Search results for: text analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1666

Search results for: text analytics

946 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
945 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study

Authors: Majdah Alnefaie

Abstract:

The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.

Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving

Procedia PDF Downloads 153
944 CanVis: Towards a Web Platform for Cancer Progression Tree Analysis

Authors: Michael Aupetit, Mahmoud Al-ismail, Khaled Mohamed

Abstract:

Cancer is a major public health problem all over the world. Breast cancer has the highest incidence rate over all cancers for women in Qatar making its study a top priority of the country. Human cancer is a dynamic disease that develops over an extended period through the accumulation of a series of genetic alterations. A Darwinian process drives the tumor cells toward higher malignancy growing the branches of a progression tree in the space of genes expression. Although it is not possible to track these genetic alterations dynamically for one patient, it is possible to reconstruct the progression tree from the aggregation of thousands of tumor cells’ genetic profiles from thousands of different patients at different stages of the disease. Analyzing the progression tree is a way to detect pivotal molecular events that drive the malignant evolution and to provide a guide for the development of cancer diagnostics, prognostics and targeted therapeutics. In this work we present the development of a Visual Analytic web platform CanVis enabling users to upload gene-expression data and analyze their progression tree. The server computes the progression tree based on state-of-the-art techniques and allows an interactive visual exploration of this tree and the gene-expression data along its branching structure helping to discover potential driver genes.

Keywords: breast cancer, progression tree, visual analytics, web platform

Procedia PDF Downloads 416
943 Hate Speech Detection Using Deep Learning and Machine Learning Models

Authors: Nabil Shawkat, Jamil Saquer

Abstract:

Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.

Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification

Procedia PDF Downloads 136
942 A Hebbian Neural Network Model of the Stroop Effect

Authors: Vadim Kulikov

Abstract:

The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.

Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop

Procedia PDF Downloads 267
941 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates

Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras

Abstract:

Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.

Keywords: blockchain, degree verification, higher education certificates, Hyperledger Iroha

Procedia PDF Downloads 141
940 The Complexity of Testing Cryptographic Devices on Input Faults

Authors: Alisher Ikramov, Gayrat Juraev

Abstract:

The production of logic devices faces the occurrence of faults during manufacturing. This work analyses the complexity of testing a special type of logic device on inverse, adhesion, and constant input faults. The focus of this work is on devices that implement cryptographic functions. The complexity values for the general case faults and for some frequently occurring subsets were determined and proved in this work. For a special case, when the length of the text block is equal to the length of the key block, the complexity of testing is proven to be asymptotically half the complexity of testing all logic devices on the same types of input faults.

Keywords: complexity, cryptographic devices, input faults, testing

Procedia PDF Downloads 226
939 Background Knowledge and Reading Comprehension in ELT Classes: A Pedagogical Perspective

Authors: Davoud Ansari Kejal, Meysam Sabour

Abstract:

For long, there has been a belief that a reader can easily comprehend a text if he is strong enough in vocabulary and grammatical knowledge but there was no account for the ability of understanding different subjects based on readers’ understanding of the surrounding world which is called world background knowledge. This paper attempts to investigate the reading comprehension process applying the schema theory as an influential factor in comprehending texts, in order to prove the important role of background knowledge in reading comprehension. Based on the discussion, some teaching methods are suggested for employing world background knowledge for an elaborated teaching of reading comprehension in an active learning environment in EFL classes.

Keywords: background knowledge, reading comprehension, schema theory, ELT classes

Procedia PDF Downloads 457
938 The Impact of AI on Higher Education

Authors: Georges Bou Ghantous

Abstract:

This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.

Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning

Procedia PDF Downloads 26
937 Bringing German History to Tourists

Authors: Gudrun Görlitz, Christian Schölzel, Alexander Vollmar

Abstract:

Sites of Jewish Life in Berlin 1933-1945. Between Persecution and Self-assertion” was realized in a project funded by the European Regional Development Fund. A smartphone app, and a associated web site enable tourists and other participants of this educational offer to learn in a serious way more about the life of Jews in the German capital during the Nazi era. Texts, photos, video and audio recordings communicate the historical content. Interactive maps (both current and historical) make it possible to use predefined or self combined routes. One of the manifold challenges was to create a broad ranged guide, in which all detailed information are well linked with each other. This enables heterogeneous groups of potential users to find a wide range of specific information, corresponding with their particular wishes and interests. The multitude of potential ways to navigate through the diversified information causes (hopefully) the users to utilize app and web site for a second or third time and with a continued interest. Therefore 90 locations, a lot of them situated in Berlin’s city centre, have been chosen. For all of them text-, picture and/or audio/video material gives extensive information. Suggested combinations of several of these “site stories” are leading to the offer of detailed excursion routes. Events and biographies are also presented. A few of the implemented biographies are especially enriched with source material concerning the aspect of (forced) migration of these persons during the Nazi time. All this was done in a close and fruitful interdisciplinary cooperation of computer scientists and historians. The suggested conference paper aims to show the challenges shaping complex source material for practical use by different user-groups in a proper technical and didactic way. Based on the historical research in archives, museums, libraries and digital resources the quantitative dimension of the project can be sized as follows: The paper focuses on the following historiographical and technical aspects: - Shaping the text material didactically for the use in new media, especially a Smartphone-App running on differing platforms; - Geo-referencing of the sites on historical and current map material; - Overlay of old and new maps to present and find the sites; - Using Augmented Reality technologies to re-visualize destroyed buildings; - Visualization of black-/white-picture-material; - Presentation of historical footage and the resulting problems to need too much storage space; - Financial and juridical aspects in gaining copyrights to present archival material.

Keywords: smartphone app, history, tourists, German

Procedia PDF Downloads 375
936 iPAD as a Communication Tool for Disabled Seniors: A Case Study

Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová

Abstract:

This case study responds to the current trends in ICT. Mobile Touch iPads can provide very good assistance to disabled seniors. The intuitive tablet environment, the possibility of the formation environment and its portability, has a very positive effect on the use of particular communication. For comparison, using a conventional PC/notebook, word processor, keyboard and computer mouse compared to the iPad and selected applications. The results of this case study show that the use of mobile touch devices iPad for seniors with mental retardation is a great benefit. These devices do not require high demands on graphomotorics like a standard PC devices.

Keywords: ICT, iPad, handicapped seniors, communication, computer/notebook, applications, text editor

Procedia PDF Downloads 321
935 Gray’s Anatomy for Students: First South Asia Edition Highlights

Authors: Raveendranath Veeramani, Sunil Jonathan Holla, Parkash Chand, Sunil Chumber

Abstract:

Gray’s Anatomy for Students has been a well-appreciated book among undergraduate students of anatomy in Asia. However, the current curricular requirements of anatomy require a more focused and organized approach. The editors of the first South Asia edition of Gray’s Anatomy for Students hereby highlight the modifications and importance of this edition. There is an emphasis on active learning by making the clinical relevance of anatomy explicit. Learning anatomy in context has been fostered by the association between anatomists and clinicians in keeping with the emerging integrated curriculum of the 21st century. The language has been simplified to aid students who have studied in the vernacular. The original illustrations have been retained, and few illustrations have been added. There are more figure numbers mentioned in the text to encourage students to refer to the illustrations while learning. The text has been made more student-friendly by adding generalizations, classifications and summaries. There are useful review materials at the beginning of the chapters which include digital resources for self-study. There are updates on imaging techniques to encourage students to appreciate the importance of essential knowledge of the relevant anatomy to interpret images, due emphasis has been laid on dissection. Additional importance has been given to the cranial nerves, by describing their relevant details with several additional illustrations and flowcharts. This new edition includes innovative features such as set inductions, outlines for subchapters and flowcharts to facilitate learning. Set inductions are mostly clinical scenarios to create interest in the need to study anatomy for healthcare professions. The outlines are a modern multimodal facilitating approach towards various topics to empower students to explore content and direct their learning and include learning objectives and material for review. The components of the outline encourage the student to be aware of the need to create solutions to clinical problems. The outlines help students direct their learning to recall facts, demonstrate and analyze relationships, use reason to explain concepts, appreciate the significance of structures and their relationships and apply anatomical knowledge. The 'structures to be identified in a dissection' are given as Level I, II and III which represent the 'must know, desirable to know and nice to know' content respectively. The flowcharts have been added to get an overview of the course of a structure, recapitulate important details about structures, and as an aid to recall. There has been a great effort to balance the need to have content that would enable students to understand concepts as well as get the basic material for the current condensed curriculum.

Keywords: Grays anatomy, South Asia, human anatomy, students anatomy

Procedia PDF Downloads 202
934 Transitivity Analysis in Reading Passage of English Text Book for Senior High School

Authors: Elitaria Bestri Agustina Siregar, Boni Fasius Siregar

Abstract:

The paper concerned with the transitivity in the reading passage of English textbook for Senior High School. The six types of process were occurred in the passages with percentage as follows: Material Process is 166 (42%), Relational Process is 155 (39%), Mental Process is 39 (10%), Verbal Process is 21 (5%), Existential Process is 13 (3), and Behavioral Process is 5 (1%). The material processes were found to be the most frequently used process type in the samples in our corpus (41,60 %). This indicates that the twenty reading passages are centrally concerned with action and events. Related to developmental psychology theory, this book fits the needs of students of this age.

Keywords: transitivity, types of processes, reading passages, developmental psycholoy

Procedia PDF Downloads 414
933 Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target

Authors: Ivan Ramos Sampe Immanuel, Linung Kresno Adikusumo, Liston Sitanggang

Abstract:

Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets.

Keywords: production, performance, dashboard, data analytics

Procedia PDF Downloads 71
932 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 423
931 Computerized Scoring System: A Stethoscope to Understand Consumer's Emotion through His or Her Feedback

Authors: Chen Yang, Jun Hu, Ping Li, Lili Xue

Abstract:

Most companies pay careful attention to consumer feedback collection, so it is popular to find the ‘feedback’ button of all kinds of mobile apps. Yet it is much more changeling to analyze these feedback texts and to catch the true feelings of a consumer regarding either a problem or a complimentary of consumers who hands out the feedback. Especially to the Chinese content, it is possible that; in one context the Chinese feedback expresses positive feedback, but in the other context, the same Chinese feedback may be a negative one. For example, in Chinese, the feedback 'operating with loudness' works well with both refrigerator and stereo system. Apparently, this feedback towards a refrigerator shows negative feedback; however, the same feedback is positive towards a stereo system. By introducing Bradley, M. and Lang, P.'s Affective Norms for English Text (ANET) theory and Bucci W.’s Referential Activity (RA) theory, we, usability researchers at Pingan, are able to decipher the feedback and to find the hidden feelings behind the content. We subtract 2 disciplines ‘valence’ and ‘dominance’ out of 3 of ANET and 2 disciplines ‘concreteness’ and ‘specificity’ out of 4 of RA to organize our own rating system with a scale of 1 to 5 points. This rating system enables us to judge the feelings/emotion behind each feedback, and it works well with both single word/phrase and a whole paragraph. The result of the rating reflects the strength of the feeling/emotion of the consumer when he/she is typing the feedback. In our daily work, we first require a consumer to answer the net promoter score (NPS) before writing the feedback, so we can determine the feedback is positive or negative. Secondly, we code the feedback content according to company problematic list, which contains 200 problematic items. In this way, we are able to collect the data that how many feedbacks left by the consumer belong to one typical problem. Thirdly, we rate each feedback based on the rating system mentioned above to illustrate the strength of the feeling/emotion when our consumer writes the feedback. In this way, we actually obtain two kinds of data 1) the portion, which means how many feedbacks are ascribed into one problematic item and 2) the severity, how strong the negative feeling/emotion is when the consumer is writing this feedback. By crossing these two, and introducing the portion into X-axis and severity into Y-axis, we are able to find which typical problem gets the high score in both portion and severity. The higher the score of a problem has, the more urgent a problem is supposed to be solved as it means more people write stronger negative feelings in feedbacks regarding this problem. Moreover, by introducing hidden Markov model to program our rating system, we are able to computerize the scoring system and are able to process thousands of feedback in a short period of time, which is efficient and accurate enough for the industrial purpose.

Keywords: computerized scoring system, feeling/emotion of consumer feedback, referential activity, text mining

Procedia PDF Downloads 176
930 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Likas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.

Keywords: big data, natural language generation, publishing, robotic journalism

Procedia PDF Downloads 431
929 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching

Authors: Weitao Lin

Abstract:

To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.

Keywords: natural language processing, Chinese event detection, rules matching, dependency parsing

Procedia PDF Downloads 141
928 Electronic and Computer-Assisted Refreshable Braille Display Developed for Visually Impaired Individuals

Authors: Ayşe Eldem, Fatih Başçiftçi

Abstract:

Braille alphabet is an important tool that enables visually impaired individuals to have a comfortable life like those who have normal vision. For this reason, new applications related to the Braille alphabet are being developed. In this study, a new Refreshable Braille Display was developed to help visually impaired individuals learn the Braille alphabet easier. By means of this system, any text downloaded on a computer can be read by the visually impaired individual at that moment by feeling it by his/her hands. Through this electronic device, it was aimed to make learning the Braille alphabet easier for visually impaired individuals with whom the necessary tests were conducted.

Keywords: visually impaired individual, Braille, Braille display, refreshable Braille display, USB

Procedia PDF Downloads 345
927 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being

Procedia PDF Downloads 70
926 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 63
925 1/Sigma Term Weighting Scheme for Sentiment Analysis

Authors: Hanan Alshaher, Jinsheng Xu

Abstract:

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Keywords: 1/sigma, natural language processing, sentiment analysis, term weighting scheme, text classification

Procedia PDF Downloads 204
924 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

Authors: Said Boularouk, Didier Josselin, Eitan Altman

Abstract:

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Keywords: TTS, ontology, open street map, visually impaired

Procedia PDF Downloads 295
923 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 35
922 Indecisiveness in 'The Road Not Taken' by Robert Frost: An Expressive Critical Analysis

Authors: Kurt S. Candilas

Abstract:

This expressive critical study is an effort to bring in light new interpretation of Robert Frost poem 'The Road Not Taken' as a reflection of his indecisiveness in life. Specifically, it aims at examining Frost’s inner being, emphasizing his own self and experiences in the poem or text. The study employs the qualitative research design which made use of discourse analysis using the critical theory of expressivism as the main guide. In acquiring the data of the study, the art of historiography is used such as autobiographical and/or biographical notes, sources documents, and web information. In executing the methods involved in this study, it is observed that the poem shows a naturalist implicatures, expressing Frost’s strong feelings and emotions being devoid of free will and a narrow bit of confusions and ambiguities with his indecisions in life.

Keywords: The Road Not Taken, expressivism, indecisiveness, naturalist implicatures

Procedia PDF Downloads 343
921 English Reading Preferences among Primary Pupils

Authors: Jezza Mae T. Francisco, Marianet R. Delos Santos, Crisjame C. Toribio

Abstract:

This study aims to determine the reading preference for English enrichment and reading comprehension among primary students and the difference in the reading preference and comprehension for English enrichment among primary students. This study employed a Descriptive-Quantitative Correlational Research Design. This study yielded the following findings: (1) It reveals that primary students got fair on their reading comprehension, and (2) It shows that there is no significant relationship between the reading preference for English enrichment and reading comprehension of the students. It is safe to conclude that the students’ reading preference is growing evidently in various milieus. This can inform the English department curriculum planners to consider their students’ text preferences that interest them to maximize engagement within a dynamic interactive learning process.

Keywords: reading preferences, reading comprehension, primary student, English enrichment

Procedia PDF Downloads 112
920 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 17
919 Review for Identifying Online Opinion Leaders

Authors: Yu Wang

Abstract:

Nowadays, Internet enables its users to share the information online and to interact with others. Facing with numerous information, these Internet users are confused and begin to rely on the opinion leaders’ recommendations. The online opinion leaders are the individuals who have professional knowledge, who utilize the online channels to spread word-of-mouth information and who can affect the attitudes or even the behavior of their followers to some degree. Because utilizing the online opinion leaders is seen as an important approach to affect the potential consumers, how to identify them has become one of the hottest topics in the related field. Hence, in this article, the concepts and characteristics are introduced, and the researches related to identifying opinion leaders are collected and divided into three categories. Finally, the implications for future studies are provided.

Keywords: online opinion leaders, user attributes analysis, text mining analysis, network structure analysis

Procedia PDF Downloads 223
918 Polymer Industrial Floors: The Possibility of Using Secondary Raw Materials from Solar Panels

Authors: J. Kosikova, B. Vacenovska, M. Vyhnankova

Abstract:

The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems.

Keywords: fillers, industrial floors, recycling, secondary raw material, solar panel

Procedia PDF Downloads 287
917 A Pragmatic Study of Falnama Texts Based on Critical Discourse Analysis Approach

Authors: Raziyeh Mashhadi Moghadam

Abstract:

Persian writings in the form of stories, scientific articles, historiographies, biographies, and philosophical, religious, and poetic arguments have established their presence in the past and present. Any piece of text is composed in a unique style depending on its content and subject. In this paper, a manuscript called Falnama of the Prophet is reviewed. Only a few scattered pages of this version are extant, and the author, using the name of twenty-four prophets, seeks to explore the presence and future of the reader. This version is analyzed based on Norman Fairclough’s Critical Discourse Analysis (CDA) approach to unravel the underlying processes in this type of manuscript. The spelling of some words and sentences is different from that of the new written Persian version.

Keywords: application of Falnama texts, critical discourse analysis, Fairclough’s approach

Procedia PDF Downloads 109