Search results for: seed coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1429

Search results for: seed coating

709 Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Mahmoud A. Adam, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features.

Keywords: architectural calcareous stone monuments, coating, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 240
708 Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent

Authors: G. N. Simonian, R. F. Basalah, F. T. Abd El Halim, F. F. Abd El Latif, A. M. Adel, A. M. El Shafey.

Abstract:

Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality.

Keywords: carboxymethyl cellulose (CMC), breaking length, tear factor, vessel picking, printing, concentration

Procedia PDF Downloads 405
707 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine

Authors: Mohan H., C. Elajchet Senni

Abstract:

In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.

Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester

Procedia PDF Downloads 268
706 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications

Authors: Zahid Ali Ghazi

Abstract:

Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.

Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon

Procedia PDF Downloads 50
705 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 128
704 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass

Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim

Abstract:

The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.

Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching

Procedia PDF Downloads 259
703 The Modulation of Health and Inflammatory Status in Young Pigs by Grape Waste Enriched in Polyphenols

Authors: Gina Cecilia Pistol, Loredana Calin, Mariana Stancu, Veronica Chedea, Ionelia Taranu

Abstract:

Inflammatory-associated diseases have an increased trend in the past decades. The pharmacological strategies aimed to treat these inflammatory diseases are very expensive and with non-beneficial results. The current trend is to find alternative strategies to counteract or to control inflammatory component of diseases. The grape by-products either seeds or pomace are rich in bioactive compounds (e.g. polyphenols) which may be beneficial in prevention of inflammation associated with cancer progression and other pathologies with inflammatory component. The in vivo models are very useful for studying the immune and inflammatory status. The domestic pig (Sus scrofa domesticus) is related to human from anatomic and physiologic point of view, representing a feasible model for studying the human inflammatory pathologies. Starting from these data, we evaluated the effect of a diet containing 5% grape seed cakes (GS) on piglets blood biochemical parameters and immune pro- and anti-inflammatory biomarkers (IL-1 beta, IL-8, TNF-alpha, IL-6, IFN-gamma, IL-10, IL-4) in spleen and lymph nodes. 12 weaned piglets were fed for 30 days with a control diet or an experimental diet containing 5% GS. At the end of trial, plasma and tissue samples (spleen and lymph nodes) were collected and the biochemical and inflammatory markers were analysed by using biochemistry analyser and ELISA techniques. Our results showed that diet included 5% GS did not influence the health status determined by plasma biochemical parameters. Only a tendency for a slight increase of the biochemical parameters associated with energetic profile (glucose, cholesterol, triglycerides) was observed. Also, GS diet had no effect on pro- and anti-inflammatory cytokines content in spleen and lymph nodes tissue. Further experiments are needed in order to investigate other rate of dietary inclusion which could provide more evidence about the effect of grape bioactive compounds on pigs used as animal model.

Keywords: animal model, inflammation, grape seed by-product, immune organs

Procedia PDF Downloads 274
702 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique

Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François

Abstract:

Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.

Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus

Procedia PDF Downloads 350
701 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.

Keywords: HVOF, residual stress, thermal spray, WC-Co

Procedia PDF Downloads 298
700 Gas Chromatographic: Mass Spectroscopic Analysis of Citrus reticulata Fruit Peel, Zingiber officinale Rhizome, and Sesamum indicum Seed Ethanolic Extracts Possessing Antioxidant Activity and Lipid Profile Effects

Authors: Samar Saadeldin Abdelmotalab Omer, Ikram Mohamed Eltayeb Elsiddig, Saad Mohammed Hussein Ayoub

Abstract:

A variety of herbal medicinal plants are known to confer beneficial effects in regards to modification of cardiovascular ri’=sk factors. The anti-hypercholesterolaemic and antioxidant activities of the crude ethanolic extracts of Citrus reticulate fruit peel, Zingiber officinale rhizome and Sesamum indicum seed extracts have been demonstrated. These plants are assumed to possess biologically active principles, which impart their pharmacologic activities. GC-MS analysis of the ethanolic extracts was carried out to identify the active principles and their percentages of occurrence in the analytes. Analysis of the extracts was carried out using (GS-MS QP) type Schimadzu 2010 equipped with a capillary column RTX-50 (restec), (length 30mm, diameter 0.25mm, and thickness 0.25mm). Helium was used as a carrier gas, the temperature was programmed at 200°C for 5 minutes at a rate of 15ml/minute, and the extracts were injected using split injection mode. The identification of different components was achieved from their Mass Spectra and Retention time, compared with those in the NIST library. The results revealed the presence of 80 compounds in Sudanese locally grown C. reticulata fruit peel extract, most of which were monoterpenoid compounds including Limonene (3.03%), Alpha & Gamma - terpinenes (2.61%), Linalool (1.38%), Citral (1.72%) which are known to have profound antioxidant effects. The Sesquiterpenoids Humulene (0.26%) and Caryophyllene (1.97%) were also identified, the latter known to have profound anti-anxiety and anti-depressant activity in addition to the beneficiary effects in lipid regulation. The analysis of the locally grown S. indicum oily and water soluble portions of seed extract revealed the presence of a total of 64 compounds with considerably high percentage of the mono-unsaturated fatty acid ester methyl oleate (66.99%) in addition to methyl stearate (9.35%) and palmitate (15.71%) of oil portion, whereas, plant sterols including Gamma-sitosterol (13.5%), fucosterol (2.11%) and stigmasterol (1.95%) in addition to gamma-tocopherol (1.16%) were detected in extract water-soluble portion. The latter indicate various principles known to have valuable pharmacological benefits including antioxidant activities and beneficiary effects on intestinal cholesterol absorption and regulation of serum cholesterol levels. Z. officinale rhizome extract analysis revealed the presence of 93 compounds, the most abundant were alpha-zingeberine (16.5%), gingerol (9.25%), alpha-sesquiphellandrene (8.3%), zingerone (6.78%), beta-bisabolene (4.19%), alpha-farnesene (3.56%), ar-curcumene (3.29%), gamma-elemene (1.25%) and a variety of other compounds. The presence of these active principles reflected on the activity of the extract. Activity could be assigned to a single or a combination of two or more extract components. GC-MS analysis concluded the occurrence of compounds known to possess antioxidant activity and lipid profile effects.

Keywords: gas chromatography, indicum, officinale, reticulata

Procedia PDF Downloads 352
699 Formation of Round Channel for Microfluidic Applications

Authors: A. Zahra, G. de Cesare, D. Caputo, A. Nascetti

Abstract:

PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shape microfluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.

Keywords: lab-on-chip, PDMS, reflow, round microfluidic channel

Procedia PDF Downloads 410
698 Investigating the Effects of Density and Different Nitrogen Nutritional Systems on Yield, Yield Components and Essential Oil of Fennel (Foeniculum Vulgare Mill.)

Authors: Mohammadreza Delfieh, Seyed Ali Mohammad Modarres Sanavy, Rouzbeh Farhoudi

Abstract:

Fennel is of most important medicinal plants which is widely used in food and pharmaceutical industries. In order to investigate the effect of different nitrogen nutritional systems including chemical, organic and biologic ones at different plant densities on yield, yield components and seed essential oil content and yield of this valuable medicinal plant, a field experiment was carried out in 2013-2014 agricultural season at Islamic Azad University of Shoushtar agricultural college in split plot design with 18 treatments and based on completely randomized blocks design. Different nitrogen system treatments consisting of: 1. N1 or control (Uniformly spreading urea fertilizer in the plot, 50% at planting time and 50% at stem elongation), 2. N2 (Uniformly spreading 50% of urea fertilizer in the plot at planting time and spraying the other 50% of urea fertilizer at stem elongation on fennel foliage), 3. N3 or cow manure, 4. N4 or biofertilizer (Inoculation of fennel seeds with Azotobacter and Azospirillum), 5. N5 or Integrated-1 (Cow manure + uniformly spreading urea fertilizer in the plot at stem elongation), 6. N6 or Integrated-2 (Cow manure + Inoculation of fennel seeds with Azotobacter and Azospirillum) were applied to the main plots. Three fennel densities consisting of: 1. FD1 (60 plant/m2), 2. FD2 (80 plant/m2) and 3. FD3 (100 plant/m2) were applied to subplots. Results showed that all of the traits were significantly affected by applied treatments (P 0.01). The interaction between treatments also were significant at 5 percent level for shoot dry weight and at 1 percent level for other traits. Based on the results, using the Integrated-1 treatment at 100 plant per m2 produced 94.575 g/m2 seed yield containing 3.375 percent of essential oil. Utilization of such combination not only could lead to a desirable fennel quantity and quality, but also is more consistent with environment.

Keywords: fennel (foeniculum vulgare mill.), nutritional system, nitrogen, biofertilizer, organic fertilizer, chemical fertilizer, density

Procedia PDF Downloads 439
697 In situ Investigation of PbI₂ Precursor Film Formation and Its Subsequent Conversion to Mixed Cation Perovskite

Authors: Dounya Barrit, Ming-Chun Tang, Hoang Dang, Kai Wang, Detlef-M. Smilgies, Aram Amassian

Abstract:

Several deposition methods have been developed for perovskite film preparation. The one-step spin-coating process has emerged as a more popular option thanks to its ability to produce films of different compositions, including mixed cation and mixed halide perovskites, which can stabilize the perovskite phase and produce phases with desired band gap. The two-step method, however, is not understood in great detail. There is a significant need and opportunity to adopt the two-step process toward mixed cation and mixed halide perovskites, but this requires deeper understanding of the two-step conversion process, for instance when using different cations and mixtures thereof, to produce high-quality perovskite films with uniform composition. In this work, we demonstrate using in situ investigations that the conversion of PbI₂ to perovskite is largely dictated by the state of the PbI₂ precursor film in terms of its solvated state. Using time-resolved grazing incidence wide-angle X-Ray scattering (GIWAXS) measurements during spin coating of PbI₂ from a DMF (Dimethylformamide) solution we show the film formation to be a sol-gel process involving three PbI₂-DMF solvate complexes: disordered precursor (P₀), ordered precursor (P₁, P₂) prior to PbI₂ formation at room temperature after 5 minutes. The ordered solvates are highly metastable and eventually disappear, but we show that performing conversion from P₀, P₁, P₂ or PbI₂ can lead to very different conversion behaviors and outcomes. We compare conversion behaviors by using MAI (Methylammonium iodide), FAI (Formamidinium Iodide) and mixtures of these cations, and show that conversion can occur spontaneously and quite rapidly at room temperature without requiring further thermal annealing. We confirm this by demonstrating improvements in the morphology and microstructure of the resulting perovskite films, using techniques such as in situ quartz crystal microbalance with dissipation monitoring, SEM and XRD.

Keywords: in situ GIWAXS, lead iodide, mixed cation, perovskite solar cell, sol-gel process, solvate phase

Procedia PDF Downloads 129
696 The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H.Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, temperature, thickness, velocity, WC-12Co

Procedia PDF Downloads 382
695 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization

Procedia PDF Downloads 282
694 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings

Authors: M. Jalali Azizpour

Abstract:

In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, temperature thickness, velocity, WC-12Co

Procedia PDF Downloads 225
693 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco

Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad

Abstract:

The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.

Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility

Procedia PDF Downloads 161
692 Asparagus racemosus Willd for Enhanced Medicinal Properties

Authors: Ashok Kumar, Parveen Parveen

Abstract:

India is bestowed with an extremely high population of plant species with medicinal value and even has two biodiversity hotspots. Indian systems of medicine including Ayurveda, Siddha and Unani have historically been serving humankind across the world since time immemorial. About 1500 plant species have well been documented in Ayurvedic Nighantus as official medicinal plants. Additionally, several hundred species of plants are being routinely used as medicines by local people especially tribes living in and around forests. The natural resources for medicinal plants have unscientifically been over-exploited forcing rapid depletion in their genetic diversity. Moreover, renewed global interest in herbal medicines may even lead to additional depletion of medicinal plant wealth of the country, as about 95% collection of medicinal plants for pharmaceutical preparation is being carried out from natural forests. On the other hand, huge export market of medicinal and aromatic plants needs to be seriously tapped for enhancing inflow of foreign currency. Asparagus racemosus Willd., a member of family Liliaceae, is one of thirty-two plant species that have been identified as priority species for cultivation and conservation by the National Medicinal Plant Board (NMPB), Government of India. Though attention is being focused on standardization of agro-techniques and extraction methods, little has been designed on genetic improvement and selection of desired types with higher root production and saponin content, a basic ingredient of medicinal value. The saponin not only improves defense mechanisms and controls diabetes but the roots of this species promote secretion of breast milk, improved lost body weight and considered as an aphrodisiac. There is ample scope for genetic improvement of this species for enhancing productivity substantially, qualitatively and quantitatively. It is emphasized to select desired genotypes with sufficient genetic diversity for important economic traits. Hybridization between two genetically divergent genotypes could result in the synthesis of new F1 hybrids consisting of useful traits of both the parents. The evaluation of twenty seed sources of Asparagus racemosus assembled different geographical locations of India revelled high degree of variability for traits of economic importance. The maximum genotypic and phenotypic variance was observed for shoot height among shoot related traits and for root length among root related traits. The shoot height, genotypic variance, phenotypic variance, genotypic coefficient of variance, the phenotypic coefficient of variance was recorded to be 231.80, 3924.80, 61.26 and 1037.32, respectively, where those of the root length were 9.55, 16.80, 23.46 and 41.27, respectively. The maximum genetic advance and genetic gain were obtained for shoot height among shoot-related traits and root length among root-related traits. Index values were developed for all seed sources based on the four most important traits, and Panthnagar (Uttrakhand), Jodhpur (Rajasthan), Dehradun (Uttarakhand), Chandigarh (Punjab), Jammu (Jammu & Kashmir) and Solan (Himachal Pradesh) were found to be promising seed sources.

Keywords: asparagus, genetic, genotypes, variance

Procedia PDF Downloads 115
691 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: M. Mirmohammadi, S. Taghdisi, F. Anali

Abstract:

Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.

Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis

Procedia PDF Downloads 74
690 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 255
689 Identification of Bioactive Substances of Opuntia ficus-indica By-Products

Authors: N. Chougui, R. Larbat

Abstract:

The first economic importance of Opuntia ficus-indica relies on the production of edible fruits. This food transformation generates a large amount of by-products (seeds and peels) in addition to cladodes produced by the plant. Several studies showed the richness of these products with bioactive substances like phenolics that have potential applications. Indeed, phenolics have been associated with protection against oxidation and several biological activities responsible of different pathologies. Consequently, there has been a growing interest in identifying natural antioxidants from plants. This study falls within the framework of the industrial exploitation of by-products of the plant. The study aims to investigate the metabolic profile of three by-products (cladodes, peel seeds) regarding total phenolic content by liquid chromatography coupled to mass spectrometry approach (LC-MSn). The byproducts were first washed, crushed and stored at negative temperature. The total phenolic compounds were then extracted by aqueous-ethanolic solvent in order to be quantified and characterized by LC-MS. According to the results obtained, the peel extract was the richest in phenolic compounds (1512.58 mg GAE/100 g DM) followed by the cladode extract (629.23 GAE/100 g DM) and finally by the seed extract (88.82 GAE/100 g DM) which is mainly used for its oil. The LC-MS analysis revealed diversity in phenolics in the three extracts and allowed the identification of hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The highest complexity was observed in the seed phenolic composition; more than twenty compounds were detected that belong to acids esters among which three feruloyl sucrose isomers. Sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids were identified in the peel extract, whereas, only nine compounds were found in the cladode extract. It is interesting to highlight that the phenolic composition of the cladode extract was closer to that of the peel exact. However, from a quantitative viewpoint, the peel extract presented the highest amounts. Piscidic and eucomic acids were the two most concentrated molecules, corresponding to 271.3 and 121.6 mg GAE/ 100g DM respectively. The identified compounds were known to have high antioxidant and antiradical potential with the ability to inhibit lipid peroxidation and to exhibit a wide range of biological and therapeutic properties. The findings highlight the importance of using the Opuntia ficus-indica by-products.

Keywords: characterization, LC-MSn analysis, Opuntia ficus-indica, phenolics

Procedia PDF Downloads 211
688 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 323
687 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 264
686 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment

Procedia PDF Downloads 299
685 Influence of Morphology and Coatings in the Tribological Behavior of a Texturised Deterministic Surface by Photochemical Machining

Authors: Juan C. Sanchez, Jose L. Endrino, Alejandro Toro, Hugo A. Estupinan, Glenn Leighton

Abstract:

For years, the reduction of friction and wear has been a matter of interest in the engineering field. Several solutions have been proposed to address this issue, including the use of lubricants and coatings to reduce the frictional forces and to increase the surface wear resistance. Alternatively, texturing processes have been used in a wide variety of materials, in many cases inspired in natural surfaces. Nature has shown how species adapt to the environment and the engineers try to understand natural surfaces for particular applications by analyzing outstanding species such as gecko for high adhesion, lotus leaves for hydrophobicity, sharks for reduced flow resistance and snakes for optimized frictional response. Texturized surfaces have shown a superior performance in terms of the frictional response in many situations, and the control of its behavior greatly depends on the manufacturing process. The focus of this work is to evaluate the tribological behavior of AISI 52100 steel samples texturized by Photochemical Machining (PCM). The surface texture was inspired by several features of the snakeskin such as aspect ratio of fibrils and mean fibril spacing. Two coatings were applied on the texturized surface, namely Diamond-like Carbon (DLC) and Molybdenum Disulphide (MoS₂), and their tribological behavior after pin-on-disk tests were compared with that of the non-texturized and uncovered surfaces. The samples were characterised through Stereoscopic Microscope (SM), Scanning Electron Microscope (SEM), Optical Microscope (OM), Profilometer, Raman Spectrometer (RS) and X-Ray Diffractometer (XRD). The Coefficient of Friction (COF) measured in pin-on-disk tests showed correlations with the sliding direction (relative to the texture features) and the aspect ratio of the texture features. Regarding the coated surfaces, the DLC and MoS₂ coating had a good performance in terms of wear rate and coefficient of friction compared with the uncoated and non-texturized surfaces. On the other hand, for the uncoated surfaces, the texture showed an influence in the tribological performance with respect to the non-texturized surface.

Keywords: coating, coefficient of friction, deterministic surface, photochemical machining

Procedia PDF Downloads 130
684 Dry Sliding Wear Behaviour of Ti3SiC2 and the Effect of TiC on Its

Authors: Bendaoudi Seif-Eddine, Bounazef Mokhtar

Abstract:

Wear behaviour of Ti3SiC2 coating in contact sliding under dry condition have been investigated on different pressures (0.1-0.8 MPa) at various speeds from 5 to 60 m/s. The ball-on-disc sliding-wear test was performed in ambient air with a relative humidity of 20%. An equation has been proposed to predict wear rates and describe sliding wear caused by Corundum ball on the studied material. The results show how the wear rate, measured by mass loss, varies in the range of (0.6 – 3.8 x E-6 mm3/Nm) with normal sliding distance under various test conditions; it increases with increasing load and rapidly with speed. The influence of TiC impurities on the wear behaviours was also investigated.

Keywords: ball-on-disc, dry-sliding, Ti3SiC2, wear

Procedia PDF Downloads 251
683 Atmospheric Plasma Treatment to Improve Water and Oil Repellent Finishing for PET and PET/Spandex Fabrics

Authors: Mehtap Çalışkan, Nilüfer Yıldız Varan, Volkan Kaplan

Abstract:

In this study, the effects of an atmospheric plasma treatment on the durability of water and oil repellent finishes of PET and PET/Spandex fabrics were tested. Fabrics were treated with a low-frequency atmospheric pressure glow discharge. After plasma treatments, the water and oil repellent finishes were applied using pad-dry-cure method. It was observed that plasma treatments improved the durability finish for all fabrics.

Keywords: atmospheric plasma, durable coating, oil repellency, PET/spandex fabrics, water repellency

Procedia PDF Downloads 393
682 Short-Term Effects of Seed Dressing With Azorhizobium Caulinodans on Establishment, Development and Yield of Early Maturing Maize ( Zea Mays L.) In Zimbabwe

Authors: Gabriel Vusanimuzi Nkomo

Abstract:

The majority of soils in communal areas of Zimbabwe are sandy and inherently infertile and sustainable cultivation is not feasible without addition of plant nutrients. Most farmers find it difficult to raise the capital required for investments in mineral fertilizer and find it cheaper to use low nutrition animal manure. An experiment was conducted to determine the effects of nitrokara biofertiliser on early growth, development and maize yield while also comparing nitrokara biofertiliser on availability of nitrogen and phosphorous in soil. The experiment was conducted at Africa University Farm. The experiment had six treatments (nitrokara +300kg/ha Compound D, nitrokara+ 300kg/ha Compound D(7N;14P;7K) + 75kg/ha Ammonium Nitrate(AN), nitrokara +300kg/ha Compound D +150kg AN, nitrokara +300kg/ha Compound D +225kg/ha AN, nitrokara +300kg/ha Compound D + 300 kg/ha AN and 0 nitrokara+300kg/ha Compound D +0 AN). Early maturing SC 403 maize (Zea mays) was inoculated with nitrokara and a compound mineral fertilizer at 300 kg/ha at planting while ammonium nitrate was applied at 45 days after planting. There were no significant differences (P > 0.05) on emergence % from 5days up to 10 days after planting using maize seed inoculated with nitrokara. Emergence percentage varied with the number of days. At 5 days the emergence % was 62% to a high of 97 % at 10 days after emergence among treatments. There were no significant differences (P > 0.05) on plant biomass on treatments 1 to 6 at 4 weeks after planting as well as at 8 weeks after planting. There were no significant differences among the treatments on the availability of nitrogen after 6 weeks (P > 0.05). However at 8 and 10 weeks after planting there were significant differences among treatments on nitrogen availability (P < 0.05). There were no significant differences among the treatments at week 6 after planting on soil pH (p > 0.05). However there were significant differences among treatments pH at weeks 9 and 12 (p < 0.05). There were significant differences among treatments on phosphorous availability at 6, 8 and 10 weeks after planting (p < 0.05). There were no significant differences among treatments on stem diameter at 3 and 6 weeks after planting (p > 0.05).However at 9 and 12 weeks after planting there were significant differences among treatments on stem diameter (p < 0.05).There were no significant differences among treatments on plant height from week 3 up to week 6 on plant height (P > 0.05).However there were significant differences among treatments at week 9 and 12 (p < 0.05). There were significant differences among treatments on days to early, 50% and 100% anthesis (P < 0.05). There were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).Also there were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).The study revealed that inoculation of nitrokara biofertiliser at planting with subsequent addition of ammonium nitrate has a positive effect on maize crop development and yield.

Keywords: nitrokara, biofertiliser, symbiotic, plant biomass, inoculated

Procedia PDF Downloads 530
681 Effect of Silver Nanoparticles in Temperature Polarization of Distillation Membranes for Desalination Technologies

Authors: Lopez J., Mehrvar M., Quinones E., Suarez A., Romero C.

Abstract:

Membrane Distillation is an emerging technology that uses thermal and membrane steps for the desalination process to get drinking water. In this study, silver nanoparticles (AgNP) were deposited by dip-coating process over Polyvinylidene Fluoride, Fiberglass hydrophilic, and Polytetrafluoroethylene hydrophobic commercial membranes as substrate. Membranes were characterized and used in a Vacuum Membrane Distillation cell under Ultraviolet light with sea salt feed solution. The presence of AgNP increases the absorption of energy on the membrane, which improves the transmembrane flux.

Keywords: silver nanoparticles, membrane distillation, desalination technologies, heat deliver

Procedia PDF Downloads 153
680 High-Temperature Corrosion of Aluminized and Chromized Fe-25.8%Cr-19.5%Ni Alloys in N2/H2S/H2O-mixed Gases

Authors: Min Jung Kim, Dong Bok Lee

Abstract:

Alloys of Fe-25.8%Cr-19.5%Ni (SUS310 stainless steel) were either chromized or aluminized via pack cementation, and corroded at 800 oC for 100 h in 1 atm of (0.9448 atm of N2+0.031 atm of H2O+0.0242 atm of H2S)-mixed gases. The chromized layer consisted primarily of Cr1.36Fe0.52 and some Cr23C6. Its corrosion resulted in the formation of Cr2S3 and some FeS and Fe5Ni4S8. The aluminized coating consisted primarily of FeAl. Its corrosion resulted in the formation of α-Al2O3, Al2S3, and Cr2S3. Aluminizing was more effective than chromizing in increasing the corrosion resistance of the substrate, due mainly to the formation of α-Al2O3.

Keywords: aluminizing, chromizing, corrosion, H2S gas

Procedia PDF Downloads 473