Search results for: cell output profile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7406

Search results for: cell output profile

6686 Synthesis of [1-(Substituted-Sulfonyl)-Piperidin-4-yl]-(2,4-Difluoro-Phenyl)-Methanone Oximes and Their Biological Activity

Authors: L. Mallesha, C. S. Karthik, P. Mallu

Abstract:

A series of new [1-(substituted-benzoyl)-piperidin-4-yl]-(2,4-difluoro-phenyl)-methanone oxime derivatives, 3(a-f) were synthesized and characterized by different spectral studies. All compounds were evaluated for their in vitro antibacterial activity against bacterial strains. These compounds were screened for their antioxidant activity by DPPH• and Fe2+ chelating assay. Antiproliferative effects were evaluated using the MTT assay method against two human cancer cell lines and one astrocytoma brain tumor cell line. Compound 3b exhibited moderate antibacterial activity when compared with other compounds. All the compounds showed antioxidant activity, where compound 3f was the best radical scavenger and Fe2+ ion scavenger. Compounds, 3b, and 3d showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Piperidine, antibacterial, antioxidant, antiproliferative

Procedia PDF Downloads 394
6685 Prolonged Synthesis of Chitin Polysaccharide from Chlorovirus System

Authors: Numfon Rakkhumkaew, Takeru Kawasaki, Makoto Fujie, Takashi Yamada

Abstract:

Chlorella viruses or chloroviruses contain a gene that encodes a function for chitin synthesis, which is expressed early in viral infection to produce chitin polysaccharide, a polymer of β-1, 4-linked GlcNAc, on the outside of Chlorella cell wall. Interestingly, chlorovirus system is an eco-friendly system which converses CO2 and solar energy from the environment into useful materials. However, infected Chlorella cells are lysed at the final stage of viral infection, and this phenomenon is caused the breaking down of polysaccharide. To postpone the lysing period and prolong the synthesis of chitin polysaccharide on cells, the slow growing virus incorporated with aphidicolin treatment, an inhibitor of DNA synthesis, was investigated. In this study, a total of 25 virus isolates from water samples in Japan region were analyzed for CHS (the gene for CH synthase) gene by PCR (polymerase chain reaction). The accumulation and appearance of chitin polysaccharide on infected cells were detected by biotinylated chitin-binding proteins WGA (wheat germ agglutinin)-biotin for chitin in conjunction with avidin-Cy 2 or Cy 3 and investigated by fluorescence microscopy, observed as green or yellow fluorescence over the cell surface. Among all chlorovirus isolates, cells infected with CNF1 revealed the accumulation of chitin over the cell surface within 30 min p.i. and continued to accumulate on cells until 4 h p.i. before cell lyses which was 1.6 times longer accumulation period than cells infected with CVK2 (prototype virus). Furthermore, addition of aphidicolin could extend the chitin accumulation on cells infected with CNF1 until 8 h p.i. before cell lyses. Whereas, CVK2-infected cells treated with aphidicolin could prolong the chitin synthesis only for 6 h p.i. before cell lyses. Therefore, chitin synthesis by Chlorella-virus system could be prolonged by using slow-growing viral isolates and with aphidicolin.

Keywords: chitin, chlorovirus, Chlorella virus, aphidicolin

Procedia PDF Downloads 200
6684 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 176
6683 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment

Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon

Abstract:

The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.

Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature

Procedia PDF Downloads 507
6682 Effects of New Anthraquinone Derivatives on Resistance Ovarian Cancer Cells and The Mechanism Investigation

Authors: Hui-Hsin Huang, Sheng-Tung Huang, Chi-Ming Lee, Chiao-Han Yen, Chun-Mao Lin

Abstract:

At initiation stage, there are no symptoms at initiation stage; however, at late stage, patients suffer symptoms as soon as ovarian cancer metastasis. Moreover, ovarian cancer cells are resistant to some anti-ovarian cancer drugs in clinical. Thus, it is very important to find an effective treatment for resistant ovarian cancer. Anthraquinone derivatives are able to induce DNA damage and lead to cell apoptosis, so several derivatives have been used for clinical application. Therefore, to explore more effective anti-ovarian cancer drugs, this study investigates the mechanism of three new anthraquinone compounds bearing different functional groups to camptothecin-resistance ovarian cell line A2780R2000. Cell viability was determined by MTT assay after treating A2780R2000 with the three new anthraquinone compounds. The results indicated that IC50 values are 33.44μM (Compound I), 25.77μM (Compound II) and 24.59μM (Compound III). Next, through cell cycle analysis, the results demonstrated that three new anthraquinone compounds not only induced A2780R2000 cell cycle arrest at early stage but also apoptosis at late stage. Besides, through apoptosis assay, the results indicated new anthraquinone compound induced apoptosis at late stage. Furthermore, the results of western blot show that the three new anthraquinone compounds lead to A2780R2000 apoptosis through intrinsic pathway. Theses results suggested that three new anthraquinone compounds may be potential new drugs for clinical cancer treatment in the future.

Keywords: anthraquinone, camptothecin, resistance, ovarian cancer

Procedia PDF Downloads 377
6681 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 200-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence were obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption

Procedia PDF Downloads 483
6680 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 495
6679 Targeting Tumour Survival and Angiogenic Migration after Radiosensitization with an Estrone Analogue in an in vitro Bone Metastasis Model

Authors: Jolene M. Helena, Annie M. Joubert, Peace Mabeta, Magdalena Coetzee, Roy Lakier, Anne E. Mercier

Abstract:

Targeting the distant tumour and its microenvironment whilst preserving bone density is important in improving the outcomes of patients with bone metastases. 2-Ethyl-3-O-sulphamoyl-estra1,3,5(10)16-tetraene (ESE-16) is an in-silico-designed 2- methoxyestradiol analogue which aimed at enhancing the parent compound’s cytotoxicity and providing a more favourable pharmacokinetic profile. In this study, the potential radiosensitization effects of ESE-16 were investigated in an in vitro bone metastasis model consisting of murine pre-osteoblastic (MC3T3-E1) and pre-osteoclastic (RAW 264.7) bone cells, metastatic prostate (DU 145) and breast (MDA-MB-231) cancer cells, as well as human umbilical vein endothelial cells (HUVECs). Cytotoxicity studies were conducted on all cell lines via spectrophotometric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide. The experimental set-up consisted of flow cytometric analysis of cell cycle progression and apoptosis detection (Annexin V-fluorescein isothiocyanate) to determine the lowest ESE-16 and radiation doses to induce apoptosis and significantly reduce cell viability. Subsequent experiments entailed a 24-hour low-dose ESE-16-exposure followed by a single dose of radiation. Termination proceeded 2, 24 or 48 hours thereafter. The effect of the combination treatment was investigated on osteoclasts via tartrate-resistant acid phosphatase (TRAP) activity- and actin ring formation assays. Tumour cell experiments included investigation of mitotic indices via haematoxylin and eosin staining; pro-apoptotic signalling via spectrophotometric quantification of caspase 3; deoxyribonucleic acid (DNA) damage via micronuclei analysis and histone H2A.X phosphorylation (γ-H2A.X); and Western blot analyses of bone morphogenetic protein-7 and matrix metalloproteinase-9. HUVEC experiments included flow cytometric quantification of cell cycle progression and free radical production; fluorescent examination of cytoskeletal morphology; invasion and migration studies on an xCELLigence platform; and Western blot analyses of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor receptor 1 and 2. Tumour cells yielded half-maximal growth inhibitory concentration (GI50) values in the nanomolar range. ESE-16 concentrations of 235 nM (DU 145) and 176 nM (MDA-MB-231) and a radiation dose of 4 Gy were found to be significant in cell cycle and apoptosis experiments. Bone and endothelial cells were exposed to the same doses as DU 145 cells. Cytotoxicity studies on bone cells reported that RAW 264.7 cells were more sensitive to the combination treatment than MC3T3-E1 cells. Mature osteoclasts were more sensitive than pre-osteoclasts with respect to TRAP activity. However, actin ring morphology was retained. The mitotic arrest was evident in tumour and endothelial cells in the mitotic index and cell cycle experiments. Increased caspase 3 activity and superoxide production indicated pro-apoptotic signalling in tumour and endothelial cells. Increased micronuclei numbers and γ-H2A.X foci indicated increased DNA damage in tumour cells. Compromised actin and tubulin morphologies and decreased invasion and migration were observed in endothelial cells. Western blot analyses revealed reduced metastatic and angiogenic signalling. ESE-16-induced radiosensitization inhibits metastatic signalling and tumour cell survival whilst preferentially preserving bone cells. This low-dose combination treatment strategy may promote the quality of life of patients with metastatic bone disease. Future studies will include 3-dimensional in-vitro and murine in-vivo models.

Keywords: angiogenesis, apoptosis, bone metastasis, cancer, cell migration, cytoskeleton, DNA damage, ESE-16, radiosensitization.

Procedia PDF Downloads 147
6678 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 196
6677 A Low Profile Dual Polarized Slot Coupled Patch Antenna

Authors: Mingde Du, Dong Han

Abstract:

A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss > 15 dB and pair ports isolation >23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80±3o in the horizontal plane and 39±2o in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved.

Keywords: dual polarized, patch antenna, slot coupled, base station antenna

Procedia PDF Downloads 439
6676 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 375
6675 Colonization of Embrionic Gonads of Nile Tilapia by Giant Gourami Testicular Germ Cells

Authors: Irma Andriani, Ita Djuwita, Komar Sumantadinata, Alimuddin

Abstract:

The recent study has been conducted to develop testicular germ cell transplantation as a tool for preservation and propagation of male germ-plasm from endangered fish species, as well as to produce surrogate broodstock of commercially valuable fish. Giant gourami testis had been used as a model for donor and Nile tilapia larvae as recipient. We developed testicular cell xenotransplantation by optimizing the timing of intraperitoneal cell transplantation to recipient larvae aged 1, 3, 5 and 7 days post hatching (dph). Freshly isolated testis of giant gourami weighing 600–800 g were minced in dissociation medium and then incubated for 3 hours in room temperature to collect monodisperce cell suspension. Donor cells labeled with PKH 26 were transplanted into the peritoneal cavity of Nile tilapia larvae using glass micropipettes. Parameters observed were survival rate of Nile tilapia larvae at 24 hours post transplantation (pt) and colonization efficiency of donor cells at 2 and 3 months pt. The incorporated donor cells were observed under fluorescent microscope. The result showed that the lowest survival rate at 24 hours pt was 1 dph larvae (82.74±6.76%) and the highest survival rate were 3 and 5 dph larvae (95.00±5.00% and 95.00±2.50%, respectively). The highest colonization efficiency was on 3 dph larvae (61.1±34.71%) and the lowest colonization efficiency was on 7 dph larvae (19.43±17.33%). In conclusion, 3 dph Nile tilapia larvae was the best recipient for giant gourami testicular germ cells xenotransplantation.

Keywords: xenotransplantation, testicular germ cell, giant gourami, Nile tilapia, colonization efficiency

Procedia PDF Downloads 570
6674 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band

Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov

Abstract:

This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.

Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization

Procedia PDF Downloads 139
6673 An Evidence Map of Cost-Utility Studies in Non-Small Cell Lung Cancer

Authors: Cassandra Springate, Alexandra Furber, Jack E. Hines

Abstract:

Objectives: To create an evidence map of the cost-utility studies available with non-small cell lung cancer patients, and identify the geographical settings and interventions used. Methods: Using the Disease, Study Type, and Model Type filters in heoro.com we identified all cost-utility studies published between 1960 and 2017 with patients with non-small cell lung cancer. These papers were then indexed according to pre-specified categories. Results: Heoro.com identified 89 independent publications, published between 1995 and 2017. Of the 89 papers, 74 were published since 2010, 28 were from the USA, and 35 were from Europe, 16 of which were from the UK. Other publications were from China and Japan (13), Canada (9), Australia and New Zealand (4), and other countries (8). Fifty-nine studies included a chemotherapy intervention, of which 23 included erlotinib or gefitinib, 21 included pemetrexed or docetaxel, others included nivolumab (3), pembrolizumab (2), crizotinib (2), denosumab (2), necitumumab (1), and bevacizumab (1). Also, 19 studies modeled screening, staging, or surveillance strategies. Conclusions: The cost-utility studies found for NSCLC most commonly looked at the effectiveness of different chemotherapy treatments, with some also evaluating the addition of screening strategies. Most were also conducted with patient data from the USA and Europe.

Keywords: cancer, cost-utility, economic model, non-small cell lung cancer

Procedia PDF Downloads 135
6672 The Effect Analysis of Monetary Instruments through Islamic Banking Financing Channel toward Economic Growth in Indonesia, Period January 2008-December 2015

Authors: Sobar M. Johari, Ida Putri Anjarsari

Abstract:

In the transmission of monetary instrument towards real sector of the economy, Bank Indonesia as monetary authority has developed Islamic Bank Indonesia Certificate (abbreviated as SBIS) as an instrument in Islamic open market operation. One of the monetary transmission channels could take place through financing channel from which the fund is used as the source of banking financing. This study aims to analyse the impact of Islamic monetary instrument towards output or economic growth. Data used in this research is taken from Bank Indonesia and Central Board of Statistics for the period of January 2008 until December 2015. The study employs Granger Causality Test, Vector Error Correction Model (VECM), Impulse Response Function (IRF) technique and Forecast Error Variance Decomposition (FEVD) as its analytical methods. The results show that, first, the transmission mechanism of banking financing channel are not linked to output. Second, estimation results of VECM show that SBIS, PUAS, and FIN have significant impact in the long term towards output. When there is monetary shock, output or economic growth could be recovered and stabilized in the short term. FEVD results show that Islamic banking financing contributes 1.33 percent to increase economic growth.

Keywords: Islamic monetary instrument, Islamic banking financing channel, economic growth, Vector Error Correction Model (VECM)

Procedia PDF Downloads 256
6671 Angiogenic and Immunomodulatory Properties and Phenotype of Mesenchymal Stromal Cells Can Be Regulated by Cytokine Treatment

Authors: Ekaterina Zubkova, Irina Beloglazova, Iurii Stafeev, Konsyantin Dergilev, Yelena Parfyonova, Mikhail Menshikov

Abstract:

Mesenchymal stromal cells from adipose tissue (MSC) currently are widely used in regenerative medicine to restore the function of damaged tissues, but that is significantly hampered by their heterogeneity. One of the modern approaches to overcoming this obstacle is the polarization of cell subpopulations into a specific phenotype under the influence of cytokines and other factors that activate receptors and signal transmission to cells. We polarized MSC with factors affecting the inflammatory signaling and functional properties of cells, followed by verification of their expression profile and ability to affect the polarization of macrophages. RT-PCR evaluation showed that cells treated with LPS, interleukin-17, tumor necrosis factor α (TNF α), primarily express pro-inflammatory factors and cytokines, and after treatment with polyninosin polycytidic acid and interleukin-4 (IL4) anti-inflammatory factors and some proinflammatory factors. MSC polarized with pro-inflammatory cytokines showed a more robust pro-angiogenic effect in fibrin gel bead 3D angiogenesis assay. Further, we evaluated the possibility of paracrine effects of MSCs on the polarization of intact macrophages. Polarization efficiency was assesed by expression of M1/M2 phenotype markers CD80 and CD206. We showed that conditioned media from MSC preincubated in the presence of IL-4 cause an increase in CD206 expression similar to that observed in M2 macrophages. Conditioned media from MSC polarized in the presence of LPS or TNF-α increased the expression of CD80 antigen in macrophages, similar to that observed in M1 macrophages. In other cases, a pronounced paracrine effect of MSC on the polarization of macrophages was not detected. Thus, our study showed that the polarization of MSC along the pro-inflammatory or anti-inflammatory pathway allows us to obtain cell subpopulations that have a multidirectional modulating effect on the polarization of macrophages. (RFBR grants 20-015-00405 and 18-015-00398.)

Keywords: angiogenesis, cytokines, mesenchymal, polarization, inflammation

Procedia PDF Downloads 155
6670 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells

Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari

Abstract:

Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.

Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration

Procedia PDF Downloads 194
6669 A Tool for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: digital information management, file format, endangerment analysis, fuzzy models

Procedia PDF Downloads 390
6668 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy

Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott

Abstract:

HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.

Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint

Procedia PDF Downloads 71
6667 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 261
6666 A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions

Authors: Xijun Yu, Zhenzhen Li, Zupeng Jia

Abstract:

This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.

Keywords: cell-centered Lagrangian scheme, compressible Euler equations, RKDG method

Procedia PDF Downloads 533
6665 Impact of Hormone Replacement Therapy on Body Composition Analysis of Women during Perimenopause: A Framework for Action

Authors: Varsha Chorsiya, Pooja Aneja, Dhananjay Kaushik, Abhinav Yadav

Abstract:

Intoduction: Women’s Health Initiatives (WHI) focuses on defining the risks and benefits of strategies that could potentially reduce the incidence of obesity, heart disease, breast cancer and colorectal cancer, and fractures in menopause women. The utility of the present research work determines to find the role of Hormone Replacement Therapy (HRT) in changing the different component of body composition during perimenopause period. Methods: A comparative cross-sectional study included 30 subjects, aged between 40 and 50 years which were assigned into 2 groups i.e. 15 subjects in HRT (Group A) and 15 subjects in non-HRT (Group B). The subjects were taken from the hospitals and clinics of Faridabad undergoing HRT in supervision of the consultant gynecologist. The informed consents were signed before including the participants in the study. The body composition and lipid profile were evaluated for all the subjects. Result and Discussion: The BMI, body density, percent body fats and fat mass in both groups showed statistically significant differences i.e. p < 0.05. Our study did not reveal any statistically significant difference between non-HRT and HRT for lipid profile composition of HDL, LDL, VLDL, ratio, triglycerides and total cholesterol although these indicators (LDL, VLDL, ratio, triglycerides and total cholesterol) showed difference clinically with a higher mean values for non-HRT as compared to HRT group. The mean value for HDL was higher for HRT group in contrast to non-HRT group. The result clearly showed that HRT group has a good lipid profile composition. Conclusion: In conclusion, our data show that HRT has statistically significant role in determining BMI, fat percent mass and fat mass. The lipid profile including LDL, HDL, VLDL, ratio, triglycerides and total cholesterol found to be clinically better in HRT group as compared to the non-HRT group. The rationale for non-significant lipid profile probably lie in the fact that hormonal changes need a particular time period and might become significant in post-menopausal period.

Keywords: body composition, hormone replacement therapy, perimenopause, women health

Procedia PDF Downloads 279
6664 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Salleh, Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics

Procedia PDF Downloads 302
6663 The Efficacy of Pre-Hospital Packed Red Blood Cells in the Treatment of Severe Trauma: A Retrospective, Matched, Cohort Study

Authors: Ryan Adams

Abstract:

Introduction: Major trauma is the leading cause of death in 15-45 year olds and a significant human, social and economic costs. Resuscitation is a stalwart of trauma management, especially in the pre-hospital environment and packed red blood cells (pRBC) are being increasingly used with the advent of permissive hypotension. The evidence in this area is lacking and further research is required to determine its efficacy. Aim: The aim of this retrospective, matched cohort study was to determine if major trauma patients, who received pre-hospital pRBC, have a difference in their initial emergency department cardiovascular status; when compared with injury-profile matched controls. Methods: The trauma databases of the Royal Brisbane and Women's Hospital, Royal Children's Hospital (Herston) and Queensland Ambulance Service were accessed and major trauma patient (ISS>12) data, who received pre-hospital pRBC, from January 2011 to August 2014 was collected. Patients were then matched against control patients that had not received pRBC, by their injury profile. The primary outcomes was cardiovascular status; defined as shock index and Revised Trauma Score. Results: Data for 25 patients who received pre-hospital pRBC was accessed and the injury profiles matched against suitable controls. On admittance to the emergency department, a statistically significant difference was seen in the blood group (Blood = 1.42 and Control = 0.97, p-value = 0.0449). However, the same was not seen with the RTS (Blood = 4.15 and Control 5.56, p-value = 0.291). Discussion: A worsening shock index and revised trauma score was associated with pre-hospital administration of pRBC. However, due to the small sample size, limited matching protocol and associated confounding factors it is difficult to draw any solid conclusions. Further studies, with larger patient numbers, are required to enable adequate conclusions to be drawn on the efficacy of pre-hospital packed red blood cell transfusion.

Keywords: pre-hospital, packed red blood cells, severe trauma, emergency medicine

Procedia PDF Downloads 379
6662 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering

Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare

Abstract:

This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.

Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass

Procedia PDF Downloads 444
6661 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus

Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana

Abstract:

Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.

Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate

Procedia PDF Downloads 121
6660 Bcl-2: A Molecule to Detect Oral Cancer and Precancer

Authors: Vandana Singh, Subash Singh

Abstract:

Introduction: Oral squamous cell carcinoma is the most common malignant tumor of the oral cavity. Normally the death of cell and the growth are active processes and depend not only on external factors but also on the expression of genes like Bcl-2, which activate and inhibit apoptosis. The term Bcl-2 is an acronym for B-cell lymphoma/ leukemia -2 genes. Objectives: An attempt was made to evaluate Bcl-2 oncoprotein expression in patients with oral precancer and cancer and to assess possible correlation between Bcl-2 oncoprotein expression and clinicopathological features of oral precancer and cancer. Material and Methods: This is a selective prospective clinical and immunohistochemical study. Clinicopathological examination is correlated with immunohistochemical findings. The immunolocalization of Bcl-2 protein is performed using the labeled streptavidin biotin (LSAB) method. To visualize the reaction, 3, 3-diaminobenzidine (DAB) is used. Results: Bcl-2 expression was positive in 11 [36.66 %, low Bcl-2 expression 3 (10.00 %), moderate Bcl-2 expression 7 (23.33 %), and high Bcl-2 expression 1 (3.33 %)] oral cancer cases and in 14 [87.50 %, low expression 8 (50 %), moderate expression 6 (37.50 %)] precancer cases. Conclusion: On the basis of the results of our study we conclude that positive Bcl-2 expression may be an indicator of poor prognosis in oral cancer and precancer. Relevance: It has been reported that there is deregulation of Bcl-2 expression during progression from oral epithelial dysplasia to squamous cell carcinoma. It can be used for revealing progression of epithelial dysplasia to malignancy and as a prognostic marker in oral precancer and cancer.

Keywords: BcL-2, immunohistochemistry, oral cancer, oral precancer

Procedia PDF Downloads 248
6659 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment

Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee

Abstract:

Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.

Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity

Procedia PDF Downloads 261
6658 Numerical Simulation of Sloshing Control Using Input Shaping

Authors: Dongjoo Kim

Abstract:

Effective control of sloshing in a liquid container is an important issue to be resolved in many applications. In this study, numerical simulations are performed to design the velocity profile of rectangular container and investigate the effectiveness of input shaping for sloshing control. Trapezoidal profiles of container velocity are chosen to be reference commands and they are convolved with a series of impulses to generate shaped ones that induce minimal residual oscillations. The performances of several input shapers are compared from the viewpoint of transient peak and residual oscillations of sloshing. Results show that sloshing can be effectively controlled by input shaping (Supported by the NRF programs, NRF-2015R1D1A1A01059675, of Korean government).

Keywords: input shaping, rectangular container, sloshing, trapezoidal profile

Procedia PDF Downloads 241
6657 IgA/λ Plasma Cell Myeloma with λ Light Chain Amyloidosis: A Case Report

Authors: Kai Pei Huang, Ting Chung Hung, Li Ching Wu

Abstract:

Amyloidosis refers to a variety of conditions wherein amyloid proteins are abnormally deposited in organ or tissues and cause harm. Among the several forms of amyloidosis, the principal types of that in inpatient medical services are the AL amyloidosis (primary) and AA amyloidois (secondary). AL Amyloidois is due to deposition of protein derived from overproduction of immunoglobulin light chain in plasma cell myeloma. Furthermore, it is a systemic disorder that can present with a variety of symptoms, including heavy proteinemia and edema, heptosplenomegaly, otherwise unexplained heart failure. We reported a 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria (UPCR:1679.8), leukocytosis (WBC:16.2 x 10^3/uL), results of serum urea nitrogen (39mg/dL), creatinine (0.76 mg/dL), IgG (748 mg/dL.), IgA (635 mg/dL), IgM (63 mg/dL), kappa light chain(18.8 mg/dL), lambda light chain (110.0 mg/dL) and kappa/lambda ratio (0.17). Renal biopsy found amyloid fibrils in glomerular mesangial area, and Congo red stain highlights amyloid deposition in glomeruli. Additional lab studies included serum protein electrophoresis, which shows a major monoclonal peak in β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. We treated sample with beta-mercaptoethanol which reducing the polymerized immunoglobulin to clarify two IgA/λ are secreted from the same plasma cell clone in bone marrow. Later examination confirmed it existed plasma cell infiltration in bone marrow, and the immunohistochemical staining showed monotypic for λ light chain and are positive for IgA. All findings mentioned above reveal it is a case of plasma cell myeloma with λ Light Chain Amyloidosis.

Keywords: amyloidosis, immunoglobulin light chain, plasma cell myeloma, serum protein electrophoresis

Procedia PDF Downloads 200