Search results for: controller synthesis
2171 Synthesis of Nanosized Amorphous Alumina Particles and Their Use in Electroless Ni-P Coatings
Authors: Preeti Makkar, R. C. Agarwala, Vijaya Agarwala
Abstract:
The present study focuses on the preparation of Al2O3 nanoparticles by top down approach i.e. mechanical milling using high energy planetary ball mill at 250 rpm for 40h. The milled Al2O3 nanoparticles are then used as the second phase to develop electroless (EL) Ni-P- Al2O3 nanocomposite coatings on mild steel substrate. An alkaline bath was used with a suspension of Al2O3 particles (4 g/L) for the synthesis of Ni-P-Al2O3 nanocomposite coating. The surface morphology, size range and phase analysis of as-prepared Al2O3 particles and the coatings were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coatings were heat treated at 400°C for 1h in argon atmosphere and the hardness of the nanocomposite coatings was investigated with respect to Ni-P before and after heat treatment. The results showed that as milled Al2O3 nanoparticles exhibit irregular shaped and size ranges around 40-45 nm. The Al2O3 particles are uniformly distributed in Ni-P matrix. The microhardness of the coatings is found to be significantly improved after heat treatment (1126 VHN).Keywords: Electroless (EL), Ni-P-Al2O3, nanocomposite, mechanical milling, microhardness
Procedia PDF Downloads 2862170 Optimal Geothermal Borehole Design Guided By Dynamic Modeling
Authors: Hongshan Guo
Abstract:
Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.Keywords: geothermal borehole, MPC, dynamic modeling, simulation
Procedia PDF Downloads 2872169 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid
Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah
Abstract:
This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial
Procedia PDF Downloads 3322168 Glycerol-Based Bio-Solvents for Organic Synthesis
Authors: Dorith Tavor, Adi Wolfson
Abstract:
In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.Keywords: glycerol, green chemistry, sustainability, catalysis
Procedia PDF Downloads 6242167 Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance
Authors: Charmaine Lamiel, Van Hoa Nguyen, Jae-Jin Shim
Abstract:
Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance.Keywords: cobalt-manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor
Procedia PDF Downloads 2132166 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle
Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki
Abstract:
With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)
Procedia PDF Downloads 2092165 Didactics of Literature within the Brechtian Theatre in Edward Albee's Who's Afraid of Virginia Woolf? and Ernest Lehman's Screenplay Adaptation from an Audiovisual Perspective
Authors: Angel Mauricio Castillo
Abstract:
The background to the way theatrical performances and music dramas- as they were known in the mid-nineteenth century, provided the audience with a complete immersion into the feelings of the characters through poetry, music and other artistic representations which create a false sense of reality. However, a novel representation on stage some eighty years later, which is non-cathartic, is significant because it represents the antithesis to the common creations of the period and is originated by the separation of the elements as a dominant. A succinct description of the basic methodologies includes the sense of defamiliarization that results as a near translation of the German word Verfremdung will be referred to along this work as the V-effect (also known as the ‘alienation effect’) and will embody the representation of the performing techniques that enables the audience to watch a play being fully aware of its nature. A play might sometimes present the audience with a constant reminder that it is only a play; therefore, all elements will be introduced to provoke dissimilar reactions and opinions. A clear indication of the major findings of the study is that there is a strong correlation between Hegel, Marx and Brecht as it is disclosed how the didactics of Literature have been influencing not only Brecht’s productions but also every educational context in which these ideas are intertwined. The result is a new dialectical process that is to say, a new thesis that creates independent thinking skills on the part of the audience. Therefore, this model opposes to the Hegelian formula thesis-antithesis-synthesis in that the synthesis in the Brechtian theatre will inevitably fall into the category of a different thesis within an enlightening type of discourse. The confronting ideas of illusion versus reality will create a new dialectical thesis instead of resulting into a synthesis.Keywords: Brechtian theatre, didactics, literature, education
Procedia PDF Downloads 1792164 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals
Authors: A. Hamza, H. Kathyayini, N. Nagaraju
Abstract:
Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone
Procedia PDF Downloads 3042163 Plasma Technology for Hazardous Biomedical Waste Treatment
Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko
Abstract:
One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas
Procedia PDF Downloads 5252162 New 5’-O- and 6-Substituted Purine Nucleoside Analogs: Synthesis and Cytotoxic Activity on Selected Human Cancer Cell Lines
Authors: Meral Tuncbilek, Duygu Sac, Irem Durmaz, Rengul Cetin Atalay
Abstract:
Nucleoside analogs are a pharmacologically diverse family that includes cytotoxic compounds, antiviral agents, and immunosuppressive molecules. Purine nucleoside derivatives such as fludarabine, cladribine, and pentostatin are significant drugs used in chemotherapy for the treatment of solid tumors and hematological malignancies. In this study, we synthesized novel purine ribonucleoside analogs containing a 4-(4-substituted phenylsulfonyl) piperazine in the substituent at N6- and O-substituted sulfonyl group at 5’-position as putative cytotoxic agents. The newly obtained compounds were then characterized for their cytotoxicity in human cancer cell lines. The 5’, 6-disubstituted 9-(β-D-ribofuranosyl)purine derivatives (44-67) were readily obtained from commercially available inosine in seven steps in very cost effective synthesis approach. The newly synthesized compounds were first evaluated for their anti-tumor activities against human liver (Huh7), colon (HCT116) and breast (MCF7) carcinoma cell lines. The IC50 values were in micromolar concentrations with 5’, 6-disubstituted purine nucleoside derivatives. Time-dependent IC50 values for each molecule were also calculated in comparison with known cytotoxic agents Camptothecin (CPT), 5-Fluorouracil (5-FU), Cladribine, Pentostatine and Fludarabine. N6-(4-trifluoromethyl phenyl) / N6-(4-bromophenyl) and 5’-O-(4-methoxybenzene sulfonyl) / 5’-O-(benzenesulfonyl) derivatives 54, 64 displayed the best cytotoxic activity with IC50 values of 8.8, 7 µM against MCF7 cell line. The N6-(4-methylphenyl) analog 50 was also very active (IC50= 10.7 μM) against HCT116 cell line. Furthermore, compound 64 had a better cytotoxic activity than the known cell growth inhibitors 5-FU and Fludarabine on Huh7 (1.5 vs 30.7, 29.9 μM for 5-FU and Fludarabine).Keywords: cytotoxic activity, Huh7, HCT116, MCF7, nucleoside, synthesis
Procedia PDF Downloads 2422161 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit
Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini
Abstract:
Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift
Procedia PDF Downloads 2902160 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1102159 Synthesis of DHA Rich Glycerides with Immobilized Lipases from Mucor miehei and Rhizopus oryzae
Authors: Satyendra P. Chaurasia, Aditi Sharma, Ajay K. Dalai
Abstract:
The esterification of Docosahexaenoic acid (DHA) with glycerol using immobilized Mucor mie-hei lipase (MML) and Rhizopus oryzae lipase (ROL) have been studied in the present paper to synthesize triglycerides (TG) rich in DHA. Both immobilized lipases (MML and ROL), and their support materials (immobead-150 and ion-exchange resin) were characterized and compared for surface properties with BET, for chemical functional groups with FT-IR, and for particle size distribution with particle size analyzer. The most suitable reaction conditions for synthesis of DHA rich TG in biphasic solvent system were found as 1:3 (wt/wt) glycerol to DHA ratio, 1:1 (wt/wt) buffer to DHA ratio, 1:1 (wt/wt) solvent to DHA ratio at 50 ºC temperature, and 600 rpm speed of agitation with 100 mg of immobilized lipases. Maximum 95.9 % esterification was obtained with immobilized MML in 14 days reaction with formation of 65.7 wt% DHA rich TG. Whereas, immobilized ROL has shown formation of only 23.8 wt% DHA rich TG with total 78.9 % esterification in 15 days. Additionally, repeated use of both immobilized lipases was con-ducted up to five cycles, indicated 50.4% and 41.2 % activity retention after fifth repeated use of immobilized MML and ROL, respectively.Keywords: DHA, immobilized Mucor miehei lipase, Rhizopus oryzae lipase, esterification
Procedia PDF Downloads 3542158 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems
Authors: Elaid Bouchetob, Bouchra Nadji
Abstract:
This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter
Procedia PDF Downloads 622157 Screening of New Antimicrobial Agents from Heterocyclic Derivatives
Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah
Abstract:
The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology
Procedia PDF Downloads 3672156 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc
Authors: B.Benalioua, I.Benyamina, A.Bentouami, B.Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 3112155 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen
Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 3632154 Synthesis and Antibacterial Evaluation of Natural Bioactive 3,4-DihydroisocoumarinAnalogues
Authors: Hummera Rafique, Aamer Saeed
Abstract:
Synthesis of structural analogues of various well known bioactive natural 3,4-dihydroisocoumarins viz. Scorzocreticin, Annulatomarin, Montroumarin, and Thunberginol B, have been carried out starting from 3,5-dimethoxy-4-methylphenyl acetic acid. 3,5-Dimethoxy-4-methylphenyl acetic acid was then condensed with various aryl acid chlorides (a-e) to afford the corresponding 6,8-dimethoxy-7-methyl-3-aryl isocoumarins (5a-e). The alkaline hydrolysis of isocoumarins yields keto-acids (3a-e), which were then reduced to hydroxyacids, followed by cyclodehydration with acetic anhydride furnish corresponding 3,4-dihydroisocoumarins (7a-e). Finally, demethylation of 3,4-dihydroisocoumarins was carried out to afford 6,8-dihydroxy-7-methyl-3-aryl-3,4-dihydroisocoumarins (7a-e). Antibacterial evaluation of all the synthesized compounds were carried out against ten bacterial strains, it was concluded that isocoumarins (5a-e) and 3,4-dihydroisocoumarins (7a-e) are more active against gram positive bacteria then gram negative. However, the 6,8-dihydroxy-3,4-dihydroisocoumarin derivatives (8a-e) are more active against gram negative then gram positive.Keywords: 3, 5-Dimethoxy-4-methylhomophthalic acid, natural 3, 4-Dihydroisocoumarin analogues, antibacterial activity, isocoumarins, demethylation
Procedia PDF Downloads 4032153 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste
Authors: Suneeta Kumari, Abanti Sahoo
Abstract:
Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan
Procedia PDF Downloads 3212152 Chemical Synthesis, Electrical and Antibacterial Properties of Polyaniline/Gold Nanocomposites
Authors: L. N. Shubha, M. Kalpana, P. Madhusudana Rao
Abstract:
Polyaniline/gold (PANI/Au) nanocomposite was prepared by in-situ chemical oxidation polymerization method. The synthesis involved the formation of polyaniline-gold nanocomposite, by in-situ redox reaction and the dispersion of gold nano particles throughout the polyaniline matrix. The nanocomposites were characterized by XRD, FTIR, TEM and UV-visible spectroscopy. The characteristic peaks in FTIR and UV-visible spectra confirmed the expected structure of polymer as reported in the literature. Further, transmission electron microscopy (TEM) confirmed the formation of gold nano particles. The crystallite size of 30 nm for nanoAu was supported by the XRD pattern. Further, the A.C. conductivity, dielectric constant (€’(w)) and dielectric loss (€’’(w)) of PANI/Au nano composite was measured using impedance analyzer. The effect of doping on the conductivity was investigated. The antibacterial activity was examined for this nano composite and it was observed that PANI/Au nanocomposite could be used as an antibacterial agent.Keywords: AC-conductivity, anti-microbial activity, dielectric constant, dielectric loss, polyaniline/gold (PANI/AU) nanocomposite
Procedia PDF Downloads 3832151 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications
Authors: Mahmoud Elrouby
Abstract:
Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.Keywords: electrodeposition, metal chacogenides, semiconductors, applications
Procedia PDF Downloads 2982150 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing
Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares
Abstract:
In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms
Procedia PDF Downloads 1902149 Delay Studies in Construction: Synthesis, Critical Evaluation, and the Way Forward
Authors: Abdullah Alsehaimi
Abstract:
Over decades, there have been many studies of delay in construction, and this type of study continues to be popular in construction management research. A synthesis and critical evaluation of delay studies in developing countries reveals that poor project management is cited as one of the main causes of delay. However, despite such consensus, most of the previous studies fall short in providing clear recommendations demonstrating how project management practice could be improved. Moreover, the majority of recommendations are general and not devoted to solving the difficulties associated with particular delay causes. This paper aims to demonstrate that the root cause of this state of affairs is that typical research into delay tends to be descriptive and explanatory, making it inadequate for solving persistent managerial problems in construction. It is contended that many problems in construction could be mitigated via alternative research approaches, i.e. action and constructive research. Such prescriptive research methods can assist in the development and implementation of innovative tools tackling managerial problems of construction, including that of delay. In so doing, those methods will better connect research and practice, and thus strengthen the relevance of academic construction management.Keywords: construction delay, action research, constructive research, industrial engineering
Procedia PDF Downloads 4232148 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation
Authors: Natalia Kalinowska
Abstract:
The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach
Procedia PDF Downloads 2522147 Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand
Authors: Mohamedou El Boukhary, Farba Bouyagui Tamboura, A. Hamady Barry, T. Moussa Seck, Mohamed L. Gaye
Abstract:
Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds.Keywords: synthene, acyl-hydrazone, 3D transition metal complex, application
Procedia PDF Downloads 522146 Synthesis and Characterization of Nanocellulose Based Bio-Composites
Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S
Abstract:
Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.Keywords: nanocellulose, biocomposite, CNF, bamboo
Procedia PDF Downloads 872145 Synthesis, Characterization and Coating of the Zinc Oxide Nanoparticles on Cotton Fabric by Mechanical Thermo-Fixation Techniques to Impart Antimicrobial Activity
Authors: Imana Shahrin Tania, Mohammad Ali
Abstract:
The present study reports the synthesis, characterization and application of nano-sized zinc-oxide (ZnO) particles on a cotton fabric surface. The aim of the investigations is to impart the antimicrobial activity on textile cloth. Nanoparticle is synthesized by wet chemical method from zinc sulphate and sodium hydroxide. SEM (scanning electron micrograph) images are taken to demonstrate the surface morphology of nanoparticles. XRD analysis is done to determine the crystal size of the nanoparticle. With the conformation of nanoformation, the cotton woven fabric is treated with ZnO nanoparticle by mechanical thermo-fixation (pad-dry-cure) technique. To increase the wash durability of nano treated fabric, an acrylic binder is used as a fixing agent. The treated fabric shows up to 90% bacterial reduction for S. aureus (Staphylococcus aureus) and 87% for E. coli (Escherichia coli) which is appreciable for bacteria protective clothing.Keywords: nanoparticle, zinc oxide, cotton fabric, antibacterial activity, binder
Procedia PDF Downloads 1322144 Chitin Crystalline Phase Transition Promoted by Deep Eutectic Solvent
Authors: Diana G. Ramirez-Wong, Marius Ramirez, Regina Sanchez-Leija, Adriana Rugerio, R. Araceli Mauricio-Sanchez, Martin A. Hernandez-Landaverde, Arturo Carranza, John A. Pojman, Josue D. Mota-Morales, Gabriel Luna-Barcenas
Abstract:
Chitin films were prepared using alpha-chitin from shrimp shells as raw material and a simple method of precipitation-evaporation. Choline chloride: urea Deep Eutectic Solvent (DES) was used to disperse chitin and compared against hexafluoroisopropanol (HFIP). A careful analysis of the chemical and crystalline structure was followed along the synthesis of the films, revealing crystalline-phase transitions. The full conversion of alpha- to beta-, or alpha- to gamma-chitin structure were detected by XRD and NMR on the films. The synthesis of highly crystalline monophasic gamma-chitin films was achieved using a DES; whereas HFIP helps to promote the beta-phase. These results are encouraging to continue in the study of DES as good processing media to control the final properties of chitin based materials.Keywords: chitin, deep eutectic solvent, polymorph, phase transformation
Procedia PDF Downloads 5382143 Environmentally Friendly Palm Oil-Based Polymeric Plasticiser for Poly (Vinyl Chloride)
Authors: Nur Zahidah Rozaki, Desmond Ang Teck Chye
Abstract:
Environment-friendly polymeric plasticisers for poly(vinyl chloride), PVC were synthesised using palm oil as the main raw material. The synthesis comprised of 2 steps: (i) transesterification of palm oil, followed by (ii) polycondensation between the products of transesterification with diacids. The synthesis involves four different formulations to produce plasticisers with different average molecular weight. Chemical structures of the plasticiser were studied using FTIR (Fourier-Transformed Infra-Red) and 1H-NMR (Proton-Nuclear Magnetic Resonance).The molecular weights of these palm oil-based polymers were obtained using GPC (Gel Permeation Chromatography). PVC was plasticised with the polymeric plasticisers through solvent casting technique using tetrahydrofuran, THF as the mutual solvent. Some of the tests conducted to evaluate the effectiveness of the plasticiser in the PVC film including thermal stability test using thermogravimetric analyser (TGA), differential scanning calorimetry (DSC) analysis to determine the glass transition temperature, Tg, and mechanical test to determine tensile strength, modulus and elongation at break of plasticised PVC using standard test method ASTM D882.Keywords: alkyd, palm oil, plasticiser, pvc
Procedia PDF Downloads 2882142 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 108