Search results for: neural style transfer
4639 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump
Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil
Abstract:
Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip
Procedia PDF Downloads 2674638 The Relationship between Coping Styles and Internet Addiction among High School Students
Authors: Adil Kaval, Digdem Muge Siyez
Abstract:
With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.Keywords: adolescents, coping, internet addiction, regression analysis
Procedia PDF Downloads 1744637 Study on the Post-Traumatic Stress Disorder and Its Psycho-Social-Genetic Risk Factors among Tibetan Alolescents in Heavily-Hit Area Three Years after Yushu Earthquake in Qinghai Province, China
Authors: Xiaolian Jiang, Dongling Liu, Kun Liu
Abstract:
Aims: To examine the prevalence of POST-TRAUMATIC STRESS DISORDER (PTSD) symptoms among Tibetan adolescents in heavily-hit disaster area three years after Yushu earthquake, and to explore the interactions of the psycho-social-genetic risk factors. Methods: This was a three-stage study. Firstly, demographic variables,PTSD Checklist-Civilian Version (PCL-C),the Internality、Powerful other、Chance Scale,(IPC),Coping Style Scale(CSS),and the Social Support Appraisal(SSA)were used to explore the psychosocial factors of PTSD symptoms among adolescent survivors. PCL-C was used to examine the PTSD symptoms among 4072 Tibetan adolescents,and the Structured Clinical Interview for DSM-IV Disorders(SCID)was used by psychiatrists to make the diagnosis precisely. Secondly,a case-control trial was used to explore the relationship between PTSD and gene polymorphisms. 287adolescents diagnosed with PTSD were recruited in study group, and 280 adolescents without PTSD in control group. Polymerase chain reaction-restriction fragment length polymorphism technology(PCR-RFLP)was used to test gene polymorphisms. Thirdly,SPSS 22.0 was used to explore the interactions of the psycho-social-genetic risk factors of PTSD on the basis of the above results. Results and conclusions: 1.The prevalence of PTSD was 9.70%. 2.The predictive psychosocial factors of PTSD included earthquake exposure, support from others, imagine, abreact, tolerant, powerful others and family support. 3.Synergistic interactions between A1 gene of DRD2 TaqIA and the external locus of control, negative coping style, severe earthquake exposure were found. Antagonism interactions between A1 gene of DRD2 TaqIA and poor social support was found. Synergistic interactions between A1/A1 genotype and the external locus of control, negative coping style were found. Synergistic interactions between 12 gene of 5-HTTVNTR and the external locus of control, negative coping style, severe earthquake exposure were found. Synergistic interactions between 12/12 genotype and the external locus of control, negative coping style, severe earthquake exposure were also found.Keywords: adolescents, earthquake, PTSD, risk factors
Procedia PDF Downloads 1524636 The Impact of Leadership Style and Managers Decision Making on Organizational Resulting in Ship Manufacturing Company
Authors: ZeinolAbedin Rahmani, Marzieh Evazi Borazjani, Nooshin Salehi
Abstract:
Organizations are increasingly facing changes and developments scientific, technological, social, cultural changes among these organizations those ones are reckoned successful and effective that in addition to coordinating the development of modern society can forecast future changes and be able to accommodate these changes in order to create favorable developments to build a better future. But we can change that with the changes that occur in the organization of the program it will distinguish. Today's organizations need leaders that change and grow them have to survive. In fact, without transformational managers and leaders, it is certainly difficult to create changes in organizations. Both private and public organizations need to increase knowledge and awareness of the cause widespread changes in the structure, culture and practice for the viability and sustainability of life and growth and development. By now, different signs have determined different causes for a suitable function of employees. However, the important thing is that the commitment of the employees to their organization has always been very important. Since the decrease of organization commitment causes the high rate of absenteeism, turnover intentions, and even to reduce the impact of health staff. and these factors prevent organizations from achieving its goals. If organizations want to retain staff, the organization must find a way to be happy and continue their work with commitment, motivation, and willingness. So here is the need for strong leaders, analysts, creative and transformational upper ranks more than ever is felt. The aim of this study is to revise history, the leadership style of managers shipbuilding company by using the MLQ model.Keywords: leadership style, managers, organizational, manufacturing company, sustainability of life
Procedia PDF Downloads 4914635 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 3304634 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system
Procedia PDF Downloads 4724633 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane
Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal
Abstract:
An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer
Procedia PDF Downloads 4554632 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges
Authors: M. Yoneda
Abstract:
In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis
Procedia PDF Downloads 2014631 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers
Authors: N. K. Singh
Abstract:
In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.Keywords: heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer
Procedia PDF Downloads 3314630 The Appropriate Patent System to Promote Economic Growth in Afghanistan
Authors: Mohammad Reza Fooladi
Abstract:
The patent system which fits with industrial and economic situation in the country, by strengthening research and development, technology transfer and increasing foreign investment can provide economic and industrial growth of the countries. However, the extent and manner of support should be commensurate with the country's conditions and comply with significant rules to have a positive effect on research and development, technology transfer and the amount of foreign investment. The present article tries to while reviewing the state of effectiveness of the patent system on economic growth, to illustrate the characteristics of the patent system fits Afghanistan and according to this matter provide the necessary recommendations about the improvement of laws and regulations related to the patent in Afghanistan.Keywords: patent, economic growth, technology transfer, Afghanistan
Procedia PDF Downloads 4114629 Impact of Reverse Technology Transfer on Innovation Capabilities: An Econometric Analysis for Mexican Transnational Corporations
Authors: Lissette Alejandra Lara, Mario Gomez, Jose Carlos Rodriguez
Abstract:
ransnational corporations (TNCs) as units in which it is possible technology and knowledge transfer across borders and the potential for generating innovation and contributing in economic development both in home and host countries have been widely acknowledged in the foreign direct investment (FDI) literature. Particularly, the accelerated expansion of emerging countries TNCs in the last decades has guided an uprising research stream that measure the presence of reverse technology transfer, defined as the extent to which emerging countries’ TNCs use outward FDI in a host country through certain mechanisms to absorb and transfer knowledge thus improving its technological capabilities in the home country. The objective of this paper is to test empirically the presence of reverse technology transfer and its impact on the innovation capabilities in Mexican transnational corporations (MXTNCs) as a part of the emerging countries TNCs that have successfully entered to industrialized markets. Using a panel dataset of 22 MXTNCs over the period 1994-2015, the results of the econometric model demonstrate that the amount of Mexican outward FDI and the research and development (R&D) expenditure in host developed countries had a positive impact on the innovation capabilities at the firm and industry level. There is also evidence that management of acquired brands and the organizational structure of Mexican subsidiaries improved these capabilities. Implications for internationalization strategies of emerging countries corporations and future research guidelines are discussed.Keywords: emerging countries, foreign direct investment, innovation capabilities, Mexican transnational corporations, reverse technology transfer
Procedia PDF Downloads 2274628 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary
Procedia PDF Downloads 3274627 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts
Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu
Abstract:
Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria
Procedia PDF Downloads 744626 Knowledge Transfer among Cross-Functional Teams as a Continual Improvement Process
Authors: Sergio Mauricio Pérez López, Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander
Abstract:
The culture of continuous improvement in organizations is very important as it represents a source of competitive advantage. This article discusses the transfer of knowledge between companies which formed cross-functional teams and used a dynamic model for knowledge creation as a framework. In addition, the article discusses the structure of cognitive assets in companies and the concept of "stickiness" (which is defined as an obstacle to the transfer of knowledge). The purpose of this analysis is to show that an improvement in the attitude of individual members of an organization creates opportunities, and that an exchange of information and knowledge leads to generating continuous improvements in the company as a whole. This article also discusses the importance of creating the proper conditions for sharing tacit knowledge. By narrowing gaps between people, mutual trust can be created and thus contribute to an increase in sharing. The concept of adapting knowledge to new environments will be highlighted, as it is essential for companies to translate and modify information so that such information can fit the context of receiving organizations. Adaptation will ensure that the transfer process is carried out smoothly by preventing "stickiness". When developing the transfer process on cross-functional teams (as opposed to working groups), the team acquires the flexibility and responsiveness necessary to meet objectives. These types of cross-functional teams also generate synergy due to the array of different work backgrounds of their individuals. When synergy is established, a culture of continuous improvement is created.Keywords: knowledge transfer, continuous improvement, teamwork, cognitive assets
Procedia PDF Downloads 3244625 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.Keywords: learning style, VARK, sensory preferences, identification model, didactic practices
Procedia PDF Downloads 2774624 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 1434623 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers
Procedia PDF Downloads 1874622 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.Keywords: neural network, backpropagation, local minima, fast convergence rate
Procedia PDF Downloads 4984621 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 1604620 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.Keywords: inverse optimal control, radial basis function, neural network, controller design
Procedia PDF Downloads 5534619 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2784618 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1834617 Numerical Study of Natural Convection of a Localized Heat Source at the up of a Nanofluid-Filled Enclosure
Authors: Marziyeh Heydari, Hossein Shokouhmand
Abstract:
This article presents a numerical study of natural convection of a heat source embedded on the up wall of an enclosure filled with nanofluid. The bottom and vertical walls of the enclosure are maintained at a relatively low temperature. The type of nanofluid and solid volume fraction of nanoparticle on the heat transfer performance is studied. The results indicated that adding nanoparticle into pure paraffin improves heat transfer. The results are presented over a wide range of Rayleigh numbers(Ra=〖10〗^3 〖-10〗^5), the volume fraction of nanoparticles (0≤ɸ≤0.4%). For an enclosure, the Nusselt number of a cu-paraffin nanofluid was reduced by increasing the volume fraction of nanoparticles above 0.2%.Keywords: nanofluid, heat transfer, heat source, enclosure
Procedia PDF Downloads 3104616 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 4894615 The Effects of Displacer-Cylinder-Wall Conditions on the Performance of a Medium-Temperature-Differential γ-Type Stirling Engine
Authors: Wen-Lih Chen, Chao-Kuang Chen, Mao-Ju Fang, Hsiang-Cheng Hsu
Abstract:
In this study, we conducted CFD simulation to study the gas cycle of a medium-temperature-differential (MTD) γ-type Stirling engine. Mesh compression and expansion as well as overset mesh techniques are employed to simulate the moving parts of the engine. Shear-Stress Transport (SST) k-ω turbulence model has been adopted because the model is not prone to generate excessive turbulence upon impingement regions. Hence, wall heat transfer rates at the hot and cold ends will not be overestimated. The effects of several different displacer-cylinder-wall temperature setups, including smooth and finned walls, on engine performance are investigated. The results include temperature contours, pressure versus volume diagrams, and variations of heat transfer rates, indicated power, and efficiency. It is found that displacer-wall heat transfer is one of the most important factors on engine performance, and some wall-temperature setups produce better results than others.Keywords: CFD, finned wall, MTD Stirling engine, heat transfer
Procedia PDF Downloads 3764614 System Identification and Controller Design for a DC Electrical Motor
Authors: Armel Asongu Nkembi, Ahmad Fawad
Abstract:
The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols
Procedia PDF Downloads 554613 Traditional Women's Clothes at Tekirdağ Region
Authors: E. Elhan Özus, Melek Tufan, Filiz Erden
Abstract:
Cloth is a special wearing style of a society for a period or of a profession. Clothes reflect the social status difference than the fashion. Within this context, society forms a wearing style in the direction of its customs, usage, traditions and social structure. One of the properties of a society indicating the social levels and cultural differences differing the societies from each other is clothing style. Clothing is one of the most important needs in life depending on the individual and social attributes. The clothing which first emerged as protection means is a social fact complementing the physical and psychological existence of human being, changing forms depending on technological developments and phases, and continuously changing under the affect of fashion today. Clothing is an aesthetic value fed by the feelings of individuals. So, clothing has an indispensable place in the structure and communication of cultural and social identity within this direction. The traditional Turkish clothing has a rich ethnography. It is also possible to see the winds coming from our predecessors in these cultural assets reflecting the feelings and thoughts of Anatolian women. When the long history of our nation and the cultures interacted by our nation are taken into account, it is seen that the magnificence of our nation has also reflected into the clothing culture.For this reason, we tried to keep the traditional women’s clothing of Tekirdağ region alive by investigating and documenting them. In this study, it is purposed to contribute a little bit to protect our culture and form a source for the future generations, to carry our national cultural values from the past up to now and to the future and deliver to the young people.Keywords: Turkish, traditional, culture, clothing
Procedia PDF Downloads 3414612 Experimental Investigation of Heat Transfer and Scale Growth Characteristics of Crystallisation Scale in Agitation Tank
Authors: Prasanjit Das, M .M. K. Khan, M. G. Rasul, Jie Wu, I. Youn
Abstract:
Crystallisation scale occurs when dissolved minerals precipitate from an aqueous solution. To investigate the crystallisation scale growth of normal solubility salt, a lab-scale agitation tank with and without baffles were used as a benchmark using potassium nitrate as the test fluid. Potassium nitrate (KNO3) solution in this test leads to crystallisation scale on heat transfer surfaces. This experimental investigation has focused on the effect of surface crystallisation of potassium nitrate on the low-temperature heat exchange surfaces on the wall of the agitation tank. The impeller agitation rate affects the scaling rate at the low-temperature agitation wall and it shows a decreasing scaling rate with an increasing agitation rate. It was observed that there was a significant variation of heat transfer coefficients and scaling resistance coefficients with different agitation rate as well as with varying impeller size, tank with and without baffles and solution concentration.Keywords: crystallisation, heat transfer coefficient, scale, resistance
Procedia PDF Downloads 1844611 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 994610 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer
Authors: A. Giniatoulline
Abstract:
A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid
Procedia PDF Downloads 255