Search results for: data analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27363

Search results for: data analyses

26643 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit

Authors: James Killian, Sarah Cox

Abstract:

The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.

Keywords: FOS, SRF, LEM, comparison

Procedia PDF Downloads 308
26642 Non-Adherence to Antidepressant Treatment and Its Predictors among Outpatients with Depressive Disorders

Authors: Selam Mulugeta, Barkot Milkias, Mesfin Araya, Abel Worku, Eyasu Mulugeta

Abstract:

In Ethiopia, there is inadequate information on non-adherence to antidepressant treatment in patients with depressive disorders. Having awareness of the pattern of adherence is important in future prognosis, quality of life, and functionality in these patients. This hospital-based cross-sectional quantitative study was done on a sample of 216 consecutive outpatients with depressive disorders. Data were collected using questionnaires through in-person and phone call interviews. The 8-item Morisky scale was used to assess the pattern of medication adherence. Other specially developed tools were used to obtain sociodemographic and clinical information from electronic medical records and patient interviews. Data were analyzed using the Statistical Package for the Social Sciences Version - 25. Univariate and multivariable analyses were carried out to assess factors associated with non-adherence. 90% of the participants had a primary diagnosis of major depressive disorder. Based on the 8-item Morisky Medication Adherence Scale, the prevalence of non-adherence was found to be 84.7%. Living distance between 11 to 50 km from the hospital (AOR= 11, 95% CI (29,46.6)), post-secondary level of education (AOR= 8.3, 95% CI (1, 64.4)) and taking multiple medications (AOR= 6.1, 95% CI (1, 34.9)) were found to have significantly increased odds of non-adherence. Non-adherence was significantly associated with factors such as increased living distance from the hospital, relatively higher educational level, and polypharmacy. Proper and patient-centered psychoeducation, addressing the communication gap between patients and doctors, adherence to prescribing guidelines, avoiding polypharmacy unless indicated & working on accessibility of treatment is essential to decrease non-adherence.

Keywords: depressive disorders, Ethiopia, medication adherence, Addis Ababa

Procedia PDF Downloads 149
26641 Preventing Farmer-Herder Conflicts in Ghana: A Constellation of Local Strategies and Solutions

Authors: Abdulai Abubakari

Abstract:

The rollercoaster relationship between farmers and herders in Sub-Saharan Africa has compelled most governments to undertake different mitigating strategies. Over the past two decades, the expulsion of migrant herdsmen, the killing of cattle and human beings, and fines have been used by the state and aggrieved individuals to resolve the conflicts. Unlike this paper, most of the research conducted on this subject matter has been largely theoretical and lacks practical solutions to the conflicts. This paper is unique because it focuses on concrete strategies and practical solutions to ending the century-old phenomenon of farmer-herder conflicts in Ghana. The paper employed power or compete (fight) theory as well as compromise and negotiation theories in the analyses. The paper employed, basically, socio-anthropological methods: interviews, focus group discussions, and observations to gather data. The paper found that compromises through negotiation with the stakeholders are the best ways of resolving these conflicts. Through this, we support the compromise and negotiation approach rather than expulsion to resolve farmer-herder conflicts.

Keywords: farmer-herder, conflict, prevention, strategies, stakeholders

Procedia PDF Downloads 54
26640 Board Characteristics, Audit Committee Characteristics, and the Level of Bahraini Corporate Compliance with Mandatory IFRS Disclosure Requirements

Authors: Omar Juhmani

Abstract:

This paper examines the relation between internal corporate governance and the level of corporate compliance with mandatory IFRS disclosure requirements. The internal corporate governance is measured by board and audit committee characteristics. Using data from Bahrain Stock Exchange, the results show that board independence is positively and significantly associated with level of compliance with IFRS disclosure requirements. This suggests that internal corporate governance mechanisms are effective in the financial reporting practices by increasing the level of compliance with IFRS disclosures. Also, the results of the regression analyses indicate that two of the control variables; company size and audit firm size are significantly positively associated with the level of corporate compliance with mandatory IFRS disclosure requirements in Bahrain.

Keywords: Bahrain, board and audit committee characteristics, compliance, disclosure, IFRS

Procedia PDF Downloads 421
26639 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 135
26638 Self-Determination Needs, Coping Strategies and Quality of Life Among Chronic Non-Specific Lower Back Pain Patients

Authors: Zubana Afzal, Afsheen Massod

Abstract:

This quantitative study was carried out in order to explore the role of coping strategies as an explanatory mechanism in the relationship between self-determination needs and quality of life. A cross-sectional survey research design was conducted using scales such as the Basic Psychological Needs Scale (Deci&Ryan, 2000) to measure self-determination-based needs, Pain Coping Strategies Questionnaire (Harland &Georgieff, 2003), and Quality of Life Brief (The WHOQOL Group, 1998), in translated form in addition to a demographic information sheet. The sample comprised 120 (Women=63, Men=57), taken from different hospitals in Lahore, Multan, and Gojra. Descriptive and Inferential analyses were executed through SPSS version 23.00. All self-determination needs were found in result to be significantly and positively correlated with diversion and cognitive pain coping strategies, physical, psychological, social, and environmental quality of life, and significantly negatively correlated with catastrophizing and reinterpreting pain coping strategies. Cognitive and diversion pain coping strategies were found to be significantly and positively associated with all physical, psychological, social, and environmental quality of life. The regression analyses revealed that the strongest predictors were autonomy, cognitive and diversion pain coping strategies in predicting quality of life. All coping strategies except reinterpreting played a mediating role between self-determination needs and quality of life. The findings can lead to a better understanding of the role of self-determination needs and pain coping strategies in determining the quality of life among chronic non-specific lower back pain patients.

Keywords: quality of life, chronic lower back pain, coping strategies, self determination needs

Procedia PDF Downloads 101
26637 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease

Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su

Abstract:

Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.

Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)

Procedia PDF Downloads 428
26636 Biodegradable Drinking Straws Made From Naturally Dried and Fallen Coconut Leaves: Impact on Rural Circular Economy and Environmental Sustainability

Authors: Saji Varghese

Abstract:

Naturally dried and fallen coconut leaves and found in abundance in India and other coconut growing regions of the world. These fallen coconut leaves are usually burnt by farmers in landfills and open kitchens, leading to CO2 and particulate emissions. The innovation of biodegradable drinking straws from naturally dried and fallen coconut leaves by this researcher and his team has opened up opportunities to create value out of this agri-waste leading to i. prevention of burning of these discarded leaves ii. income generating opportunities to women in rural areas of coconut growing regions iii. an alternative to single use plastic straws. The team has developed five special purpose machines, which are deployed in the three villages on a pilot basis where 36 women are employed. The women are trained in the use of these machines, and the straws which are in good demand are sold globally. The present paper analyses the prospective impact of this innovation on the incomes of women working at the straw production centres and the consequent impact on their standards of living, The paper also analyses the impact of this innovation in the reduction of CO2 and particulate emissions and makes a case for support from Govt and Non Govt organizations in coconut growing regions to set up straw production centres to boost rural circular economy and to reduce carbon footprint and eliminate plastic pollution

Keywords: drinking straws, coconut leaves, circular economy, sustainability

Procedia PDF Downloads 137
26635 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
26634 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process

Authors: Johannes Gantner, Michael Held, Matthias Fischer

Abstract:

The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.

Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation

Procedia PDF Downloads 286
26633 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding

Authors: Amir E. Amirzadeh, Richard K. Strand

Abstract:

Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.

Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making

Procedia PDF Downloads 70
26632 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 93
26631 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning

Authors: Jose Ramon Calvo-Ferrer

Abstract:

Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.

Keywords: digital game-based learning, feedback, metacognition, frequency, video games

Procedia PDF Downloads 156
26630 Evaluating the Effectiveness of Combined Psychiatric and Psychotherapeutic Care versus Psychotherapy Alone in the Treatment of Depression and Anxiety in Cancer Patients

Authors: Nathen A. Spitz, Dennis Martin Kivlighan III, Arwa Aburizik

Abstract:

Background and Purpose: Presently, there is a paucity of naturalistic studies that directly compare the effectiveness of psychotherapy versus concurrent psychotherapy and psychiatric care for the treatment of depression and anxiety in cancer patients. Informed by previous clinical trials examining the efficacy of concurrent approaches, this study sought to test the hypothesis that a combined approach would result in the greatest reduction of depression and anxiety symptoms. Methods: Data for this study consisted of 433 adult cancer patients, with 252 receiving only psychotherapy and 181 receiving concurrent psychotherapy and psychiatric care at the University of Iowa Hospitals and Clinics. Longitudinal PHQ9 and GAD7 data were analyzed between both groups using latent growth curve analyses. Results: After controlling for treatment length and provider effects, results indicated that concurrent care was more effective than psychotherapy alone for depressive symptoms (γ₁₂ = -0.12, p = .037). Specifically, the simple slope for concurrent care was -0.25 (p = .022), and the simple slope for psychotherapy alone was -0.13 (p = .006), suggesting that patients receiving concurrent care experienced a greater reduction in depressive symptoms compared to patients receiving psychotherapy alone. In contrast, there were no significant differences between psychotherapy alone and concurrent psychotherapy and psychiatric care in the reduction of anxious symptoms. Conclusions: Overall, as both psychotherapy and psychiatric care may address unique aspects of mental health conditions, in addition to potentially providing synergetic support to each other, a combinatorial approach to mental healthcare for cancer patients may improve outcomes.

Keywords: psychiatry, psychology, psycho-oncology, combined care, psychotherapy, behavioral psychology

Procedia PDF Downloads 118
26629 The Effect of Multi-Stakeholder Extension Services towards Crop Choice and Farmer's Income, the Case of the Arc High Value Crop Programme

Authors: Joseph Sello Kau, Elias Mashayamombe, Brian Washington Madinkana, Cynthia Ngwane

Abstract:

This paper presents the results for the statistical (stepwise linear regression and multiple regression) analyses, carried out on a number of crops in order to evaluate how the decision for crop choice affect the level of farm income generated by the farmers participating in the High Value Crop production (referred to as the HVC). The goal of the HVC is to encourage farmers cultivate fruit crops. The farmers received planting material from different extension agencies, together with other complementary packages such as fertilizer, garden tools, water tanks etc. During the surveys, it was discovered that a significant number of farmers were cultivating traditional crops even when their plot sizes were small. Traditional crops are competing for resources with high value crops. The results of the analyses show that farmers cultivating fruit crops, maize and potatoes were generating high income than those cultivating spinach and cabbage. High farm income is associated with plot size, access to social grants and gender. Choice for a crop is influenced by the availability of planting material and the market potential for the crop. Extension agencies providing the planting materials stand a good chance of having farmers follow their directives. As a recommendation, for the farmers to cultivate more of the HVCs, the ARC must intensify provision of fruit trees.

Keywords: farm income, nature of extension services, type of crops cultivated, fruit crops, cabbage, maize, potato and spinach

Procedia PDF Downloads 323
26628 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 157
26627 Requirement Engineering Within Open Source Software Development: A Case Study

Authors: Kars Beek, Remco Groeneveld, Sjaak Brinkkemper

Abstract:

Although there is much literature available on requirement documentation in traditional software development, few studies have been conducted about this topic in open source software development. While open-source software development is becoming more important, the software development processes are often not as structured as corporate software development processes. Papers show that communities, creating open-source software, often lack structure and documentation. However, most recent studies about this topic are often ten or more years old. Therefore, this research has been conducted to determine if the lack of structure and documentation in requirement engineering is currently still the situation in these communities. Three open-source products have been chosen as subjects for conducting this research. The data for this research was gathered based on interviews, observations, and analyses of feature proposals and issue tracking tools. In this paper, we present a comparison and an analysis of the different methods used for requirements documentation to understand the current practices of requirements documentation in open source software development.

Keywords: case study, open source software, open source software development, requirement elicitation, requirement engineering

Procedia PDF Downloads 104
26626 Living with a Partner with Depression: The Role of Dispositional Empathy in Psychological Resilience

Authors: Elizabeth O'Brien, Raegan Murphy

Abstract:

Research suggests that high levels of empathy in individuals with partners with mental health difficulties can lead to improved outcomes for their partner while compromising their own mental health. Specifically, it is proposed that the affective dimension of empathy diminishes resilience to the distress of a partner, whereas cognitive empathy (CE) enhances it. The relationship between different empathy dimensions and psychological resilience measures has not been investigated in partners of people with depression. Psychological inflexibility (PI) is a construct that can be understood as distress intolerance and is suggested to be an important feature of psychological resilience. The current study, therefore, aimed to investigate the differential role of dispositional empathy dimensions in PI for people living with a partner with depression. A cross-sectional design was employed in which 148 participants living with a partner with depression and 45 participants for a comparison sample were recruited using online platforms. Participants completed online surveys with measures relating to demographics, empathy, and PI. Scores were compared between the study and comparison samples. The study sample scored significantly lower for CE and affective empathy (AE) and significantly higher for PI than the comparison sample. Exploratory and regression analyses were run to examine associations between variables within the study sample. Analyses revealed that CE predicted the resilience outcome whilst AE did not. These results suggest that interventions for partners of people with depression that bolster the CE dimension alone may improve mental health outcomes for both members of the couple relationship.

Keywords: affective empathy, cognitive empathy, depression, partners, psychological inflexibility

Procedia PDF Downloads 132
26625 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 593
26624 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 354
26623 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 189
26622 The Effect of Evil Eye in the Individuals' Journey for Personhood within a Christian Orthodox Society

Authors: Nikolaos Souvlakis

Abstract:

The present paper negotiates the effect of 'the evil eye' on individuals' mental health while at the same time poses the problem of how the evil eye fits into the anthropological arena as a key question that forges a fundamental link between religion, anthropology and mental health professions. It is the argument of the paper that the evil eye is an essential and fundamental human phenomenon and therefore any scholarly field involved in its study must consider the insight it provides into the development of personhood. The study was an anthropological study in the geographical area of Corfu, a Greek Orthodox society uninfluenced by the Ottoman Islamic Culture. The paper aims to deepen our understanding of the evil eye as it analyses the interaction between the evil eye and gaze and how they affect the development of personhood; based on the empirical data collected from the fieldwork. Therefore, the paper adopts a psychoanalytic anthropology approach to facilitate a better understanding of the evil eye through the accounts of individuals’ journeys in the process of their development of personhood. Finally, the paper aims to offer a detailed analysis of the particular element of eye (‘I’) and, more specifically, of ‘the others’, as they relate to the phenomenon of the evil eye.

Keywords: gaze, evil eye, mental health, personhood

Procedia PDF Downloads 129
26621 Commercial Management vs. Quantity Surveying: Hoax or Harmonization

Authors: Zelda Jansen Van Rensburg

Abstract:

Purpose: This study investigates the perceived disparities between Quantity Surveying and Commercial Management in the construction industry, questioning if these differences are substantive or merely semantic. It aims to challenge the conventional notion of Commercial Managers’ superiority by critically evaluating QS and CM roles, exploring CM integration possibilities, examining qualifications for aspiring Commercial Managers, assessing regulatory frameworks, and considering terminology redefinition for global QS professional enhancement. Design: Utilizing mixed methods like literature reviews, surveys, interviews, and document analyses, this research examines the QS-CM relationship. Insights from industry professionals, academics, and regulatory bodies inform the investigation into changing QS roles. Findings: Empirical data highlight evolving roles, showcasing areas of convergence and divergence between QSs and CM. Potential CM integration into QS practice and qualifications for aspiring Commercial Managers are identified. Limitations/Implications: Limitations include potential bias in self-reported data and findings. Nevertheless, the research informs future practices and educational approaches in QS and CM, reflecting the changing roles and responsibilities of Quantity Surveyors. Practical Implications: Findings inform industry practitioners, educators, and regulators, stressing the need to adapt to changing QS roles and integrate CM principles where applicable. Value to the Conference Theme: Aligned with ‘Evolving roles and responsibilities of Quantity Surveyors,’ this research offers insights crucial for understanding the changing dynamics within the QS profession and informs strategies to navigate these shifts effectively.

Keywords: quantity surveying, commercial management, cost engineering, quantity survey

Procedia PDF Downloads 40
26620 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 103
26619 Achieving Supply Chain Competitiveness through Successful Buyer-Supplier Relationships

Authors: Kamran Rashid, Tashfeen M. Azhar, Asad-ur-Rahman Wahla

Abstract:

Current research aims to understand the role of successful buyer-supplier relationship in achieving supply chain competitiveness in a developing country perspective. Five hypotheses are developed to test structural model. Survey data is collected from the manufacturing sector of Pakistan. Analysis is conducted using Partial Least Squares (PLS) Structural Equation Modeling (SEM) through Smart PLS version 2.0 M3. Results demonstrate positive impact of effective supplier selection, buyer-supplier engagement, and information sharing capability on success of buyer supplier relationship. This successful buyer supplier relationship drives the supply chain firm financial and market performance. Additional analyses with large sample sizes are required in other developing countries to cross validate the results. Current study provides empirical evidence of the role of successful buyer supplier relationship in achieving supply chain competitiveness.

Keywords: supply chain management, successful buyer-supplier relationship, supply chain competitiveness, developing country

Procedia PDF Downloads 660
26618 V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron

Authors: A. E. Dumitriu

Abstract:

The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV.

Keywords: LHCb physics, RIVET plug-in, RIVET, CERN

Procedia PDF Downloads 428
26617 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 246
26616 Supply and Marketing of Floriculture in Ethiopia

Authors: Assefa Mitike Janko, Gosa Alemu

Abstract:

The review of supply and marketing of floriculture in Ethiopia was conducted to analyses the production potential and to know the marketing share of the country. The data was collected from secondary and primary. Ethiopia has been operating in the floriculture industry for over 20 years. As is the case in many developing countries, the major export items of Ethiopia are dominated by few agricultural products that earn very small amounts in the international market. Moreover, most of the exports are destined to only few countries. Given the highly capital intensive nature of production and processing, rose farming is not a smallholder activity. It is also important to note the extremely tightly controlled time dimension of the logistics process, given the product attributes desired and the fragility and perishability of the roses. Another characteristic of the Ethiopian floriculture sector is the lack of domestically produced inputs that flower producers can access. The export volume and value of cut-flowers accounts for a small proportion of the total exports of Ethiopia. In recent years the sector is showing improvements in terms of the quality and quantity of exports to the international market.

Keywords: roses, production, value chain, floriculture, supply

Procedia PDF Downloads 380
26615 Immersive Environment as an Occupant-Centric Tool for Architecture Criticism and Architectural Education

Authors: Golnoush Rostami, Farzam Kharvari

Abstract:

In recent years, developments in the field of architectural education have resulted in a shift from conventional teaching methods to alternative state-of-the-art approaches in teaching methods and strategies. Criticism in architecture has been a key player both in the profession and education, but it has been mostly offered by renowned individuals. Hence, not only students or other professionals but also critics themselves may not have the option to experience buildings and rely on available 2D materials, such as images and plans, that may not result in a holistic understanding and evaluation of buildings. On the other hand, immersive environments provide students and professionals the opportunity to experience buildings virtually and reflect their evaluation by experiencing rather than judging based on 2D materials. Therefore, the aim of this study is to compare the effect of experiencing buildings in immersive environments and 2D drawings, including images and plans, on architecture criticism and architectural education. As a result, three buildings that have parametric brick facades were studied through 2D materials and in Unreal Engine v. 24 as an immersive environment among 22 architecture students that were selected using convenient sampling and were divided into two equal groups using simple random sampling. This study used mixed methods, including quantitative and qualitative methods; the quantitative section was carried out by a questionnaire, and deep interviews were used for the qualitative section. A questionnaire was developed for measuring three constructs, including privacy regulation based on Altman’s theory, the sufficiency of illuminance levels in the building, and the visual status of the view (visually appealing views based on obstructions that may have been caused by facades). Furthermore, participants had the opportunity to reflect their understanding and evaluation of the buildings in individual interviews. Accordingly, the collected data from the questionnaires were analyzed using independent t-test and descriptive analyses in IBM SPSS Statistics v. 26, and interviews were analyzed using the content analysis method. The results of the interviews showed that the participants who experienced the buildings in the immersive environment were able to have a thorough and more precise evaluation of the buildings in comparison to those who studied them through 2D materials. Moreover, the analyses of the respondents’ questionnaires revealed that there were statistically significant differences between measured constructs among the two groups. The outcome of this study suggests that integrating immersive environments into the profession and architectural education as an effective and efficient tool for architecture criticism is vital since these environments allow users to have a holistic evaluation of buildings for vigorous and sound criticism.

Keywords: immersive environments, architecture criticism, architectural education, occupant-centric evaluation, pre-occupancy evaluation

Procedia PDF Downloads 134
26614 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 443