consist of agricultural and forest species and may also involve the raising of small animals to produce food for subsistence as well as income generation, with a special focus on the conservation of biodiversity. Home gardens are diverse Agroforestry systems with multiple uses, among many, food security, income aid, traditional medicine. The work was carried out on rural properties of the family farmers of the Ponte Alta Rural Nucleus, Gama Administrative Region, in the city of Brasília, Federal District- Brazil. The present research is characterized methodologically as a quantitative, exploratory and descriptive nature. The instruments used in this research were: bibliographic survey and semi-structured questionnaire. The data collection was performed through the application of a semi-structured questionnaire, containing questions that referred to the perception and behavior of the interviewed producer on the subject under analysis. In each question, the respondent explained his knowledge about sustainability, agroecological practices, environmental legislation, conservation methods, forest and medicinal species, ago social and socioeconomic characteristics, use and purpose of agroforestry and technical assistance. The sample represented 55.62% of the universe of the study. We interviewed 99 people aged 18-83 years, with a mean age of 49 years. The low level of education, coupled with the lack of training and guidance for small family farmers in the Ponte Alta Rural Nucleus, is one of the limitations to the development of practices oriented towards sustainable and agroecological agriculture in the nucleus. It is observed that 50.5% of the interviewed people landed with agroforestry yards less than 20 years ago, and only 16.17% of them are older than 35 years. In identifying agriculture as the main activity of most of the rural properties studied, attention is drawn to the cultivation of medicinal plants, fruits and crops as the most extracted products. However, it is verified that the crops in the backyards have the exclusive purpose of family consumption, which could be complemented with the marketing of the surplus, as well as with the aggregation of value to the cultivated products. Initiatives such as this may contribute to the increase in family income and to the motivation and value of the crop in agroecological gardens. We conclude that home gardens of Ponte Alta are highly diverse thus contributing to local biodiversity conservation of are managed by women to ensure food security and allows income generation. The tradition of existing knowledge on the use and management of the diversity of resources used in agroforestry yards is of paramount importance for the development of sustainable alternative practices.

Keywords: agriculture, agroforestry system, rural development, sustainability

Procedia PDF Downloads 141
558 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 230
557 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications

Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy

Abstract:

Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.

Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr

Procedia PDF Downloads 513
556 Molecular Dynamics Simulation Study of the Influence of Potassium Salts on the Adsorption and Surface Hydration Inhibition Performance of Hexane, 1,6 - Diamine Clay Mineral Inhibitor onto Sodium Montmorillonite

Authors: Justine Kiiza, Xu Jiafang

Abstract:

The world’s demand for energy is increasing rapidly due to population growth and a reduction in shallow conventional oil and gas reservoirs, resorting to deeper and mostly unconventional reserves like shale oil and gas. Most shale formations contain a large amount of expansive sodium montmorillonite (Na-Mnt), due to high water adsorption, hydration, and when the drilling fluid filtrate enters the formation with high Mnt content, the wellbore wall can be unstable due to hydration and swelling, resulting to shrinkage, sticking, balling, time wasting etc., and well collapse in extreme cases causing complex downhole accidents and high well costs. Recently, polyamines like 1, 6 – hexane diamine (HEDA) have been used as typical drilling fluid shale inhibitors to minimize and/or cab clay mineral swelling and maintain the wellbore stability. However, their application is limited to shallow drilling due to their sensitivity to elevated temperature and pressure. Inorganic potassium salts i.e., KCl, have long been applied for restriction of shale formation hydration expansion in deep wells, but their use is limited due to toxicity. Understanding the adsorption behaviour of HEDA on Na-Mnt surfaces in present of organo-salts, organic K-salts e.g., HCO₂K - main component of organo-salt drilling fluid, is of great significance in explaining the inhibitory performance of polyamine inhibitors. Molecular dynamic simulations (MD) were applied to investigate the influence of HCO₂K and KCl on the adsorption mechanism of HEDA on the Na-Mnt surface. Simulation results showed that adsorption configurations of HEDA are mainly by terminal amine groups with a flat-lying alkyl hydrophobic chain. Its interaction with the clay surface decreased the H-bond number between H₂O-clay and neutralized the negative charge of the Mnt surface, thus weakening the surface hydration ability of Na-Mnt. The introduction of HCO₂K greatly improved inhibition ability, coordination of interlayer ions with H₂O as they were replaced by K+, and H₂O-HCOO- coordination reduced H₂O-Mnt interactions, mobility and transport capability of H₂O molecules were more decreased. While KCl showed little ability and also caused more hydration with time, HCO₂K can be used as an alternative for offshore drilling instead of toxic KCl, with a maximum concentration noted in this study as 1.65 wt%. This study provides a theoretical elucidation for the inhibition mechanism and adsorption characteristics of HEDA inhibitor on Na-Mnt surfaces in the presence of K+-salts and may provide more insight into the evaluation, selection, and molecular design of new clay-swelling high-performance WBDF systems used in oil and gas complex offshore drilling well sections.

Keywords: shale, hydration, inhibition, polyamines, organo-salts, simulation

Procedia PDF Downloads 47
555 Application of Multidimensional Model of Evaluating Organisational Performance in Moroccan Sport Clubs

Authors: Zineb Jibraili, Said Ouhadi, Jorge Arana

Abstract:

Introduction: Organizational performance is recognized by some theorists as one-dimensional concept, and by others as multidimensional. This concept, which is already difficult to apply in traditional companies, is even harder to identify, to measure and to manage when voluntary organizations are concerned, essentially because of the complexity of that form of organizations such as sport clubs who are characterized by the multiple goals and multiple constituencies. Indeed, the new culture of professionalization and modernization around organizational performance emerges new pressures from the state, sponsors, members and other stakeholders which have required these sport organizations to become more performance oriented, or to build their capacity in order to better manage their organizational performance. The evaluation of performance can be made by evaluating the input (e.g. available resources), throughput (e.g. processing of the input) and output (e.g. goals achieved) of the organization. In non-profit organizations (NPOs), questions of performance have become increasingly important in the world of practice. To our knowledge, most of studies used the same methods to evaluate the performance in NPSOs, but no recent study has proposed a club-specific model. Based on a review of the studies that specifically addressed the organizational performance (and effectiveness) of NPSOs at operational level, the present paper aims to provide a multidimensional framework in order to understand, analyse and measure organizational performance of sport clubs. This paper combines all dimensions founded in literature and chooses the most suited of them to our model that we will develop in Moroccan sport clubs case. Method: We propose to implicate our unified model of evaluating organizational performance that takes into account all the limitations found in the literature. On a sample of Moroccan sport clubs ‘Football, Basketball, Handball and Volleyball’, for this purpose we use a qualitative study. The sample of our study comprises data from sport clubs (football, basketball, handball, volleyball) participating on the first division of the professional football league over the period from 2011 to 2016. Each football club had to meet some specific criteria in order to be included in the sample: 1. Each club must have full financial data published in their annual financial statements, audited by an independent chartered accountant. 2. Each club must have sufficient data. Regarding their sport and financial performance. 3. Each club must have participated at least once in the 1st division of the professional football league. Result: The study showed that the dimensions that constitute the model exist in the field with some small modifications. The correlations between the different dimensions are positive. Discussion: The aim of this study is to test the unified model emerged from earlier and narrower approaches for Moroccan case. Using the input-throughput-output model for the sketch of efficiency, it was possible to identify and define five dimensions of organizational effectiveness applied to this field of study.

Keywords: organisational performance, model multidimensional, evaluation organizational performance, sport clubs

Procedia PDF Downloads 323
554 Aspiring to Achieve a Fairer Society

Authors: Bintou Jobe

Abstract:

Background: The research is focused on the concept of equality, diversity, and inclusion (EDI) and the need to achieve equity by treating individuals according to their circumstances and needs. The research is rooted in the UK Equality Act 2010, which emphasizes the importance of equal opportunities for all individuals regardless of their background and social life. However, inequality persists in society, particularly for those from minority backgrounds who face discrimination. Research Aim: The aim of this research is to promote equality, diversity, and inclusion by encouraging the regeneration of minds and the eradication of stereotypes. The focus is on promoting good Equality, Diversity and Inclusion practices in various settings, including schools, colleges, universities, and workplaces, to create environments where every individual feels a sense of belonging. Methodology: The research utilises a literature review approach to gather information on promoting inclusivity, diversity, and inclusion. Findings: The research highlights the significance of promoting equality, diversity, and inclusion practices to ensure that individuals receive the respect and dignity they deserve. It emphasises the importance of treating individuals based on their unique circumstances and needs rather than relying on stereotypes. The research also emphasises the benefits of diversity and inclusion in enhancing innovation, creativity, and productivity. The theoretical importance of this research is to raise awareness about the importance of regenerating minds, challenging stereotypes, and promoting equality, diversity, and inclusion. The emphasis is on treating individuals based on their circumstances and needs rather than relying on generalizations. Diversity and inclusion are beneficial in different settings, as highlighted by the research. By raising awareness about the importance of mind regeneration, eradicating stereotypes, and promoting equality, diversity, and inclusion, this research makes a significant contribution to the subject area. It emphasizes the necessity of treating individuals based on their unique circumstances instead of relying on generalizations. However, the methodology could be strengthened by incorporating primary research to complement the literature review approach. Data Collection and Analysis Procedures: The research utilised a literature review approach to gather relevant information on promoting inclusivity, diversity, and inclusion. NVivo software application was used to analysed and synthesize the findings to identify themes and support the research aim and objectives. Question Addressed: This research addresses the question of how to promote inclusivity, diversity, and inclusion and reduce the prevalence of stereotypes and prejudice. It explores the need to treat individuals based on their unique circumstances and needs rather than relying on generic assumptions. Encourage individuals to adopt a more inclusive approach. Provide managers with responsibility and training that helps them understand the importance of their roles in shaping the workplace culture. Have an equality, diversity, and inclusion manager from a majority background at the senior level who can speak up for underrepresented groups and flag any issues that need addressing. Conclusion: The research emphasizes the importance of promoting equality, diversity, and inclusion practices to create a fairer society. It highlights the need to challenge stereotypes, treat individuals according to their circumstances and needs, and promote a culture of respect and dignity.

Keywords: equality, fairer society, inclusion, diversity

Procedia PDF Downloads 48
553 Journeys of Healing for Military Veterans: A Pilot Study

Authors: Heather Warfield, Brad Genereux

Abstract:

Military personnel encounter a number of challenges when separating from military service to include career uncertainty, relational/family dynamics, trauma as a result of military experiences, reconceptualization of identity, and existential issues related to purpose, meaning making and framing of the military experience(s). Embedded within military culture are well-defined rites of passage and a significant sense of belonging. Consequently, transition out of the military can result in the loss of such rites of passage and belongingness. However, a pilgrimage journey can provide the time and space to engage in a new rite of passage, to construct a new pilgrim identity, and a to develop deep social relationships that lead to a sense of belongingness to a particular pilgrim community as well as to the global community of pilgrims across numerous types of pilgrimage journeys. The aims of the current paper are to demonstrate the rationale for why pilgrimage journeys are particularly significant for military veterans, provide an overview of an innovative program that facilitates the Camino de Santiago pilgrimage for military veterans, and discusses the lessons learned from the initial pilot project of a recently established program. Veterans on the Camino (VOC) is an emerging nongovernmental organization in the USA. Founded by a military veteran, after leaving his military career, the primary objective of the organization is to facilitate healing for veterans via the Camino de Santiago pilgrimage journey. As part of the program, participants complete a semi-structured interview at three time points – pre, during, and post journey. The interview items are based on ongoing research by the principal investigator and address such constructs as meaning-making, wellbeing, therapeutic benefits and transformation. In addition, program participants complete The Sources of Meaning and Meaning in Life Questionnaire (SoMe). The pilot program occurred in the spring of 2017. Five participants were selected after an extensive application process and review by a three-person selection board. The selection criteria included demonstrated compatibility with the program objectives (i.e., prior military experience, availability for a 40 day journey, and awareness of the need for a transformational intervention). The participants were connected as a group through a private Facebook site and interacted with one another for several months prior to the pilgrimage. Additionally, the participants were interviewed prior to beginning the pilgrimage, at one point during the pilgrimage and immediately following the conclusion of the pilgrimage journey. The interviews yielded themes related to loss, meaning construction, renewed hope in humanity, and a commitment to future goals. The lessons learned from this pilot project included a confirmation of the need for such a program, a need for greater focus on logistical details, and the recognition that the pilgrimage experience needs to continue in some manner once the veterans return home.

Keywords: pilgrimage, healing, military veterans, Camino de Santiago

Procedia PDF Downloads 289
552 Analysis of Influencing Factors on Infield-Logistics: A Survey of Different Farm Types in Germany

Authors: Michael Mederle, Heinz Bernhardt

Abstract:

The Management of machine fleets or autonomous vehicle control will considerably increase efficiency in future agricultural production. Especially entire process chains, e.g. harvesting complexes with several interacting combine harvesters, grain carts, and removal trucks, provide lots of optimization potential. Organization and pre-planning ensure to get these efficiency reserves accessible. One way to achieve this is to optimize infield path planning. Particularly autonomous machinery requires precise specifications about infield logistics to be navigated effectively and process optimized in the fields individually or in machine complexes. In the past, a lot of theoretical optimization has been done regarding infield logistics, mainly based on field geometry. However, there are reasons why farmers often do not apply the infield strategy suggested by mathematical route planning tools. To make the computational optimization more useful for farmers this study focuses on these influencing factors by expert interviews. As a result practice-oriented navigation not only to the field but also within the field will be possible. The survey study is intended to cover the entire range of German agriculture. Rural mixed farms with simple technology equipment are considered as well as large agricultural cooperatives which farm thousands of hectares using track guidance and various other electronic assistance systems. First results show that farm managers using guidance systems increasingly attune their infield-logistics on direction giving obstacles such as power lines. In consequence, they can avoid inefficient boom flippings while doing plant protection with the sprayer. Livestock farmers rather focus on the application of organic manure with its specific requirements concerning road conditions, landscape terrain or field access points. Cultivation of sugar beets makes great demands on infield patterns because of its particularities such as the row crop system or high logistics demands. Furthermore, several machines working in the same field simultaneously influence each other, regardless whether or not they are of the equal type. Specific infield strategies always are based on interactions of several different influences and decision criteria. Single working steps like tillage, seeding, plant protection or harvest mostly cannot be considered each individually. The entire production process has to be taken into consideration to detect the right infield logistics. One long-term objective of this examination is to integrate the obtained influences on infield strategies as decision criteria into an infield navigation tool. In this way, path planning will become more practical for farmers which is a basic requirement for automatic vehicle control and increasing process efficiency.

Keywords: autonomous vehicle control, infield logistics, path planning, process optimizing

Procedia PDF Downloads 233
551 Composition and Catalytic Behaviour of Biogenic Iron Containing Materials Obtained by Leptothrix Bacteria Cultivation in Different Growth Media

Authors: M. Shopska, D. Paneva, G. Kadinov, Z. Cherkezova-Zheleva, I. Mitov

Abstract:

The iron containing materials are used as catalysts in different processes. The chemical methods of their synthesis use toxic and expensive chemicals; sophisticated devices; energy consumption processes that raise their cost. Besides, dangerous waste products are formed. At present time such syntheses are out of date and wasteless technologies are indispensable. The bioinspired technologies are consistent with the ecological requirements. Different microorganisms participate in the biomineralization of the iron and some phytochemicals are involved, too. The methods for biogenic production of iron containing materials are clean, simple, nontoxic, realized at ambient temperature and pressure, cheaper. The biogenic iron materials embrace different iron compounds. Due to their origin these substances are nanosized, amorphous or poorly crystalline, porous and have number of useful properties like SPM, high magnetism, low toxicity, biocompatibility, absorption of microwaves, high surface area/volume ratio, active sites on the surface with unusual coordination that distinguish them from the bulk materials. The biogenic iron materials are applied in the heterogeneous catalysis in different roles - precursor, active component, support, immobilizer. The application of biogenic iron oxide materials gives rise to increased catalytic activity in comparison with those of abiotic origin. In our study we investigated the catalytic behavior of biomasses obtained by cultivation of Leptothrix bacteria in three nutrition media – Adler, Fedorov, and Lieske. The biomass composition was studied by Moessbauer spectroscopy and transmission IRS. Catalytic experiments on CO oxidation were carried out using in situ DRIFTS. Our results showed that: i) the used biomasses contain α-FeOOH, γ-FeOOH, γ-Fe2O3 in different ratios; ii) the biomass formed in Adler medium contains γ-FeOOH as main phase. The CO conversion was about 50% as evaluated by decreased integrated band intensity in the gas mixture spectra during the reaction. The main phase in the spent sample is γ-Fe2O3; iii) the biomass formed in Lieske medium contains α-FeOOH. The CO conversion was about 20%. The main phase in the spent sample is α-Fe2O3; iv) the biomass formed in Fedorov medium contains γ-Fe2O3 as main phase. CO conversion in the test reaction was about 19%. The results showed that the catalytic activity up to 200°C resulted predominantly from α-FeOOH and γ-FeOOH. The catalytic activity at temperatures higher than 200°C was due to the formation of γ-Fe2O3. The oxyhydroxides, which are the principal compounds in the biomass, have low catalytic activity in the used reaction; the maghemite has relatively good catalytic activity; the hematite has activity commensurate with that of the oxyhydroxides. Moreover it can be affirmed that catalytic activity is inherent in maghemite, which is obtained by transformation of the biogenic lepidocrocite, i.e. it has biogenic precursor.

Keywords: nanosized biogenic iron compounds, catalytic behavior in reaction of CO oxidation, in situ DRIFTS, Moessbauer spectroscopy

Procedia PDF Downloads 369
550 Foodborne Outbreak Calendar: Application of Time Series Analysis

Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova

Abstract:

The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.

Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality

Procedia PDF Downloads 128
549 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 67