Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3
Search results for: biofertiliser
3 Short-Term Effects of Seed Dressing With Azorhizobium Caulinodans on Establishment, Development and Yield of Early Maturing Maize ( Zea Mays L.) In Zimbabwe
Authors: Gabriel Vusanimuzi Nkomo
Abstract:
The majority of soils in communal areas of Zimbabwe are sandy and inherently infertile and sustainable cultivation is not feasible without addition of plant nutrients. Most farmers find it difficult to raise the capital required for investments in mineral fertilizer and find it cheaper to use low nutrition animal manure. An experiment was conducted to determine the effects of nitrokara biofertiliser on early growth, development and maize yield while also comparing nitrokara biofertiliser on availability of nitrogen and phosphorous in soil. The experiment was conducted at Africa University Farm. The experiment had six treatments (nitrokara +300kg/ha Compound D, nitrokara+ 300kg/ha Compound D(7N;14P;7K) + 75kg/ha Ammonium Nitrate(AN), nitrokara +300kg/ha Compound D +150kg AN, nitrokara +300kg/ha Compound D +225kg/ha AN, nitrokara +300kg/ha Compound D + 300 kg/ha AN and 0 nitrokara+300kg/ha Compound D +0 AN). Early maturing SC 403 maize (Zea mays) was inoculated with nitrokara and a compound mineral fertilizer at 300 kg/ha at planting while ammonium nitrate was applied at 45 days after planting. There were no significant differences (P > 0.05) on emergence % from 5days up to 10 days after planting using maize seed inoculated with nitrokara. Emergence percentage varied with the number of days. At 5 days the emergence % was 62% to a high of 97 % at 10 days after emergence among treatments. There were no significant differences (P > 0.05) on plant biomass on treatments 1 to 6 at 4 weeks after planting as well as at 8 weeks after planting. There were no significant differences among the treatments on the availability of nitrogen after 6 weeks (P > 0.05). However at 8 and 10 weeks after planting there were significant differences among treatments on nitrogen availability (P < 0.05). There were no significant differences among the treatments at week 6 after planting on soil pH (p > 0.05). However there were significant differences among treatments pH at weeks 9 and 12 (p < 0.05). There were significant differences among treatments on phosphorous availability at 6, 8 and 10 weeks after planting (p < 0.05). There were no significant differences among treatments on stem diameter at 3 and 6 weeks after planting (p > 0.05).However at 9 and 12 weeks after planting there were significant differences among treatments on stem diameter (p < 0.05).There were no significant differences among treatments on plant height from week 3 up to week 6 on plant height (P > 0.05).However there were significant differences among treatments at week 9 and 12 (p < 0.05). There were significant differences among treatments on days to early, 50% and 100% anthesis (P < 0.05). There were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).Also there were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).The study revealed that inoculation of nitrokara biofertiliser at planting with subsequent addition of ammonium nitrate has a positive effect on maize crop development and yield.Keywords: nitrokara, biofertiliser, symbiotic, plant biomass, inoculated
Procedia PDF Downloads 5512 Implementation of the Circular Economy Concept in Greenhouse Production Systems: Microalgae and Biostimulant Production Using Soilless Crops’ Drainage Nutrient Solution
Authors: Nikolaos Katsoulas, Sofia Faliagka, George Kountrias, Eleni Dimitriou, Eleftheria Pechlivani
Abstract:
The challenges to feed the world in 2050 are becoming more and more apparent. This calls for producing more with fewer inputs (most of them under scarcity), higher resource efficiency, minimum or zero effect on the environment, and higher sustainability. Therefore, increasing the circularity of production systems is highly significant for their sustainability. Protected horticulture offers opportunities for maximum resource efficiency across various levels within and between farms and at the regional level), high-quality production, and contributes significantly to the nutrition security as part of the world food production. In greenhouses, closed soilless cultivation systems give the opportunity to increase the water and nutrient use efficiency and reduce the environmental impact of the cultivation system by the reuse of the drained water and nutrients. However, due to the low quality of the water used in the Mediterranean countries, a completely closed system is not feasible. Partial discharge of the drainage nutrient solution when the levels of electrical conductivity (EC) or of the toxic ions in the system are reached is still a necessity. Thus, in the frame of the circular economy concept, this work presents the utilisation of the drainage solution of soilless cultivation systems for microalgae and biofertilisers production. The system includes a greenhouse equipped with a soilless cultivation system, a drainage solution collection tank, a closed bioreactor for microalgae production, and a biocatalysis tank. The bioreactor tested in the frame of this work includes two closed tube loops of a capacity of 1000 L each where, after the initial inoculation, the microalgae is developed using as a growth medium the drainage solution collected from the greenhouse crops. The bioreactor includes light and temperature control while pH is still manually regulated. As soon as the microalgae culture reaches a certain density level, 20% of the culture is harvested, and the culture system is refiled by a drainage nutrient solution. The microalgae produced goes through a biocatalysis process, which leads to the production of a rich aminoacids (and nitrogen) biofertiliser. The produced biofertiliser is then used for the fertilisation of greenhouse crops. The complete production cycle along with the effects of the biofertiliser produced on crop growth and yield are presented and discussed in this manuscript. Acknowledgment: This work was carried out under the PestNu project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Green Deal grant agreement No. 101037128 — PestNu.Keywords: soilless, water use efficiency, nutrients use efficiency, biostimulant
Procedia PDF Downloads 891 Study of Pseudomonas as Biofertiliser in Salt-Affected Soils of the Northwestern Algeria: Solubilisation of Calcium Phosphate and Growth Promoting of Broad Bean (Vcia faba)
Authors: A. Djoudi, R. Djibaou, H. A. Reguieg Yssaad
Abstract:
Our study focuses on the study of a bacteria belonging to Pseudomonas solubilizing tricalcium phosphate. They were isolated from rhizosphere of a variety of broad bean grown in salt-affected soils (electrical conductivity between 4 and 8 mmhos/cm) of the irrigated perimeter of Mina in northwestern Algeria. Isolates which have advantageous results in the calcium phosphate solubilization index test were subjected to identification using API20 then used to re-inoculate the same soil in pots experimentation to assess the effects of inoculation on the growth of the broad bean (Vicia faba). Based on the results obtained from the in-vitro tests, two isolates P5 and P8 showed a significant effect on the solubilization of tricalcium phosphate with an index I estimated at 314% and 283% sequentially. According to the results of in-vivo tests, the inoculation of the soil with P5 and P8 were significantly and positively influencing the growth in biometric parameters of the broad bean. Inoculation with strain P5 has promoted the growth of the broad bean in stem height, stem fresh weight and stem dry weight of 108.59%, 115.28%, 104.33%, respectively. Inoculation with strain P8 has fostered the growth of the broad bean stem fresh weight of 112.47%. The effect of Pseudomonas on the development of Vicia faba is considered as an interesting process by which PGPR can increase biological production and crop protection.Keywords: Pseudomonas, Vicia faba, promoting of plant growth, solubilization tricalcium phosphate
Procedia PDF Downloads 329