Search results for: aerobic wastewater treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8514

Search results for: aerobic wastewater treatment

7794 Cephalometric Changes of Patient with Class II Division 1 [Malocclusion] Post Orthodontic Treatment with Growth Stimulation: A Case Report

Authors: Pricillia Priska Sianita

Abstract:

An aesthetic facial profile is one of the goals in Orthodontics treatment. However, this is not easily achieved, especially in patients with Class II Division 1 malocclusion who have the clinical characteristics of convex profile and significant skeletal discrepancy due to mandibular growth deficiency. Malocclusion with skeletal problems require proper treatment timing for growth stimulation, and it must be done in early age and in need of good cooperation from the patient. If this is not done and the patient has passed the growth period, the ideal treatment is orthognathic surgery which is more complicated and more painful. The growth stimulation of skeletal malocclusion requires a careful cephalometric evaluation ranging from diagnosis to determine the parts that require stimulation to post-treatment evaluation to see the success achieved through changes in the measurement of the skeletal parameters shown in the cephalometric analysis. This case report aims to describe skeletal changes cephalometrically that were achieved through orthodontic treatment in growing period. Material and method: Lateral Cephalograms, pre-treatment, and post-treatment of cases of Class II Division 1 malocclusion is selected from a collection of cephalometric radiographic in a private clinic. The Cephalogram is then traced and measured for the skeletal parameters. The result is noted as skeletal condition data of pre-treatment and post-treatment. Furthermore, superimposition is done to see the changes achieved. The results show that growth stimulation through orthodontic treatment can solve the skeletal problem of Class II Division 1 malocclusion and the skeletal changes that occur can be verified through cephalometric analysis. The skeletal changes have an impact on the improvement of patient's facial profile. To sum up, the treatment timing on a skeletal malocclusion is very important to obtain satisfactory results for the improvement of the aesthetic facial profile, and skeletal changes can be verified through cephalometric evaluation of pre- and post-treatment.

Keywords: cephalometric evaluation, class II division 1 malocclusion, growth stimulation, skeletal changes, skeletal problems

Procedia PDF Downloads 235
7793 A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea

Authors: Bumjo Kim, Hyun Jin Kim, Joon Ha Kim

Abstract:

The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in ​South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: ground water, rainfall, rainfall driven inflow/infiltration, separate sewer system

Procedia PDF Downloads 140
7792 The Effect of Fly Ash in Dewatering of Marble Processing Wastewaters

Authors: H. A. Taner, V. Önen

Abstract:

In the thermal power plants established to meet the energy need, lignite with low calorie and high ash content is used. Burning of these coals results in wastes such as fly ash, slag and flue gas. This constitutes a significant economic and environmental problems. However, fly ash can find evaluation opportunities in various sectors. In this study, the effectiveness of fly ash on suspended solid removal from marble processing wastewater containing high concentration of suspended solids was examined. Experiments were carried out for two different suspensions, marble and travertine. In the experiments, FeCl3, Al2(SO4)3 and anionic polymer A130 were used also to compare with fly ash. Coagulant/flocculant type/dosage, mixing time/speed and pH were the experimental parameters. The performances in the experimental studies were assessed with the change in the interface height during sedimentation resultant and turbidity values of treated water. The highest sedimentation efficiency was achieved with anionic flocculant. However, it was determined that fly ash can be used instead of FeCl3 and Al2(SO4)3 in the travertine plant as a coagulant.

Keywords: dewatering, flocculant, fly ash, marble plant wastewater

Procedia PDF Downloads 139
7791 Growing Sorghum Varieties with Potential of Fodder and Biofuel Crops, with Potential of Two Harvest in One Year

Authors: Farah Jafarpisheh, John Hutson, Howard Fallowfield

Abstract:

Growing Sorghum varieties, with the potential of the animal food source, by using the treated wastewater from High Rate Algae Ponds (HRAPs) is an attractive subject. For the first time, in South Australia, Sorghum Earthnote variety one (SE1) has been grown using the wastewater from HRAPs. In this study, after the first harvest, the roots left in the soil. After a short period of time, sorghum started to regrow again, which can increase the value of planting sorghum by using the wastewater. This study demonstrates the higher amount of green biomass with the potential of animal food source after the second harvest. Different parameters, including height(mm), number of leaves and tiller, Brix percentage, fresh and dry leaf weight(g), total top fresh weight(g), stem and seed dry and fresh weight(g) have been measured in the field after first and second harvest. The results demonstrated the higher height, number of tiller, and diameter after the second harvest. Number of leaves and leaves fresh weight and total top weight increased by 6 and 10 times, respectively. Brix percentage increased by 2 times. In the first harvest, no seeds harvested, while in the second harvest, 134 g seeds harvested. This sorghum variety (SE1) showed the acceptable green biomass, especially after the second harvest. This property will add to the value of sorghum in this condition, as it will not need extra fertilizer and labor work for seed planting.

Keywords: energy, high rate algae ponds, HRAPs, Sorghum, waste water

Procedia PDF Downloads 90
7790 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process

Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan

Abstract:

The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.

Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation

Procedia PDF Downloads 244
7789 Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂

Authors: Sherif Ismail

Abstract:

Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed.

Keywords: phenol degradation, Fe-doped TiO2, AOPs, cost analysis

Procedia PDF Downloads 146
7788 The Friction and Wear Behaviour of Ti2AlC MAX Phase

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of Ti2AlC were investigated. In order to modify the surface properties of Ti2AlC, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti2AlC. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti2AlC from 6 GPa to 13GPa. In the pin-on-disc test, it was found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti2AlC/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti2AlC under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti2AlC.

Keywords: MAX phase, wear, hardness, boronizing

Procedia PDF Downloads 295
7787 Effects of Applied Pressure and Heat Treatment on the Microstructure of Squeeze Cast Al-Si Alloy Were Examined

Authors: Mohamed Ben Amar, Henda Barhoumi, Hokia Siala, Foued Elhalouani

Abstract:

The present contribution consists of a purely experimental investigation on the effect of Squeeze casting on the micro structural and mechanical propriety of Al-Si alloys destined to automotive industry. Accordingly, we have proceeding, by ourselves, to all the thermal treatment consisting of solution treatment at 540°C for 8h and aging at 160°C for 4h. The various thermal treatment, have been carried out in order to monitor the processes of formation and dissolution accompanying the solid state phase transformations as well as the resulting changes in the mechanical proprieties. The examination of the micrographs of the aluminum alloys reveals the dominant presence of dendrite. Concerning the mechanical characteristic the Vickers micro-hardness curve an increase as a function of the pressure. As well as the heat treatment increase mechanical propriety such that pressure and micro hardness. The curves have been explained in terms of structural hardening resulting from the various compounds formation.

Keywords: squeeze casting, process parameters, heat treatment, ductility, microstructure

Procedia PDF Downloads 416
7786 Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil

Authors: Nejib Turki, Karima Kouki Khalfallah

Abstract:

The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1.

Keywords: compost, organic amendement, Ntot, P2O5, K2O

Procedia PDF Downloads 614
7785 Recovery of Boron as Homogeneous Perborate Particles from Synthetic Wastewater by Integrating Chemical Oxo-Precipitation with Fluidized-Bed Homogeneous Granulation

Authors: Chiung-Chin Huang, Jui-Yen Lin, Yao-Hui Huang

Abstract:

Among current techniques of boron removal from wastewater with high boron concentration, chemical oxo-precipitation (COP) is one of the promising methods due to its milder condition. COP uses H2O2 to transform boric acid to perborates which can easily precipitate with barium ions at room temperature. However, the generation of the waste sludge that requires sludge/water separation and sludge dewatering is troublesome. This work presents an innovative technology which integrates chemical oxo-precipitation (COP) with fluidized-bed homogeneous granulation (FBHG) to reclaim boron as homogeneous perborate particles. By conducting COP in a fluidized-bed reactor, the barium perborate can be granulated to form homogeneous particles (>1.0 mm) with low water content (< 10%). Under the suitable condition, more than 70% of boron can be recovered from 600 ppm of boron solution and the residual boron is lower than 100 ppm.

Keywords: barium, perborate, chemical oxo-precipitation, boron removal, fluidized-bed, granulation

Procedia PDF Downloads 301
7784 Torture, Inhuman and Degrading Treatment in Nigeria: A Time for Legislative Intervention

Authors: Kolawole Oyekan

Abstract:

Torture, cruel, inhuman and degrading treatment is one of the issues dealt with by the United Nations in its development of human rights standard. Torture and other ill -treatments is banned at all times in all places including in times of war. There is no justification for torture, cruel, inhuman and degrading treatment under any law in Nigeria. All statutes; local, regional and international on human rights prohibits all forms of degrading treatment. This paper examines the definition of torture, inhuman and degrading treatment and the prevalence of confessional statements obtain through torture by security agencies during the interrogation of crime suspects and are mostly relied upon during trial even in cases involving capital punishment. The paper further reviews the Violence against Persons Prohibition Act 2015 which prohibits torture and other forms of ill-treatment. Presently, the Act is applicable only to the federal Federal Capital Territory, Abuja. Consequently, the paper concludes that the Act should be adopted as a matter of urgency by the 36 states of the Federation of Nigeria and in addition, cogent steps must be taken to ensure that the provisions of the Act are strictly complied with in order to eliminate torture, cruel and inhuman degrading treatment in Nigeria.

Keywords: confessional statement, human rights, torture, United Nations

Procedia PDF Downloads 291
7783 Role of Pulsed-Dye Laser in the Treatment of Inflammatory Acne Vulgaris

Authors: Shirajul Islam Khan, Muhammad Ashraful Alam Bhuiyan, Syeda Tania Begum

Abstract:

Introduction: Acne vulgaris is one of the most common dermatologic conditions and affects the vast majority of people at some point during their lifetime, so effective treatment is of major importance. The failure of usual treatment modalities, teratogenic effects with some severe side effects, and resistance to P.Acne by Retinoides have been focusing on new therapeutic options for the treatment of acne. More recently, pulsed dye laser therapy has been reported to reduce acne lesion counts. The negligible morbidity of these treatment modalities and some other benefits of subsequent acne scar management lead this therapy more attractive. Objective: The objective of this study is to assess the efficacy and safety of pulsed dye laser therapy in the treatment of inflammatory acne vulgaris. Materials and Methods: A prospective clinical trial was done in the Department of Dermatology and Venereology, Combined Military Hospital (CMH), Dhaka, to find out the role of pulse dye laser in the treatment of inflammatory acne vulgaris. The study was carried out with 60 patients with mild to moderate acne vulgaris, and those were treated with pulsed dye laser therapy at baseline and after 4, 8, and 12 weeks. Results: Among 60 patients with inflammatory acne, 42(70%) were in the age group of less than 20 years, and 36(60%) were female. Regarding the number of inflammatory lesions, the baseline mean number (± SD) was 12.77 ± 4.01; after 4 weeks of treatment of inflammatory acne by pulsed dye laser was 7.80 ± 4.11; after 8 weeks of treatment, 6.10 ± 4.03 and after 12 weeks of treatment was 4.17 ± 4.02. After 4 weeks of treatment by pulse dye laser, the level of improvement was excellent at 3.3%, good at 10%, fair at 60%, and poor at 26.7%; after 8 weeks of treatment, excellent was 13.3%, good was 46.7%, the fair was 30% and poor 10% and after 12 weeks of treatment, excellent was 56.7%, good 13.3%, fair 23.3% and poor 6.7%. Regarding safety level, out of 60 patients of inflammatory acne vulgaris treated by pulsed dye laser, about 52(86.7%) patients did not observe any side effects. Conclusions: On the basis of the study results, it can be concluded that pulsed-dye laser is highly effective and well tolerated by patients in the treatment of inflammatory acne.

Keywords: pulsed-dye laser, inflammatory acne, acne vulgaris, retinoids

Procedia PDF Downloads 71
7782 Socio-Economic Problems in Treatment of Non-Union Both Bones Fracture of the Leg: A Retrospective Study

Authors: Rajendra Kumar Kanojia

Abstract:

Treatment of fracture both bones of leg following trauma is done intially at nearby primary health care center.primary management for shock,pain,control of bleeding,plaster application. These are treated for primay fixation of fracture, debridment of wound. Then, they were refered to tertiary care where they were again and planned for further treatment. This leads to loss of lot of time, money, job, etc.

Keywords: fracture both bones leg, non-union, ilizarov, cost

Procedia PDF Downloads 556
7781 Burnishing Effect on the Mechanical Characteristics of 100C6

Authors: Ouahiba Taamallah, Tarek Litim

Abstract:

This work relates to the physico-geometrical aspect of the surface layers of 100C6 steel having undergone the burnishing treatment by hard steel ball. The application of tip diamond burnishing promotes better roughness compared to turning. In addition, it allows the surface layers to be consolidated by work hardening phenomena. The optimal effects are closely related to the parameters of the treatment and the active part of the device. With an 80% improvement in roughness resulting from the treatment, burnishing can be defined as a finishing operation within the machining range. With a 40% gain in consolidation rate, this treatment is an efficient process for material consolidation.

Keywords: 100C6 steel, burnishing, hardening, roughness

Procedia PDF Downloads 140
7780 Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics

Authors: Roya Biabani, Mentore Vaccari, Piero Ferrari

Abstract:

Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA).

Keywords: contaminated soils, microplastics, polychlorinated biphenyls, thermal desorption

Procedia PDF Downloads 84
7779 The Proposal of Modification of California Pipe Method for Inclined Pipe

Authors: Wojciech Dąbrowski, Joanna Bąk, Laurent Solliec

Abstract:

Nowadays technical and technological progress and constant development of methods and devices applied to sanitary engineering is indispensable. Issues related to sanitary engineering involve flow measurements for water and wastewater. The precise measurement is very important and pivotal for further actions, like monitoring. There are many methods and techniques of flow measurement in the area of sanitary engineering. Weirs and flumes are well–known methods and common used. But also there are alternative methods. Some of them are very simple methods, others are solutions using high technique. The old–time method combined with new technique could be more useful than earlier. Paper describes substitute method of flow gauging (California pipe method) and proposal of modification of this method used for inclined pipe. Examination of possibility of improving and developing old–time methods is direction of the investigation.

Keywords: California pipe, sewerage, flow rate measurement, water, wastewater, improve, modification, hydraulic monitoring, stream

Procedia PDF Downloads 419
7778 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 485
7777 Ensuring Compliancy in Traditional Tibetan Medicine Treatment Through Patient Education

Authors: Nashalla Gwyn Nyinda

Abstract:

The ancient system of Tibetan Medicine, known as Sowa Rigpa across the Himalayan regions, is a systematic system of healing encouraging balance primarily through diet and behavior modifications. With the rise of the popularity of Tibetan Medicine, compliance is critical to successful treatment outcomes. As patients learn more about who they are as individuals and how their elemental balances or imbalances affect disorders and mental-emotional balance, they develop faith and dedication to their healing process. Specifically, regarding diet and behavior and the basic principles of the medical system, patient compliance increases dramatically in all treatment areas when they understand why a treatment or dietary prescription guidance is effective. Successful responses to Tibetan treatment rely on a buy-in from the patient. Trust between the slower process of Traditional medicine treatments, the Tibetan physician and the patient is a cornerstone of treatment. The resulting decrease in the use of allopathic medicine and better health outcomes for acute and chronic disorders are well documented. This paper addresses essential points of the Tibetan Medicine system, dialogue between doctor and patient focused on appropriate and seasonal changing dietetics. Such fluctuating treatment approaches, based on external elemental factors, dramatically increase treatment outcomes. Specifically, this work addresses why allopathic medicine models may need more trust development between practitioner and patient.

Keywords: compliancy in treatment, diet and lifestyle medicine, nature and elements as medicine, seasonal diets, Sowa Rigpa, traditional Tibetan medicine, treatment outcomes

Procedia PDF Downloads 49
7776 The Friction and Wear Behavior of 0.35 VfTiC-Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modify the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7 N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, boronizing, hardness, wear

Procedia PDF Downloads 330
7775 Assessment of the Water Quality of the Nhue River in Vietnam and its Suitability for Irrigation Water

Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Dao Chu

Abstract:

The Nhue River in Vietnam is the main source of irrigation water for suburban agricultural land and fish farm. Wastewater from the industrial plants located along these rivers has been discharged, which has degraded the water quality of the rivers. The present paper describes the chemical properties of water from the river focusing on heavy metal pollution and the suitability of water quality for irrigation. Water from the river was heavily polluted with heavy metals such as Pb, Cu, Zn, Cr, Cd, and Ni. Dissolved oxygen, COD, and total suspended solids, and the concentrations of all heavy metals exceeded the Vietnamese standard for surface water quality in all investigated sites. The concentrations of some heavy metals such as Cu, Cd, Cr and Ni were over the internationally recommended WHO maximum limits for irrigation water. A wide variation in heavy metal concentration of water due to metal types is the result of wastewater discharged from different industrial sources.

Keywords: heavy metals, stream water, irrigation, industry

Procedia PDF Downloads 385
7774 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education

Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman

Abstract:

Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.

Keywords: usage, software, diagnosis and treatment, medical education

Procedia PDF Downloads 344
7773 A Systematic Review of the Transportability of Cognitive Therapy for the Treatment of PTSD among South African Survivors of Rape

Authors: Anita Padmanabhanunni

Abstract:

Trauma-focused cognitive-treatment (CT) models are among the most efficacious in treating PTSD arising from exposure to rape. However, these treatment approaches are severely under-utilised by South African mental health care practitioners owing to concerns around whether treatments developed in Western clinical contexts are transportable and applicable in routine clinical settings. One way of promoting the use of these efficacious treatments in local contexts is by identifying and appraising the evidence from local outcome studies. This paper presents the findings of a systematic review of research evidence from local outcome studies on the effectiveness of CT in the treatment of rape-related PTSD in South Africa. The study found that whilst limited research has been published in South Africa on the outcome of CT in the treatment of rape survivors, the studies that are available afford insights into the effectiveness of CT.

Keywords: cognitive treatment, PTSD, South Africa, transportability

Procedia PDF Downloads 319
7772 Study of Physico-Chimical Properties of a Silty Soil

Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef

Abstract:

Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.

Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties

Procedia PDF Downloads 448
7771 Optimization of Bioremediation Process to Remove Hexavalent Chromium from Tannery Effluent

Authors: Satish Babu Rajulapati

Abstract:

The removal of toxic and heavy metal contaminants from wastewater streams and industrial effluents is one of the most important environmental issues being faced world over. In the present study three bacterial cultures tolerating high concentrations of chromium were isolated from the soil and wastewater sample collected from the tanneries located in Warangal, Telangana state. The bacterial species were identified as Bacillus sp., Staphylococcus sp. and pseudomonas sp. Preliminary studies were carried out with the three bacterial species at various operating parameters such as pH and temperature. The results indicate that pseudomonas sp. is the efficient one in the uptake of Cr(VI). Further, detailed investigation of Pseudomonas sp. have been carried out to determine the efficiency of removal of Cr(VI). The various parameters influencing the biosorption of Cr(VI) such as pH, temperature, initial chromium concentration, innoculum size and incubation time have been studied. Response Surface Methodology (RSM) was applied to optimize the removal of Cr(VI). Maximum Cr(VI) removal was found to be 85.72% Cr(VI) atpH 7, temperature 35 °C, initial concentration 67mg/l, inoculums size 9 %(v/v) and time 60 hrs.

Keywords: Staphylococcus sp, chromium, RSM, optimization, Cr(IV)

Procedia PDF Downloads 300
7770 Nano Fat Injection for Scar Treatment and Skin Rejuvenation

Authors: Sokol Isaraj, Lorela Bendo

Abstract:

Scars resulting from surgery, injury, or burns have a physical and psychological impact on the affected patient. Although a number of treatments are available, nano fat grafting is an effective treatment for scars. Nano fat is a liquid suspension rich in stem cells obtained by mechanical emulsification. Nano fat grafting was performed in 10 cases to correct rhytides, surgical scars, and post-burn scars between January 2022 and April 2022. Fat was aspirated from the lower abdomen or trochanteric region. After emulsification and filtration protocol, the resulting nano fat liquid was injected intradermally and subdermally. All patients filled out a questionnaire at three months post-treatment, which consisted of questions regarding the grade of improvement of skin and recommendation of the procedure. The clinical results were apparent between 2 and 3 weeks after the treatment. All patients confirmed an improvement in skin texture and quality. The most significant improvement was seen in pigmentation and pliability. No complications were reported. Nano fat seems to be a safe and effective treatment in scar treatment and skin rejuvenation.

Keywords: fat grafting, fat transfer, micro fat, nano fat

Procedia PDF Downloads 67
7769 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 163
7768 Spectrum of Bacteria Causing Oral and Maxillofacial Infections and Their Antibiotic Susceptibility among Patients Attending Muhimbili National Hospital

Authors: Sima E. Rugarabamu, Mecky I. Matee, Elison N. M. Simon

Abstract:

Background: In Tanzania bacteriological studies of etiological agents of oro-facial infections are very limited, and very few have investigated anaerobes. The aim of this study was to determine the spectrum of bacterial agents involved in oral and maxillofacial infections in patients attending Muhimbili National Hospital, Dar-es-salaam, Tanzania. Method: This was a hospital based descriptive cross-sectional study that was conducted in the Department of Oral and Maxillofacial Surgery of the Muhimbili National Hospital in Dar es Salaam, Tanzania from 1st January 2014 to 31st August 2014. Seventy (70) patients with various forms of oral and maxillofacial infections who were recruited for the study. The study participants were interviewed using a prepared questionnaire after getting their consent. Pus aspirate was cultured on Blood agar, Chocolate Agar, MacConkey agar and incubated aerobically at 37°C. Imported blood agar was used for anaerobic culture whereby they were incubated at 37°Cin anaerobic jars in an atmosphere of generated using commercial gas-generating kits in accordance with manufacturer’s instructions. Plates were incubated at 37°C for 24 hours (For aerobic culture and 48 hours for anaerobic cultures). Gram negative rods were identified using API 20E while all other isolates were identified by conventional biochemical tests. Antibiotic sensitivity testing for isolated aerobic and anaerobic bacteria was detected by the disk diffusion, agar dilution and E-test using routine and commercially available antibiotics used to treat oral facial infections. Results: This study comprised of 41 (58.5%) males and 29 (41.5%) females with a mean age of 32 years SD +/-15.1 and a range of 19 to 70 years. A total of 161 bacteria strains were isolated from specimens obtained from 70 patients which were an average of 2.3 isolates per patient. Of these 103 were aerobic organism and 58 were strict anaerobes. A complex mix of strict anaerobes and facultative anaerobes accounted for 87% of all infections.The most frequent aerobes isolated was streptococcus spp 70 (70%) followed by Staphylococcus spp 18 (18%). Other organisms such as Klebsiella spp 4 (4%), Proteus spp 5 (5%) and Pseudomonas spp 2 (2%) were also seen. The anaerobic group was dominated by Prevotella spp 25 (43%) followed by Peptostreptococcus spp 18 (31%); other isolates were Pseudomonas spp 2 (1%), black pigmented Pophyromonas spp 4 (5%), Fusobacterium spp 3 (3%) and Bacteroides spp 5 (8%). Majority of these organisms were sensitive to Amoxicillin (98%), Gentamycin (89%), and Ciprofloxacin (100%). A 40% resistance to metronidazole was observed in Bacteroides spp otherwise this drug and others displayed good activity against anaerobes. Conclusions: Oral and maxillofacial facial infections at Muhimbili National Hospital are mostly caused by streptococcus spp and Prevotella spp. Strict anaerobes accounted for 36% of all isolates. The profile of isolates should assist in selecting empiric therapy for infections of the oral and maxillofacial region. Inclusion of antimicrobial agents against anaerobic bacteria is highly recommended.

Keywords: bacteria, oral and maxillofacial infections, antibiotic susceptibility, Tanzania

Procedia PDF Downloads 311
7767 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 374
7766 Bioremediation of Phenol in Wastewater Using Polymer-Supported Bacteria

Authors: Areej K. Al-Jwaid, Dmitiry Berllio, Andrew Cundy, Irina Savina, Jonathan L. Caplin

Abstract:

Phenol is a toxic compound that is widely distributed in the environment including the atmosphere, water and soil, due to the release of effluents from the petrochemical and pharmaceutical industries, coking plants and oil refineries. Moreover, a range of daily products, using phenol as a raw material, may find their way into the environment without prior treatment. The toxicity of phenol effects both human and environment health, and various physio-chemical methods to remediate phenol contamination have been used. While these techniques are effective, their complexity and high cost had led to search for alternative strategies to reduce and eliminate high concentrations of phenolic compounds in the environment. Biological treatments are preferable because they are environmentally friendly and cheaper than physico-chemical approaches. Some microorganisms such as Pseudomonas sp., Rhodococus sp., Acinetobacter sp. and Bacillus sp. have shown a high ability to degrade phenolic compounds to provide a sole source of energy. Immobilisation process utilising various materials have been used to protect and enhance the viability of cells, and to provide structural support for the bacterial cells. The aim of this study is to develop a new approach to the bioremediation of phenol based on an immobilisation strategy that can be used in wastewater. In this study, two bacterial species known to be phenol degrading bacteria (Pseudomonas mendocina and Rhodococus koreensis) were purchased from National Collection of Industrial, Food and Marine Bacteria (NCIMB). The two species and mixture of them were immobilised to produce macro porous crosslinked cell cryogels samples by using four types of cross-linker polymer solutions in a cryogelation process. The samples were used in a batch culture to degrade phenol at an initial concentration of 50mg/L at pH 7.5±0.3 and a temperature of 30°C. The four types of polymer solution - i. glutaraldehyde (GA), ii. Polyvinyl alcohol with glutaraldehyde (PVA+GA), iii. Polyvinyl alcohol–aldehyde (PVA-al) and iv. Polyetheleneimine–aldehyde (PEI-al), were used at different concentrations, ranging from 0.5 to 1.5% to crosslink the cells. The results of SEM and rheology analysis indicated that cell-cryogel samples crosslinked with the four cross-linker polymers formed monolithic macro porous cryogels. The samples were evaluated for their ability to degrade phenol. Macro porous cell–cryogels crosslinked with GA and PVA+GA showed an ability to degrade phenol for only one week, while the other samples crosslinked with a combination of PVA-al + PEI-al at two different concentrations have shown higher stability and viability to reuse to degrade phenol at concentration (50 mg/L) for five weeks. The initial results of using crosslinked cell cryogel samples to degrade phenol indicate that is a promising tool for bioremediation strategies especially to eliminate and remove the high concentration of phenol in wastewater.

Keywords: bioremediation, crosslinked cells, immobilisation, phenol degradation

Procedia PDF Downloads 211
7765 Removal of Heavy Metal from Wastewater using Bio-Adsorbent

Authors: Rakesh Namdeti

Abstract:

The liquid waste-wastewater- is essentially the water supply of the community after it has been used in a variety of applications. In recent years, heavy metal concentrations, besides other pollutants, have increased to reach dangerous levels for the living environment in many regions. Among the heavy metals, Lead has the most damaging effects on human health. It can enter the human body through the uptake of food (65%), water (20%), and air (15%). In this background, certain low-cost and easily available biosorbent was used and reported in this study. The scope of the present study is to remove Lead from its aqueous solution using Olea EuropaeaResin as biosorbent. The results showed that the biosorption capacity of Olea EuropaeaResin biosorbent was more for Lead removal. The Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) models were used to describe the biosorption equilibrium of Lead Olea EuropaeaResin biosorbent, and the biosorption followed the Langmuir isotherm. The kinetic models showed that the pseudo-second-order rate expression was found to represent well the biosorption data for the biosorbent.

Keywords: novel biosorbent, central composite design, Lead, isotherms, kinetics

Procedia PDF Downloads 50