Search results for: correlation between dietary components and acne
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8140

Search results for: correlation between dietary components and acne

550 Structural and Morphological Characterization of the Biomass of Aquatics Macrophyte (Egeria densa) Submitted to Thermal Pretreatment

Authors: Joyce Cruz Ferraz Dutra, Marcele Fonseca Passos, Rubens Maciel Filho, Douglas Fernandes Barbin, Gustavo Mockaitis

Abstract:

The search for alternatives to control hunger in the world, generated a major environmental problem. Intensive systems of fish production can cause an imbalance in the aquatic environment, triggering the phenomenon of eutrophication. Currently, there are many forms of growth control aquatic plants, such as mechanical withdrawal, however some difficulties arise for their final destination. The Egeria densa is a species of submerged aquatic macrophyte-rich in cellulose and low concentrations of lignin. By applying the concept of second generation energy, which uses lignocellulose for energy production, the reuse of these aquatic macrophytes (Egeria densa) in the biofuels production can turn an interesting alternative. In order to make lignocellulose sugars available for effective fermentation, it is important to use pre-treatments in order to separate the components and modify the structure of the cellulose and thus facilitate the attack of the microorganisms responsible for the fermentation. Therefore, the objective of this research work was to evaluate the structural and morphological transformations occurring in the biomass of aquatic macrophytes (E.densa) submitted to a thermal pretreatment. The samples were collected in an intensive fish growing farm, in the low São Francisco dam, in the northeastern region of Brazil. After collection, the samples were dried in a 65 0C ventilation oven and milled in a 5mm micron knife mill. A duplicate assay was carried, comparing the in natural biomass with the pretreated biomass with heat (MT). The sample (MT) was submitted to an autoclave with a temperature of 1210C and a pressure of 1.1 atm, for 30 minutes. After this procedure, the biomass was characterized in terms of degree of crystallinity and morphology, using X-ray diffraction (XRD) techniques and scanning electron microscopy (SEM), respectively. The results showed that there was a decrease of 11% in the crystallinity index (% CI) of the pretreated biomass, leading to the structural modification in the cellulose and greater presence of amorphous structures. Increases in porosity and surface roughness of the samples were also observed. These results suggest that biomass may become more accessible to the hydrolytic enzymes of fermenting microorganisms. Therefore, the morphological transformations caused by the thermal pretreatment may be favorable for a subsequent fermentation and, consequently, a higher yield of biofuels. Thus, the use of thermally pretreated aquatic macrophytes (E.densa) can be an environmentally, financially and socially sustainable alternative. In addition, it represents a measure of control for the aquatic environment, which can generate income (biogas production) and maintenance of fish farming activities in local communities.

Keywords: aquatics macrophyte, biofuels, crystallinity, morphology, pretreatment thermal

Procedia PDF Downloads 316
549 A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity

Authors: Ladislav Écsi, Roland Jančo

Abstract:

Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed.

Keywords: finite strain plasticity, continuum formulation, regularized Mooney-Rivlin material model, compatibility

Procedia PDF Downloads 104
548 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus

Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay

Abstract:

Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.

Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus

Procedia PDF Downloads 154
547 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials

Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova

Abstract:

Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).

Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system

Procedia PDF Downloads 387
546 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 117
545 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 50
544 Public Participation in Political Transformation: From the Coup D’etat in 2014 to the Events Leading up to the Proposed Election in 2018 in Thailand

Authors: Pataramon Satalak, Sakrit Isariyanon, Teerapong Puripanik

Abstract:

This article uses the recent events in Thailand as a case study for examining why democratic transition is necessary during political upheaval to ensure that the people’s power remains unaffected. After seizing power in May 2014, the military, backed by anti-government protestors, selected and established their own system to govern the country. They set up the National Council for Peace and Order (NCPO) which established a People’s Assembly, aiming to reach a compromise between the conflicting opinions of former, pro-government and anti-government protesters. It plans to achieve this through political reform before returning sovereign power to the people via an election in 2018. If a governmental authority is not representative of the people (e.g. a military government) it does not count as a legitimate government. During the last four years of military government, from May 2014 to January 2018, their rule of Thailand has been widely controversial, specifically regarding their commitment to democracy, human rights violations and their manipulation of the rule of law. Democratic legitimacy relies not only on established mechanisms for public participation (like referendums or elections) but also public participation based on accessible and educational reform (often via NGOs) to ensure that the free and fair will of the people can be expressed. Through their actions over the last three years, the Thai military government has damaged both of these components, impacting future public participation in politics. The authors make some observations about the specific actions the military government has taken to erode the democratic legitimacy of future public participation: the increasing dominance of military courts over civil courts; civil society’s limited involvement in political activities; the drafting of a new constitution and their attempt to master support through referenda and its consequence for delaying organic law-making process; the structure of the legislative powers (Senate and the members of parliament); and the control of people’s basic freedoms of expression, movement and assembly in political activities. One clear consequence of the military government’s specific actions over the last three years is the increased uncertainty amongst Thai people that their fundamental freedoms and political rights will be respected in the future. This will directly affect their participation in future democratic processes. The military government’s actions (e.g. their response to the UN representatives) will also have influenced potential international engagement in Thai civil society to help educate disadvantaged people about their rights, and their participation in the political arena. These actions challenge the democratic idea that there should be a checking and balancing of power between people and government. These examples provide evidence that a democratic transition is crucial during any process of political transformation.

Keywords: political tranformation, public participation, Thailand coup d'etat 2014, election 2018

Procedia PDF Downloads 132
543 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 119
542 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 232
541 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 261
540 The Neuropsychology of Obsessive Compulsion Disorder

Authors: Mia Bahar, Özlem Bozkurt

Abstract:

Obsessive-compulsive disorder (OCD) is a typical, persistent, and long-lasting mental health condition in which a person experiences uncontrollable, recurrent thoughts (or "obsessions") and/or activities (or "compulsions") that they feel compelled to engage in repeatedly. Obsessive-compulsive disorder is both underdiagnosed and undertreated. It frequently manifests in a variety of medical settings and is persistent, expensive, and burdensome. Obsessive-compulsive neurosis was long believed to be a condition that offered valuable insight into the inner workings of the unconscious mind. Obsessive-compulsive disorder is now recognized as a prime example of a neuropsychiatric condition susceptible to particular pharmacotherapeutic and psychotherapy therapies and mediated by pathology in particular neural circuits. An obsessive-compulsive disorder which is called OCD, usually has two components, one cognitive and the other behavioral, although either can occur alone. Obsessions are often repetitive and intrusive thoughts that invade consciousness. These obsessions are incredibly hard to control or dismiss. People who have OCD often engage in rituals to reduce anxiety associated with intrusive thoughts. Once the ritual is formed, the person may feel extreme relief and be free from anxiety until the thoughts of contamination intrude once again. These thoughts are strengthened through a manifestation of negative reinforcement because they allow the person to avoid anxiety and obscurity. These thoughts are described as autogenous, meaning they most likely come from nowhere. These unwelcome thoughts are related to actions which we can describe as Thought Action Fusion. The thought becomes equated with an action, such as if they refuse to perform the ritual, something bad might happen, and so people perform the ritual to escape the intrusive thought. In almost all cases of OCD, the person's life gets extremely disturbed by compulsions and obsessions. Studies show OCD is an estimated 1.1% prevalence, making it a challenging issue with high co-morbidities with other issues like depressive episodes, panic disorders, and specific phobias. The first to reveal brain anomalies in OCD were numerous CT investigations, although the results were inconsistent. A few studies have focused on the orbitofrontal cortex (OFC), anterior cingulate gyrus (AC), and thalamus, structures also implicated in the pathophysiology of OCD by functional neuroimaging studies, but few have found consistent results. However, some studies have found abnormalities in the basal ganglion. There have also been some discussions that OCD might be genetic. OCD has been linked to families in studies of family aggregation, and findings from twin studies show that this relationship is somewhat influenced by genetic variables. Some Research has shown that OCD is a heritable, polygenic condition that can result from de novo harmful mutations as well as common and unusual variants. Numerous studies have also presented solid evidence in favor of a significant additive genetic component to OCD risk, with distinct OCD symptom dimensions showing both common and individual genetic risks.

Keywords: compulsions, obsessions, neuropsychiatric, genetic

Procedia PDF Downloads 56
539 Teachers' and Learners' Experiences of Learners' Writing in English First Additional Language

Authors: Jane-Francis A. Abongdia, Thandiswa Mpiti

Abstract:

There is an international concern to develop children’s literacy skills. In many parts of the world, the need to become fluent in a second language is essential for gaining meaningful access to education, the labour market and broader social functioning. In spite of these efforts, the problem still continues. The level of English language proficiency is far from satisfactory and these goals are unattainable by others. The issue is more complex in South Africa as learners are immersed in a second language (L2) curriculum. South Africa is a prime example of a country facing the dilemma of how to effectively equip a majority of its population with English as a second language or first additional language (FAL). Given the multilingual nature of South Africa with eleven official languages, and the position and power of English, the study investigates teachers’ and learners’ experiences on isiXhosa and Afrikaans background learners’ writing in English First Additional Language (EFAL). Moreover, possible causes of writing difficulties and teacher’s practices for writing are explored. The theoretical and conceptual framework for the study is provided by studies on constructivist theories and sociocultural theories. In exploring these issues, a qualitative approach through semi-structured interviews, classroom observations, and document analysis were adopted. This data is analysed by critical discourse analysis (CDA). The study identified a weak correlation between teachers’ beliefs and their actual teaching practices. Although the teachers believe that writing is as important as listening, speaking, reading, grammar and vocabulary, and that it needs regular practice, the data reveal that they fail to put their beliefs into practice. Moreover, the data revealed that learners were disturbed by their home language because when they do not know a word they would write either the isiXhosa or the Afrikaans equivalent. Code-switching seems to have instilled a sense of “dependence on translations” where some learners would not even try to answer English questions but would wait for the teacher to translate the questions into isiXhosa or Afrikaans before they could attempt to give answers. The findings of the study show a marked improvement in the writing performance of learners who used the process approach in writing. These findings demonstrate the need for assisting teachers to shift away from focusing only on learners’ performance (testing and grading) towards a stronger emphasis on the process of writing. The study concludes that the process approach to writing could enable teachers to focus on the various parts of the writing process which can give more freedom to learners to experiment their language proficiency. It would require that teachers develop a deeper understanding of the process/genre approaches to teaching writing advocated by CAPS. All in all, the study shows that both learners and teachers face numerous challenges relating to writing. This means that more work still needs to be done in this area. The present study argues that teachers teaching EFAL learners should approach writing as a critical and core aspect of learners’ education. Learners should be exposed to intensive writing activities throughout their school years.

Keywords: constructivism, English second language, language of learning and teaching, writing

Procedia PDF Downloads 204
538 Spatio-Temporal Variation of Gaseous Pollutants and the Contribution of Particulate Matters in Chao Phraya River Basin, Thailand

Authors: Samart Porncharoen, Nisa Pakvilai

Abstract:

The elevated levels of air pollutants in regional atmospheric environments is a significant problem that affects human health in Thailand, particularly in the Chao Phraya River Basin. Of concern are issues surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the river. Therefore, the spatio-temporal study of air pollution in this real environment can gain more accurate air quality data for making formalized environmental policy in river basins. In order to inform such a policy, a study was conducted over a period of January –December, 2015 to continually collect measurements of various pollutants in both urban and regional locations in the Chao Phraya River Basin. This study investigated the air pollutants in many diverse environments along the Chao Phraya River Basin, Thailand in 2015. Multivariate Analysis Techniques such as Principle Component Analysis (PCA) and Path analysis were utilised to classify air pollution in the surveyed location. Measurements were collected in both urban and rural areas to see if significant differences existed between the two locations in terms of air pollution levels. The meteorological parameters of various particulates were collected continually from a Thai pollution control department monitoring station over a period of January –December, 2015. Of interest to this study were the readings of SO2, CO, NOx, O3, and PM10. Results showed a daily arithmetic mean concentration of SO2, CO, NOx, O3, PM10 reading at 3±1 ppb, 0.5± 0.5 ppm, 30±21 ppb, 19±16 ppb, and 40±20 ug/m3 in urban locations (Bangkok). During the same time period, the readings for the same measurements in rural areas, Ayutthaya (were 1±0.5 ppb, 0.1± 0.05 ppm, 25±17 ppb, 30±21 ppb, and 35±10 ug/m3respectively. This show that Bangkok were located in highly polluted environments that are dominated source emitted from vehicles. Further, results were analysed to ascertain if significant seasonal variation existed in the measurements. It was found that levels of both gaseous pollutants and particle matter in dry season were higher than the wet season. More broadly, the results show that levels of pollutants were measured highest in locations along the Chao Phraya. River Basin known to have a large number of vehicles and biomass burning. This correlation suggests that the principle pollutants were from these anthropogenic sources. This study contributes to the body of knowledge surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the Chao Phraya River Basin. Further, this study is one of the first to utilise continuous mobile monitoring along a river in order to gain accurate measurements during a data collection period. Overall, the results of this study can be used for making formalized environmental policy in river basins in order to reduce the physical effects on human health.

Keywords: air pollution, Chao Phraya river basin, meteorology, seasonal variation, principal component analysis

Procedia PDF Downloads 268
537 Diversified Farming and Agronomic Interventions Improve Soil Productivity, Soybean Yield and Biomass under Soil Acidity Stress

Authors: Imran, Murad Ali Rahat

Abstract:

One of the factors affecting crop production and nutrient availability is acidic stress. The most important element decreasing under acidic stress conditions is phosphorus deficiency, which results in stunted growth and yield because of inefficient nutrient cycling. At the Agriculture Research Institute Mingora Swat, Pakistan, tests were carried out for the first time throughout the course of two consecutive summer seasons in 2016 (year 1) and 2017 (year 2) with the goal of increasing crop productivity and nutrient availability under acidic stress. Three organic supplies (peach nano-black carbon, compost, and dry-based peach wastes), three phosphorus rates, and two advantageous microorganisms (Trichoderma and PSB) were incorporated in the experimental treatments. The findings showed that, in conditions of acid stress, peach organic sources had a significant impact on yield and yield components. The application of nano-black carbon produced the greatest thousand seed weight of 164.6 g among organic sources, however the use of phosphorus solubilizing bacteria (PSB) for seed inoculation increased the thousand seed weight of beneficial microbes when compared to Trichoderma soil application. The thousand seed weight was significantly impacted by the quantities of phosphorus. The treatment of 100 kg P ha-1 produced the highest thousand seed weight (167.3 g), which was followed by 75 kg P ha-1 (162.5 g). Compost amendments provided the highest seed yield (2,140 kg ha-1) and were comparable to the application of nano-black carbon (2,120 kg ha-1). With peach residues, the lowest seed output (1,808 kg ha-1) was observed.Compared to seed inoculation with PSB (1,913 kg ha-1), soil treatment with Trichoderma resulted in the maximum seed production (2,132 kg ha-1). Applying phosphorus to the soybean crop greatly increased its output. The highest seed yield (2,364 kg ha-1) was obtained with 100 kg P ha-1, which was comparable to 75 kg P ha-1 (2,335 kg ha-1), while the lowest seed yield (1,569 kg ha-1) was obtained with 50 kg P ha-1. The average values showed that compared to control plots (3.3 g kg-1), peach organic sources produced greatest SOC (10.0 g kg-1). Plots with treated soil had a maximum soil P of 19.7 mg kg-1, while plots under stress had a maximum soil P of 4.8 mg kg-1. While peach compost resulted in the lowest soil P levels, peach nano-black carbon yielded the highest soil P levels (21.6 mg kg-1). Comparing beneficial bacteria with PSB to Trichoderma (18.3 mg/kg-1), the former also shown an improvement in soil P (21.1 mg kg-1). Regarding P treatments, the application of 100 kg P per ha produced significantly higher soil P values (26.8 mg /kg-1), followed by 75 kg P per ha (18.3 mg /kg-1), and 50 kg P ha-1 produced the lowest soil P values (14.1 mg /kg-1). Comparing peach wastes and compost to peach nano-black carbon (13.7 g kg-1), SOC rose. In contrast to PSB (8.8 g kg-1), soil-treated Trichoderma was shown to have a greater SOC (11.1 g kg-1). Higher among the P levels.

Keywords: acidic stress, trichoderma, beneficial microbes, nano-black carbon, compost, peach residues, phosphorus, soybean

Procedia PDF Downloads 50
536 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂

Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine

Abstract:

Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).

Keywords: devulcanization, recycling, rubber, waste

Procedia PDF Downloads 363
535 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel

Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino

Abstract:

Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.

Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation

Procedia PDF Downloads 453
534 Furniko Flour: An Emblematic Traditional Food of Greek Pontic Cuisine

Authors: A. Keramaris, T. Sawidis, E. Kasapidou, P. Mitlianga

Abstract:

Although the gastronomy of the Greeks of Pontus is highly prominent, it has not received the same level of scientific analysis as another local cuisine of Greece, that of Crete. As a result, we intended to focus our research on Greek Pontic cuisine to shed light on its unique recipes, food products, and, ultimately, its features. The Greeks of Pontus, who lived for a long time in the northern part (Black Sea Region) of contemporary Turkey and now widely inhabit northern Greece, have one of Greece's most distinguished local cuisines. Despite their gastronomy being simple, it features several inspiring delicacies. It's been a century since they immigrated to Greece, yet their gastronomic culture remains a critical component of their collective identity. As a first step toward comprehending Greek Pontic cuisine, it was attempted to investigate the production of one of its most renowned traditional products, furniko flour. In this project, we targeted residents of Western Macedonia, a province in northern Greece with a large population of descendants of Greeks of Pontus who are primarily engaged in agricultural activities. In this quest, we approached a descendant of the Greeks of Pontus who is involved in the production of furniko flour and who consented to show us the entire process of its production as we participated in it. The furniko flour is made from non-hybrid heirloom corn. It is harvested by hand when the moisture content of the seeds is low enough to make them suitable for roasting. Manual harvesting entails removing the cob from the plant and detaching the husks. The harvested cobs are then roasted for 24 hours in a traditional wood oven. The roasted cobs are then collected and stored in sacks. The next step is to extract the seeds, which is accomplished by rubbing the cobs. The seeds should ideally be ground in a traditional stone hand mill. We end up with aromatic and dark golden furniko flour, which is used to cook havitz. Accompanied by the preparation of the furnikoflour, we also recorded the cooking process of the havitz (a porridge-like cornflour dish). A savory delicacy that is simple to prepare and one of the most delightful dishes in Greek Pontic cuisine. According to the research participant, havitzis a highly nutritious dish due to the ingredients of furniko flour. In addition, he argues that preparing havitz is a great way to bring families together, share stories, and revisit fond memories. In conclusion, this study illustrates the traditional preparation of furnikoflour and its use in various traditional recipes as an initial effort to highlight the elements of Pontic Greek cuisine. As a continuation of the current study, it could be the analysis of the chemical components of the furniko flour to evaluate its nutritional content.

Keywords: furniko flour, greek pontic cuisine, havitz, traditional foods

Procedia PDF Downloads 121
533 Leadership and Entrepreneurship in Higher Education: Fostering Innovation and Sustainability

Authors: Naziema Begum Jappie

Abstract:

Leadership and entrepreneurship in higher education have become critical components in navigating the evolving landscape of academia in the 21st century. This abstract explores the multifaceted relationship between leadership and entrepreneurship within the realm of higher education, emphasizing their roles in fostering innovation and sustainability. Higher education institutions, often characterized as slow-moving and resistant to change, are facing unprecedented challenges. Globalization, rapid technological advancements, changing student demographics, and financial constraints necessitate a reimagining of traditional models. Leadership in higher education must embrace entrepreneurial thinking to effectively address these challenges. Entrepreneurship in higher education involves cultivating a culture of innovation, risk-taking, and adaptability. Visionary leaders who promote entrepreneurship within their institutions empower faculty and staff to think creatively, seek new opportunities, and engage with external partners. These entrepreneurial efforts lead to the development of novel programs, research initiatives, and sustainable revenue streams. Innovation in curriculum and pedagogy is a central aspect of leadership and entrepreneurship in higher education. Forward-thinking leaders encourage faculty to experiment with teaching methods and technology, fostering a dynamic learning environment that prepares students for an ever-changing job market. Entrepreneurial leadership also facilitates the creation of interdisciplinary programs that address emerging fields and societal challenges. Collaboration is key to entrepreneurship in higher education. Leaders must establish partnerships with industry, government, and non-profit organizations to enhance research opportunities, secure funding, and provide real-world experiences for students. Entrepreneurial leaders leverage their institutions' resources to build networks that extend beyond campus boundaries, strengthening their positions in the global knowledge economy. Financial sustainability is a pressing concern for higher education institutions. Entrepreneurial leadership involves diversifying revenue streams through innovative fundraising campaigns, partnerships, and alternative educational models. Leaders who embrace entrepreneurship are better equipped to navigate budget constraints and ensure the long-term viability of their institutions. In conclusion, leadership and entrepreneurship are intertwined elements essential to the continued relevance and success of higher education institutions. Visionary leaders who champion entrepreneurship foster innovation, enhance the student experience, and secure the financial future of their institutions. As academia continues to evolve, leadership and entrepreneurship will remain indispensable tools in shaping the future of higher education. This abstract underscores the importance of these concepts and their potential to drive positive change within the higher education landscape.

Keywords: entrepreneurship, higher education, innovation, leadership

Procedia PDF Downloads 48
532 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures

Authors: Daniel Dahis, Haim Azhari

Abstract:

Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.

Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature

Procedia PDF Downloads 145
531 Prominence of Biopsychosocial Formulation in Health Care Delivery for Aging Population: Empowering Caregiving through Natural Socio-Environmental Approaches

Authors: Kristine Demilou D. Santiago

Abstract:

An access to a high-quality health care system is what sets apart industrialized nations, such as the United States from other developing countries, which in this case is specifically pertaining to their older population. But what was the underrated factor in the sphere of quality healthcare rendered to elderly people in the Western context? Will this salient factor could push conviction to prorogue the existing gaps between self-denial patient-client and cheek by jowl medications? Are the natural socio-environmental approaches of caregiving the protracted remedy to healthcare disparities for aging population considering their day to day living? The conceptual framework of this model is primarily associated with addressing health and illness of human beings considering the biological, psychological and socio-environmental factors around them. The relevance of biopsychosocial formulation advancing each of the characteristics in the Biopsychosocial (BPS) model in a balance contemplation is the tumult of this study in an attempt to respond to prevailing disparities in caregiving services for old-aged patients on a day to day living. Caregiving services have been the medium path connecting between the patient and its prescribed medications. Moreover, caregivers serve as positive reinforcers in a patient’s environment. Therefore, caregivers play an important role in healthcare delivery to patients. They are considered significant people whom their acts will give an impact to a patient’s view in life. This research study intends to present the supreme importance of biopsychosocial assessment to old-aged patients with mental health illness and conditions. Biopsychosocial assessment will secure the quality of full medication to an old-aged adult suffering from a mental illness. This is because it offers a recognizably wholesome approach to medical healing of old-aged adult patients. The principle of biopsychosocial supersedes the biomedicine being offered to old-aged adults having mental illness, but it does not take away the high relevance of scientific biomedicine in healing patients. The framework presented an overlapping participation of each of its factors in its BPS model that affects in general a person’s health. The correlation between the biological (physiological), psychological (mental) and social (environment) in a person’s health condition requires equal attention according to BPS, and it always coexist with each other. Indisputably said, bio-medicine has been and is being in its unceasing endeavor to provide scientifically proven health care medications for every individual seeking medical treatments. As we grow older and eventually reach the other side of the median population, not only our physiological aspects change, our psychological and socio-environmental changes happen too. Caregiving is a salient responsibility taking place on these inevitable changes.

Keywords: biopsychosocial formulation, caregiving through natural approaches, US health care, BPS in caregiving, caregiving for aging population

Procedia PDF Downloads 84
530 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 145
529 The ‘Fun, Move, Play’ Project: Qualitative and Quantitative Findings from Irish Primary School Children (6-8 Years), Parents and Teachers

Authors: Jemma McGourty, Brid Delahunt, Fiona Hackett, Sharon Courtney, Richard English, Graham Russell, Sinéad O’Connor

Abstract:

Fundamental Movement Skills (FMS) mastery is considered essential for children’s ongoing, meaningful engagement in Physical Activity (PA). There has been a dearth of Irish research on baseline FMS and their development by means of intervention in young primary school children. In addition, as children’s participation in PA is heavily influenced by both parents and teachers, it is imperative to understand their attitudes and perceptions towards PA participation and its’ promotion in children. The ‘Fun, Move, Play’ Project investigated the effect of a 6-week play based PA intervention on primary school children’s (aged 6-8 years) FMS while also exploring the attitudes and perceptions of their parents and teachers towards PA participation. The FMS intervention utilised a pre-post quasi-experimental design to determine the effect of a 6-week play based PA intervention (devised from the iCoach Kids Programme) on 176 primary school children’s FMS (N = 176: 90 girls and 86 boys; M = 7.2 years; SD = 0.48). Objective measures of 7 FMS (run, skip, vertical jump, static balance, stationary dribble, catch, kick) were made using a combination of the TGMD2 and Get Skilled, Get Active resources. One hundred parents (87 mothers; 13 fathers; M=36 years; SD=5.45) and 90 teachers (67 females; 23 males) completed surveys investigating their attitudes and perceptions towards PA participation. In addition, 19 of these parents and 9 of these teachers participated in semi-structured qualitative interviews to explore, in more depth, their views and perceptions of PA participation. Both the FMS data set and survey responses were analysed using SPSS version 23, using appropriate statistical analysis. A thematic analysis framework was used to analyse the qualitative findings. A significant improvement was observed in the children’s overall FMS score pre-post intervention (t = 16.67; df = 175; p < 0.001), while there were also significant improvements in each of the seven individual FMS measured in the children, pre-post intervention. Findings from the parent surveys and interviews indicated that parents had positive attitudes towards PA, viewed it as important and supported their child’s PA participation. However, a lack of knowledge regarding the amount and intensity of PA that children should participate in emerged as a recurrent finding. Also, there was a significant positive correlation between the PA levels of parents’ and their children (r = .41; n = 100; p < .001). Arising from the teachers’ surveys and interviews was a positive attitude towards PA and the impact that it has on a child’s health and well-being. They also reported feeling more confident teaching certain aspects of the PE curriculum (games and sports) compared to others (gymnastics, dance), where they appreciate working with specialist practitioners. Conclusion: A short-term PA intervention has a positive effect on children’s FMS. While parents are supportive of their child’s PA participation, there is a knowledge gap regarding National PA guidelines for children. Teachers appreciate the importance of PA in children, but face a number of challenges in its implementation and promotion.

Keywords: fundamental movement skills, parents attitudes to physical activity, short-term intervention, teachers attitudes to physical activity

Procedia PDF Downloads 161
528 Multicomponent Positive Psychology Intervention for Health Promotion of Retirees: A Feasibility Study

Authors: Helen Durgante, Mariana F. Sparremberger, Flavia C. Bernardes, Debora D. DellAglio

Abstract:

Health promotion programmes for retirees, based on Positive Psychology perspectives for the development of strengths and virtues, demand broadened empirical investigation in Brazil. In the case of evidence-based applied research, it is suggested feasibility studies are conducted prior to efficacy trials of the intervention, in order to identify and rectify possible faults in the design and implementation of the intervention. The aim of this study was to evaluate the feasibility of a multicomponent Positive Psychology programme for health promotion of retirees, based on Cognitive Behavioural Therapy and Positive Psychology perspectives. The programme structure included six weekly group sessions (two hours each) encompassing strengths such as Values and self-care, Optimism, Empathy, Gratitude, Forgiveness, and Meaning of life and work. The feasibility criteria evaluated were: Demand, Acceptability, Satisfaction with the programme and with the moderator, Comprehension/Generalization of contents, Evaluation of the moderator (Social Skills and Integrity/Fidelity), Adherence, and programme implementation. Overall, 11 retirees (F=11), age range 54-75, from the metropolitan region of Porto Alegre-RS-Brazil took part in the study. The instruments used were: Qualitative Admission Questionnaire; Moderator Field Diary; the Programme Evaluation Form to assess participants satisfaction with the programme and with the moderator (a six-item 4-point likert scale), and Comprehension/Generalization of contents (a three-item 4-point likert scale); Observers’ Evaluation Form to assess the moderator Social Skills (a five-item 4-point likert scale), Integrity/Fidelity (a 10 item 4-point likert scale), and Adherence (a nine-item 5-point likert scale). Qualitative data were analyzed using content analysis. Descriptive statistics as well as Intraclass Correlations coefficients were used for quantitative data and inter-rater reliability analysis. The results revealed high demand (N = 55 interested people) and acceptability (n = 10 concluded the programme with overall 88.3% frequency rate), satisfaction with the program and with the moderator (X = 3.76, SD = .34), and participants self-report of Comprehension/Generalization of contents provided in the programme (X = 2.82, SD = .51). In terms of the moderator Social Skills (X = 3.93; SD = .40; ICC = .752 [IC = .429-.919]), Integrity/Fidelity (X = 3.93; SD = .31; ICC = .936 [IC = .854-.981]), and participants Adherence (X = 4.90; SD = .29; ICC = .906 [IC = .783-.969]), evaluated by two independent observers present in each session of the programme, descriptive and Intraclass Correlation results were considered adequate. Structural changes were introduced in the intervention design and implementation methods, as well as the removal of items from questionnaires and evaluation forms. The obtained results were satisfactory, allowing changes to be made for further efficacy trials of the programme. Results are discussed taking cultural and contextual demands in Brazil into account.

Keywords: feasibility study, health promotion, positive psychology intervention, programme evaluation, retirees

Procedia PDF Downloads 177
527 Alternative Fuel Production from Sewage Sludge

Authors: Jaroslav Knapek, Kamila Vavrova, Tomas Kralik, Tereza Humesova

Abstract:

The treatment and disposal of sewage sludge is one of the most important and critical problems of waste water treatment plants. Currently, 180 thousand tonnes of sludge dry matter are produced in the Czech Republic, which corresponds to approximately 17.8 kg of stabilized sludge dry matter / year per inhabitant of the Czech Republic. Due to the fact that sewage sludge contains a large amount of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the Czech Republic since 2023. One of the tested methods of sludge liquidation is the production of alternative fuel from sludge from sewage treatment plants and paper production. The paper presents an analysis of economic efficiency of alternative fuel production from sludge and its use for fluidized bed boiler with nominal consumption of 5 t of fuel per hour. The evaluation methodology includes the entire logistics chain from sludge extraction, through mechanical moisture reduction to about 40%, transport to the pelletizing line, moisture drying for pelleting and pelleting itself. For economic analysis of sludge pellet production, a time horizon of 10 years corresponding to the expected lifetime of the critical components of the pelletizing line is chosen. The economic analysis of pelleting projects is based on a detailed analysis of reference pelleting technologies suitable for sludge pelleting. The analysis of the economic efficiency of pellet is based on the simulation of cash flows associated with the implementation of the project over the life of the project. For the entered value of return on the invested capital, the price of the resulting product (in EUR / GJ or in EUR / t) is searched to ensure that the net present value of the project is zero over the project lifetime. The investor then realizes the return on the investment in the amount of the discount used to calculate the net present value. The calculations take place in a real business environment (taxes, tax depreciation, inflation, etc.) and the inputs work with market prices. At the same time, the opportunity cost principle is respected; waste disposal for alternative fuels includes the saved costs of waste disposal. The methodology also respects the emission allowances saved due to the displacement of coal by alternative (bio) fuel. Preliminary results of testing of pellet production from sludge show that after suitable modifications of the pelletizer it is possible to produce sufficiently high quality pellets from sludge. A mixture of sludge and paper waste has proved to be a more suitable material for pelleting. At the same time, preliminary results of the analysis of the economic efficiency of this sludge disposal method show that, despite the relatively low calorific value of the fuel produced (about 10-11 MJ / kg), this sludge disposal method is economically competitive. This work has been supported by the Czech Technology Agency within the project TN01000048 Biorefining as circulation technology.

Keywords: Alternative fuel, Economic analysis, Pelleting, Sewage sludge

Procedia PDF Downloads 113
526 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 140
525 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 103
524 The Political Economy of the Global Climate Change Adaptation Initiatives: A Case Study on the Global Environmental Facility

Authors: Anar Koli

Abstract:

After the Paris agreement in 2015, a comprehensive initiative both from the developed and developing countries towards the adaptation to climate change is emerging. The Global Environmental Facility (GEF), which is financing a global portfolio of adaptation projects and programs in over 124 countries is playing a significant role to a new financing framework that included the concept of “climate-resilient development”. However, both the adaptation and sustainable development paradigms remain continuously contested, especially the role of the multilateral institutions with their technical and financial assistance to the developing world. Focusing on the adaptation initiatives of the GEF, this study aims to understand to what extent the global multilateral institutions, particularly the GEF is contributing to the climate-resilient development. From the political ecology perspective, the argument of this study is that the global financial framework is highly politicized, and understanding the contribution of the global institutions of the global climate change needs to be related both from the response and causal perspectives. A holistic perspective, which includes the contribution of the GEF as a response to the climate change and as well the cause of global climate change, are needed to understand the broader environment- political economic relation. The study intends to make a critical analysis of the way in which the political economy structure and the environment are related along with the social and ecological implications. It does not provide a narrow description of institutional responses to climate change, rather it looks at how the global institutions are influencing the relationship of the global ecologies and economies. This study thus developed a framework combining the global governance and the political economy perspective. This framework includes environment-society relation, environment-political economy linkage, global institutions as the orchestra, and division between the North and the South. Through the analysis of the GEF as the orchestra of the global governance, this study helps to understand how GEF is coordinating the interactions between the North and the South and responding the global climate resilient development. Through the other components of the framework, the study explains how the role of the global institutions is related to the cause of the human induced global climate change. The study employs a case study based on both the quantitative and qualitative data. Along with the GEF reports and data sets, this study draws from an eclectic range of literature from a range of disciplines to explain the broader relation of the environment and political economy. Based on a case study on GEF, the study found that the GEF has positive contributions in bringing developing countries’ capacity in terms of sustainable development goal, local institutional development. However, through a critical holistic analysis, this study found that this contribution to the resilient development helps the developing countries to conform the fossil fuel based capitalist political economy. The global governance institution is contributing both to the pro market based environment society relation and, to the consequences of this relation.

Keywords: climate change adaptation, global environmental facility (GEF), political economy, the north -south relation

Procedia PDF Downloads 211
523 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes

Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang

Abstract:

The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.

Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations

Procedia PDF Downloads 226
522 Teaching English as a Foreign Language: Insights from the Philippine Context

Authors: Arlene Villarama, Micol Grace Guanzon, Zenaida Ramos

Abstract:

This paper provides insights into teaching English as a Foreign Language in the Philippines. The authors reviewed relevant theories and literature, and provide an analysis of the issues in teaching English in the Philippine setting in the light of these theories. The authors made an investigation in Bagong Barrio National High School (BBNHS) - a public school in Caloocan City. The institution has a population of nearly 3,000 students. The performances of randomly chosen 365 respondents were scrutinised. The study regarding the success of teaching English as a foreign language to Filipino children were highlighted. This includes the respondents’ family background, surroundings, way of living, and their behavior and understanding regarding education. The results show that there is a significant relationship between demonstrative, communal, and logical areas that touch the efficacy of introducing English as a foreign Dialectal. Filipino children, by nature, are adventurous and naturally joyful even for little things. They are born with natural skills and capabilities to discover new things. They highly consider activities and work that ignite their curiosity. They love to be recognised and are inspired the most when given the assurance of acceptance and belongingness. Fun is the appealing influence to ignite and motivate learning. The magic word is excitement. The study reveals the many facets of the accumulation and transmission of erudition, in introduction and administration of English as a foreign phonological; it runs and passes through different channels of diffusion. Along the way, there are particles that act as obstructions in protocols where knowledge are to be gathered. Data gained from the respondents conceals a reality that is beyond one’s imagination. One significant factor that touches the inefficacy of understanding and using English as a foreign language is an erroneous outset gained from an old belief handed down from generation to generation. This accepted perception about the power and influence of the use of language, gives the novices either a negative or a positive notion. The investigation shows that a higher number of dislikes in the use of English can be tracked down from the belief of the story on how the English language came into existence. The belief that only the great and the influential have the right to use English as a means of communication kills the joy of acceptance. A significant notation has to be examined so as to provide a solution or if not eradicate the misconceptions that lie behind the substance of the matter. The result of the authors’ research depicts a substantial correlation between the emotional (demonstrative), social (communal), and intellectual (logical). The focus of this paper is to bring out the right notation and disclose the misconceptions with regards to teaching English as a foreign language. This will concentrate on the emotional, social, and intellectual areas of the Filipino learners and how these areas affect the transmittance and accumulation of learning. The authors’ aim is to formulate logical ways and techniques that would open up new beginnings in understanding and acceptance of the subject matter.

Keywords: accumulation, behaviour, facets, misconceptions, transmittance

Procedia PDF Downloads 185
521 A Work-Individual-Family Inquiry on Mental Health and Family Responsibility of Dealers Employed in Macau Gaming Industry

Authors: Tak Mau Simon Chan

Abstract:

While there is growing reflection of the adverse impacts instigated by the flourishing gaming industry on the physical health and job satisfaction of those who work in Macau casinos, there is also a critical void in our understanding of the mental health of croupiers and how casino employment interacts with the family system. From a systemic approach, it would be most effective to examine the ‘dealer issues’ collectively and offer assistance to both the individual dealer and the family system of dealers. Therefore, with the use of a mixed method study design, the levels of anxiety, depression and sleeping quality of a sample of 1124 dealers who are working in Macau casinos have been measured in the present study, and 113 dealers have been interviewed about the impacts of casino employment on their family life. This study presents some very important findings. First, the quantitative study indicates that gender is a significant predictor of depression and anxiety levels, whilst lower income means less quality sleep. The Pearson’s correlation coefficients show that as the Zung Self-rating Anxiety Scale (ZSAS) scores increase, the Zung Self-rating Depression Scale (ZSDS) and Pittsburgh Sleep Quality Index (PSQI) scores will also simultaneously increase. Higher income, therefore, might partly explain for the reason why mothers choose to work in the gaming industry even with shift work involved and a stressful work environment. Second, the findings from the qualitative study show that aside from the positive impacts on family finances, the shift work and job stress to some degree negatively affect family responsibilities and relationships. There are resultant family issues, including missed family activities, and reduced parental care and guidance, marital intimacy, and communication with family members. Despite the mixed views on the gender role differences, the respondents generally agree that female dealers have more family and child-minding responsibilities at home, and thus it is more difficult for them to balance work and family. Consequently, they may be more vulnerable to stress at work. Thirdly, there are interrelationships between work and family, which are based on a systemic inquiry that incorporates work- individual- family. Poor physical and psychological health due to shift work or a harmful work environment could affect not just work performance, but also life at home. Therefore, a few practice points about 1) work-family conflicts in Macau; 2) families-in- transition in Macau; and 3) gender and class sensitivity in Macau; are provided for social workers and family practitioners who will greatly benefit these families, especially whose family members are working in the gaming industry in Macau. It is concluded that in addressing the cultural phenomenon of “dealer’s complex” in Macau, a systemic approach is recommended that addresses both personal psychological needs and family issue of dealers.

Keywords: family, work stress, mental health, Macau, dealers, gaming industry

Procedia PDF Downloads 287