Search results for: high temperature polymer electrolyte membrane fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27811

Search results for: high temperature polymer electrolyte membrane fuel cell

20371 Anthocyanin Complex: Characterization and Cytotoxicity Studies

Authors: Sucharat Limsitthichaikoon, Kedsarin Saodaeng, Aroonsri Priprem, Teerasak Damrongrungruang

Abstract:

Complexation of anthocyanins to mimic natural copigmentation process was investigated. Cyanidin-rich extracts from Zea mays L. CeritinaKulesh. anddelphinidin-rich extracts from ClitoriaternateaL. were used to form 4 anthocyanin complexes, AC1, AC2, AC3, and AC4, in the presence of several polyphenols and a trace metal. Characterizations of the ACs were conducted by UV, FTIR, DSC/TGA and morphological observations. Bathochromic shifts of the UV spectra of 4 formulas of ACs were observed at peak wavelengths of about 510-620 nm by 10 nm suggesting complex formation.FTIR spectra of the ACs indicate shifts of peaks from 1,733 cm-1 to 1,696 cm-1 indicating interactions and a decrease in the peak areas within the wavenumber of 3,400-3,500 cm-1 indicating changes in hydrogen bonding.Thermal analysis of all of the ACs suggests increases in melting temperature after complexation. AC with the highest melting temperature was morphologically observed by SEM and TEM to be crystal-like particles within a range of 50 to 200 nm. Particle size analysis of the AC by laser diffraction gave a range of 50-600 nm, indicating aggregation. This AC was shown to have no cytotoxic effect on cultured HGEPp0.5 and HGF (all p> 0.05) by MTT. Therefore, complexation of anthocyanins was simple and self-assembly process, potentially resulting in nanosized particles of anthocyanin complex.

Keywords: anthocyanins, complexation, purple corn cops, butterfly pea, physicochemical characteristics, cytotoxicity

Procedia PDF Downloads 352
20370 Determination of Thermal Conductivity of Plaster Tow Material and Kapok Plaster by Numerical Method: Influence of the Heat Exchange Coefficient in Transitional Regime

Authors: Traore Papa Touty

Abstract:

This article presents a numerical method for determining the thermal conductivity of local materials, kapok plaster and tow plaster. It consists of heating the front face of a wall made from these two materials and at the same time insulating its rear face. We simultaneously study the curves of the evolution of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face. Thermal conductivity is obtained when reaching a steady state when the evolution of the heat flux density and the temperature gradient no longer depend on time. The results showed that the theoretical value of thermal conductivity is obtained when the material has reached its equilibrium state. And the values obtained for different values of the convective exchange coefficients are appreciably equal to the experimental value.

Keywords: thermal conductivity, numerical method, heat exchange coefficient, transitional regime

Procedia PDF Downloads 203
20369 Rice Husk Silica as an Alternative Material for Renewable Energy

Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen

Abstract:

Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).

Keywords: siliceous, leached, biomass, solid-liquid extraction

Procedia PDF Downloads 56
20368 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 435
20367 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 132
20366 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

Authors: K. V. Kalinichenko, G. N. Nikovskaya

Abstract:

The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments.

Keywords: fertilizer, heavy metals, leaching, sewage sludge

Procedia PDF Downloads 363
20365 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium

Authors: Piotr Ciuman, Barbara Lipska

Abstract:

The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.

Keywords: experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations CFD, thermal and humidity conditions, ventilation

Procedia PDF Downloads 392
20364 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 143
20363 Treatment of Leather Industry Wastewater with Advance Treatment Methods

Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal

Abstract:

Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.

Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater

Procedia PDF Downloads 146
20362 Investigations of the Service Life of Different Material Configurations at Solid-lubricated Rolling Bearings

Authors: Bernd Sauer, Michel Werner, Stefan Emrich, Michael Kopnarski, Oliver Koch

Abstract:

Friction reduction is an important aspect in the context of sustainability and energy transition. Rolling bearings are therefore used in many applications in which components move relative to each other. Conventionally lubricated rolling bearings are used in a wide range of applications, but are not suitable under certain conditions. Conventional lubricants such as grease or oil cannot be used at very high or very low temperatures. In addition, these lubricants evaporate at very low ambient pressure, e.g. in a high vacuum environment, making the use of solid lubricated bearings unavoidable. With the use of solid-lubricated bearings, predicting the service life becomes more complex. While the end of the service life of bearings with conventional lubrication is mainly caused by the failure of the bearing components due to material fatigue, solid-lubricated bearings fail at the moment when the lubrication layer is worn and the rolling elements come into direct contact with the raceway during operation. In order to extend the service life of these bearings beyond the service life of the initial coating, the use of transfer lubrication is recommended, in which pockets or sacrificial cages are used in which the balls run and can thus absorb the lubricant, which is then available for lubrication in tribological contact. This contribution presents the results of wear and service life tests on solid-lubricated rolling bearings with sacrificial cage pockets. The cage of the bearing consists of a polyimide (PI) matrix with 15% molybdenum disulfide (MoS2) and serves as a lubrication depot alongside the silver-coated balls. The bearings are tested under high vacuum (pE < 10-2 Pa) at a temperature of 300 °C on a four-bearing test rig. First, investigations of the bearing system within the bearing service life are presented and the torque curve, the wear mass and surface analyses are discussed. With regard to wear, it can be seen that the bearing rings tend to increase in mass over the service life of the bearing, while the balls and the cage tend to lose mass. With regard to the elementary surface properties, the surfaces of the bearing rings and balls are examined in terms of the mass of the elements on them. Furthermore, service life investigations with different material pairings are presented, whereby the focus here is on the service life achieved in addition to the torque curve, wear development and surface analysis. It was shown that MoS2 in the cage leads to a longer service life, while a silver (Ag) coating on the balls has no positive influence on the service life and even appears to reduce it in combination with MoS2.

Keywords: ball bearings, molybdenum disulfide, solid lubricated bearings, solid lubrication mechanisms

Procedia PDF Downloads 28
20361 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 77
20360 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete

Authors: Jiaqi Huang, Lu Jin

Abstract:

Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.

Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete

Procedia PDF Downloads 166
20359 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 186
20358 Modelling of Hydric Behaviour of Textiles

Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.

Abstract:

The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.

Keywords: comfort, hydric properties, modelling, underwears

Procedia PDF Downloads 136
20357 Viability and Sensitivity of SFN6B (Host-Specific Bacteriophage) towards Shigella Flexneri in Various Water Samples

Authors: Siewchuiang Sia, Gimcheong Tan

Abstract:

Bacteriophages are the most abundant and genetically diverse living entities on earth; they help in regulating and maintaining microbial diversity and balance in its natural ecosystem. In this study, the infectivity of SFN6B tailed phage was investigated in various water samples. Host bacteria (Shigella flexneri) were spiked in sterilized environmental and domestic water samples, followed by SFN6B treatment. Two incubation conditions were selected for this study, 37 oC and room temperature. S. flexneri and SFN6B viability were monitored hourly for consecutive 7 hours and extended viability study for consecutive 4 days. Absorbance of all bacteria spiked water samples were taken to monitor the bacteria count. Results showed reduction in the absorbance of the SFN6B treated water sample as compared to negative control, indicating reduction in bacterial count either due to negative growth or lysis by the lytic bacteriophage. Consistent with the result, SFN6B titer increases for first two days. However, prolong incubation of these cultures reaches equilibrium, between phage and bacteria. Temperature and water sample source also influence the interaction between S. flexneri and SFN6B. Stronger interaction was observed in 37oC as compared to room temperature, where higher bacteria count and phage titer increase were recorded. Availability of nutrient in water sample also plays a crucial role in the interaction between bacteria and phage. Higher nutrient level, such as lake and river waters were observed to give better infectivity and viability of both bacteria and phage as compared to tab water. It is believed that S. flexneri continue to remain viable and able to grow in the present of SFN6B bacteriophage, but the number was closely regulated by surrounding phages. This allows better understanding of the characteristics of SFN6B that could serve as the basis for future studies and applications.

Keywords: bacteriophage, Shigella flexneri, infection, microbial diversity

Procedia PDF Downloads 269
20356 Polymer Nanocarrier for Rheumatoid Arthritis Therapy

Authors: Vijayakameswara Rao Neralla, Jueun Jeon, Jae Hyung Park

Abstract:

To develop a potential nanocarrier for diagnosis and treatment of rheumatoid arthritis (RA), we prepared a hyaluronic acid (HA)-5β-cholanic acid (CA) conjugate with an acid-labile ketal linker. This conjugate could self-assemble in aqueous conditions to produce pH-responsive HA-CA nanoparticles as potential carriers of the anti-inflammatory drug methotrexate (MTX). MTX was rapidly released from nanoparticles under inflamed synovial tissue in RA. In vitro cytotoxicity data showed that pH-responsive HA-CA nanoparticles were non-toxic to RAW 264.7 cells. In vivo biodistribution results confirmed that, after their systemic administration, pH-responsive HA-CA nanoparticles selectively accumulated in the inflamed joints of collagen-induced arthritis mice. These results indicate that pH-responsive HA-CA nanoparticles represent a promising candidate as a drug carrier for RA therapy.

Keywords: rheumatoid arthritis, hyaluronic acid, nanocarrier, self-assembly, MTX

Procedia PDF Downloads 279
20355 The Effect of Rheological Properties and Spun/Meltblown Fiber Characteristics on “Hotmelt Bleed through” Behavior in High Speed Textile Backsheet Lamination Process

Authors: Kinyas Aydin, Fatih Erguney, Tolga Ceper, Serap Ozay, Ipar N. Uzun, Sebnem Kemaloglu Dogan, Deniz Tunc

Abstract:

In order to meet high growth rates in baby diaper industry worldwide, the high-speed textile backsheet lamination lines have recently been introduced to the market for non-woven/film lamination applications. It is a process where two substrates are bonded to each other via hotmelt adhesive (HMA). Nonwoven (NW) lamination system basically consists of 4 components; polypropylene (PP) nonwoven, polyethylene (PE) film, HMA and applicator system. Each component has a substantial effect on the process efficiency of continuous line and final product properties. However, for a precise subject cover, we will be addressing only the main challenges and possible solutions in this paper. The NW is often produced by spunbond method (SSS or SMS configuration) and has a 10-12 gsm (g/m²) basis weight. The NW rolls can have a width and length up to 2.060 mm and 30.000 linear meters, respectively. The PE film is the 2ⁿᵈ component in TBS lamination, which is usually a 12-14 gsm blown or cast breathable film. HMA is a thermoplastic glue (mostly rubber based) that can be applied in a large range of viscosity ranges. The main HMA application technology in TBS lamination is the slot die application in which HMA is spread on the top of the NW along the whole width at high temperatures in the melt form. Then, the NW is passed over chiller rolls with a certain open time depending on the line speed. HMAs are applied at certain levels in order to provide a proper de-lamination strength in cross and machine directions to the entire structure. Current TBS lamination line speed and width can be as high as 800 m/min and 2100 mm, respectively. They also feature an automated web control tension system for winders and unwinders. In order to run a continuous trouble-free mass production campaign on the fast industrial TBS lines, rheological properties of HMAs and micro-properties of NWs can have adverse effects on the line efficiency and continuity. NW fiber orientation and fineness, as well as spun/melt blown composition fabric micro-level properties, are the significant factors to affect the degree of “HMA bleed through.” As a result of this problem, frequent line stops are observed to clean the glue that is being accumulated on the chiller rolls, which significantly reduces the line efficiency. HMA rheology is also important and to eliminate any bleed through the problem; one should have a good understanding of rheology driven potential complications. So, the applied viscosity/temperature should be optimized in accordance with the line speed, line width, NW characteristics and the required open time for a given HMA formulation. In this study, we will show practical aspects of potential preventative actions to minimize the HMA bleed through the problem, which may stem from both HMA rheological properties and NW spun melt/melt blown fiber characteristics.

Keywords: breathable, hotmelt, nonwoven, textile backsheet lamination, spun/melt blown

Procedia PDF Downloads 343
20354 Myomectomy and Blood Loss: A Quality Improvement Project

Authors: Ena Arora, Rong Fan, Aleksandr Fuks, Kolawole Felix Akinnawonu

Abstract:

Introduction: Leiomyomas are benign tumors that are derived from the overgrowth of uterine smooth muscle cells. Women with symptomatic leiomyomas who desire future fertility, myomectomy should be the standard surgical treatment. Perioperative hemorrhage is a common complication in myomectomy. We performed the study to investigate blood transfusion rate in abdominal myomectomies, risk factors influencing blood loss and modalities to improve perioperative blood loss. Methods: Retrospective chart review was done for patients who underwent myomectomy from 2016 to 2022 at Queens hospital center, New York. We looked at preoperative patient demographics, clinical characteristics, intraoperative variables, and postoperative outcomes. Mann-Whitney U test were used for parametric and non-parametric continuous variable comparisons, respectively. Results: A total of 159 myomectomies were performed between 2016 and 2022, including 1 laparoscopic, 65 vaginal and 93 abdominal. 44 patients received blood transfusion during or within 72 hours of abdominal myomectomy. The blood transfusion rate was 47.3%. Blood transfusion rate was found to be twice higher than the average documented rate in literature which is 20%. Risk factors identified were black race, preoperative hematocrit<30%, preoperative blood transfusion within 72 hours, large fibroid burden, prolonged surgical time, and abdominal approach. Conclusion: Preoperative optimization with iron supplements or GnRH agonists is important for patients undergoing myomectomy. Interventions to decrease intra operative blood loss should include cell saver, tourniquet, vasopressin, misoprostol, tranexamic acid and gelatin-thrombin matrix hemostatic sealant.

Keywords: myomectomy, perioperative blood loss, cell saver, tranexamic acid

Procedia PDF Downloads 69
20353 Integrated Human Resources and Work Environment Management System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.

Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system

Procedia PDF Downloads 65
20352 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 232
20351 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy

Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao

Abstract:

Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.

Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation

Procedia PDF Downloads 142
20350 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel

Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao

Abstract:

This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.

Keywords: corrosion, steel, plasma nitriding, X-ray diffraction

Procedia PDF Downloads 187
20349 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: vacuum glazing, stress, vacuum insulation, support pillars

Procedia PDF Downloads 176
20348 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 188
20347 Producing Fertilizers of Increased Environmental and Agrochemical Efficiency via Application of Plant-available Inorganic Coatings

Authors: Andrey Norov

Abstract:

Reduction of inefficient losses of nutrients when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. The loss of nutrients to the environment leads to the release of greenhouse gases, eutrophication of water bodies, soil salinization and degradation, and other undesirable phenomena. This report focuses on slow and controlled release fertilizers produced through the application of inorganic coatings, which make the released nutrients plant-available. There are shown the advantages of these fertilizers their improved physical and chemical properties, as well as the effect of the coatings on yield growth and on the degree of nutrient efficiency. This type of fertilizers is an alternative to other polymer-coated fertilizers and is more ecofriendly. The production method is protected by the Russian patent.

Keywords: coatings, controlled release, fertilizer, nutrients, nutrient efficiency, yield increase

Procedia PDF Downloads 75
20346 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures

Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester

Abstract:

This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.

Keywords: CFD, electronic discharge, ignition, spark plug

Procedia PDF Downloads 149
20345 Haematological Changes and Anticoccidial Activities of Kaempferol in Eimeria Tenella Infected Broiler Chickens

Authors: Ya'u Muhammad, Umar Umar A. Mallammadori, Dahiru Mansur

Abstract:

Effect of kaempferol on haematological parameters in two weeks old broiler chickens with experimental Eimeria tenella infection was evaluated in this study. Sixty-day old broilers were randomly allotted into six groups (I-VI) of ten broilers each and brooded for two weeks with commercial broiler feed (vital feed®) and provided water ad libitum. At two weeks of age broilers in group 1 were neither infected nor treated. Broilers in groups II-VI were infected with Eimeria tenella sporulated oocyst (104/ml) via oral inoculation. After infection was established, broilers in groups II-IV were treated orally with 1 mg/kg, 1.5 mg/kg, and 2 mg/kg of kaempferol, respectively. Broilers in group V were treated for five days with amprolium, 1.25 g/L in drinking water. Broilers in group VI were administered normal saline, 5 ml/kg per os for five days. Five days post infection; all broilers were sacrificed by severing their jugular veins. Blood sample from each bird was collected in EDTA container for haematology. Caecal contents were harvested and used to determine the lesion score and caecal Oocyst count respectively. Data obtained was analyzed using pad prism version 5.0. Mean Packed Cell Volume (PCV), haemoglobin (Hb) concentration, and Red Blood Cell (RBC) count significantly (P < 0.05) increased in groups II, III, and IV in a dose dependent manner. Similarly, PCV, Hb concentration, and RBC count significantly (P < 0.05) increased in groups II, III, and IV when compared to VI. No significant (P > 0.05) difference in the mean values of PCV, Hb and RBC count were recorded between groups treated with kaempferol and group V. Caecal Oocyst counts and lesion scores reduced significantly (P < 0.05) in groups II, III, and IV in a dose dependent manner. It was therefore observed in this study that kaempferol improved haematological parameters and reduced Oocyst count as well as the lesion scores in broilers infected with Eimeria tenella.

Keywords: broilers, Eimeria tenella, kaempferol, lesion scores, oocyst count,

Procedia PDF Downloads 167
20344 Silver Nanoparticles Loaded Cellulose Nanofibers (Cnf)/mesoporous Bioactive Glass Hydrogels For Periodontitis Treatment

Authors: Anika Pallapothu

Abstract:

Periodontitis, a severe gum disease, poses a significant threat to the integrity of bone and soft tissues supporting teeth, primarily initiated by bacterial accumulation around the gum line. Conventional treatments like scaling/root planning and plaque removal are widely employed, but integrating modern technologies such as nanotechnology holds promise for innovative therapeutic approaches. This study explores the utilization of silver nanoparticles encapsulated within cellulose nanofiber (CNF) and mesoporous bioactive glass hydrogel matrices for periodontitis management. Silver nanoparticles exhibit potent antimicrobial properties by disrupting microbial cell membranes, inducing reactive oxygen species (ROS) generation, and interfering with vital cellular processes like ATP production and nucleic acid synthesis. Mesoporous bioactive glass, renowned for its high surface area, osteoconductive, and bioactivity, presents a favorable platform for pharmaceutical applications. Incorporating CNF enhances the properties of the hydrogel due to its biocompatibility, biodegradability, and water absorption capacity. The proposed composite material is anticipated to exert beneficial effects in periodontitis treatment by demonstrating antibacterial and anti-inflammatory activities, offering a promising avenue for future therapeutic interventions.

Keywords: periodontitis, cellulose nanofibers, silver nanoparticles, mesoporous bioactive glass, antibacterial activity, anti-inflammatory activity

Procedia PDF Downloads 33
20343 Conductive Clay Nanocomposite Using Smectite and Poly(O-Anisidine)

Authors: M. Şahi̇n, E. Erdem, M. Saçak

Abstract:

In this study, Na-smectite crystals purificated of bentonite were used after being swelling with benzyltributylammonium bromide (BTBAB) as alkyl ammonium salt. Swelling process was carried out using 0.2 g of BTBAB for smectite of 0.8 g with 4 h of mixing time after investigated conditions such as mixing time, the swelling agent amount. Then, the conductive poly(o-anisidine) (POA)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POA content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-anisidine/APS mol ratio. POA/smectite nanocomposite was characterized by XRD, FTIR and SEM techniques and was compared separately with components of composite.

Keywords: clay, composite, conducting polymer, poly(o-anisidine)

Procedia PDF Downloads 304
20342 Seasonal Short-Term Effect of Air Pollution on Cardiovascular Mortality in Belgium

Authors: Natalia Bustos Sierra, Katrien Tersago

Abstract:

It is currently proven that both extremes of temperature are associated with increased mortality and that air pollution is associated with temperature. This relationship is complex, and in countries with important seasonal variations in weather such as Belgium, some effects can appear as non-significant when the analysis is done over the entire year. We, therefore, analyzed the effect of short-term outdoor air pollution exposure on cardiovascular mortality during the warmer and colder months separately. We used daily cardiovascular deaths from acute cardiovascular diagnostics according to the International Classification of Diseases, 10th Revision (ICD-10: I20-I24, I44-I49, I50, I60-I66) during the period 2008-2013. The environmental data were population-weighted concentrations of particulates with an aerodynamic diameter less than 10 µm (PM₁₀) and less than 2.5 µm (PM₂.₅) (daily average), nitrogen dioxide (NO₂) (daily maximum of the hourly average) and ozone (O₃) (daily maximum of the 8-hour running mean). A Generalized linear model was applied adjusting for the confounding effect of season, temperature, dew point temperature, the day of the week, public holidays and the incidence of influenza-like illness (ILI) per 100,000 inhabitants. The relative risks (RR) were calculated for an increase of one interquartile range (IQR) of the air pollutant (μg/m³). These were presented for the four hottest months (June, July, August, September) and coldest months (November, December, January, February) in Belgium. We applied both individual lag model and unconstrained distributed lag model methods. The cumulative effect of a four-day exposure (day of exposure and three consecutive days) was calculated from the unconstrained distributed lag model. The IQR for PM₁₀, PM₂.₅, NO₂, and O₃ were respectively 8.2, 6.9, 12.9 and 25.5 µg/m³ during warm months and 18.8, 17.6, 18.4 and 27.8 µg/m³ during cold months. The association with CV mortality was statistically significant for the four pollutants during warm months and only for NO₂ during cold months. During the warm months, the cumulative effect of an IQR increase of ozone for the age groups 25-64, 65-84 and 85+ was 1.066 (95%CI: 1.002-1.135), 1.041 (1.008-1.075) and 1.036 (1.013-1.058) respectively. The cumulative effect of an IQR increase of NO₂ for the age group 65-84 was 1.066 (1.020-1.114) during warm months and 1.096 (1.030-1.166) during cold months. The cumulative effect of an IQR increase of PM₁₀ during warm months reached 1.046 (1.011-1.082) and 1.038 (1.015-1.063) for the age groups 65-84 and 85+ respectively. Similar results were observed for PM₂.₅. The short-term effect of air pollution on cardiovascular mortality is greater during warm months for lower pollutant concentrations compared to cold months. Spending more time outside during warm months increases population exposure to air pollution and can, therefore, be a confounding factor for this association. Age can also affect the length of time spent outdoors and the type of physical activity exercised. This study supports the deleterious effect of air pollution on cardiovascular mortality (CV) which varies according to season and age groups in Belgium. Public health measures should, therefore, be adapted to seasonality.

Keywords: air pollution, cardiovascular, mortality, season

Procedia PDF Downloads 148