Search results for: advanced therapy medicinal products (ATMPs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8909

Search results for: advanced therapy medicinal products (ATMPs)

1469 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System

Authors: Jacob T. Liberty, Wilfred I. Okonkwo

Abstract:

The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.

Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage

Procedia PDF Downloads 305
1468 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass

Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi

Abstract:

Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.

Keywords: Dunaliella salina, ethyl methyl sulfonate, growth rate, biomass

Procedia PDF Downloads 239
1467 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 52
1466 An Approach to Automate the Modeling of Life Cycle Inventory Data: Case Study on Electrical and Electronic Equipment Products

Authors: Axelle Bertrand, Tom Bauer, Carole Charbuillet, Martin Bonte, Marie Voyer, Nicolas Perry

Abstract:

The complexity of Life Cycle Assessment (LCA) can be identified as the ultimate obstacle to massification. Due to these obstacles, the diffusion of eco-design and LCA methods in the manufacturing sectors could be impossible. This article addresses the research question: How to adapt the LCA method to generalize it massively and improve its performance? This paper aims to develop an approach for automating LCA in order to carry out assessments on a massive scale. To answer this, we proceeded in three steps: First, an analysis of the literature to identify existing automation methods. Given the constraints of large-scale manual processing, it was necessary to define a new approach, drawing inspiration from certain methods and combining them with new ideas and improvements. In a second part, our development of automated construction is presented (reconciliation and implementation of data). Finally, the LCA case study of a conduit is presented to demonstrate the feature-based approach offered by the developed tool. A computerized environment supports effective and efficient decision-making related to materials and processes, facilitating the process of data mapping and hence product modeling. This method is also able to complete the LCA process on its own within minutes. Thus, the calculations and the LCA report are automatically generated. The tool developed has shown that automation by code is a viable solution to meet LCA's massification objectives. It has major advantages over the traditional LCA method and overcomes the complexity of LCA. Indeed, the case study demonstrated the time savings associated with this methodology and, therefore, the opportunity to increase the number of LCA reports generated and, therefore, to meet regulatory requirements. Moreover, this approach also presents the potential of the proposed method for a wide range of applications.

Keywords: automation, EEE, life cycle assessment, life cycle inventory, massively

Procedia PDF Downloads 88
1465 Credit Cooperatives: A Factor for Improving the Sustainable Management of Private Forests

Authors: Todor Nickolov Stoyanov

Abstract:

Cooperatives are present in all countries and in almost all sectors, including agriculture, forestry, food, finance, health, marketing, insurance and credit. Strong cooperatives are able to overcome many of the difficulties faced by private owners. Cooperatives use seven principles, including the 'Community Concern" principle, which enables cooperatives to work for the sustainable development of the community. The members of cooperatives may use different systems for generating year-round employment and for receiving sustainable income through performing different forestry activities. Various methods are used during the preparation of the report. These include literature reviews, statistics, secondary data and expert interviews. The members of the cooperatives are benefits exclusively from increasing the efficiency of the various products and from the overall yield of the harvest, and ultimately from achieving better profit through cooperative efforts. Cooperatives also use other types of activities that are an additional opportunity for cooperative income. There are many heterogeneous activities in the production and service sectors of the forest cooperatives under consideration. Some cooperatives serve dairies, distilleries, woodworking enterprises, tourist homes, hotels and motels, shops, ski slopes, sheep breeding, etc. Through the revenue generated by the activity, cooperatives have the opportunity to carry out various environmental and protective activities - recreation, water protection, protection of endangered and endemic species, etc., which in the case of small-scale forests cannot be achieved and the management is not sustainable. The conclusions indicate the results received in the analysis. Cooperative management of forests and forest lands gives higher incomes to individual owners. The management of forests and forest lands through cooperatives helps to carry out different environmental and protective activities. Cooperative forest management provides additional means of subsistence to the owners of poor forest lands. Cooperative management of forests and forest lands support owners to implement the forest management plans and to apply sustainable management of these territories.

Keywords: cooperative, forestry, forest owners, principles of cooperation

Procedia PDF Downloads 241
1464 Composite Materials from Epoxidized Linseed Oil and Lignin

Authors: R. S. Komartin, B. Balanuca, R. Stan

Abstract:

the last decades, studies about the use of polymeric materials of plant origin, considering environmental concerns, have captured the interest of researchers because these represent an alternative to petroleum-derived materials. Vegetable oils are one of the preferred alternatives for petroleum-based raw materials having long aliphatic chains similar to hydrocarbons which means that can be processed using conventional chemistry. Epoxidized vegetable oils (EVO) are among the most interesting products derived from oil both for their high reactivity (epoxy group) and for the potential to react with compounds from various classes. As in the case of epoxy resins starting from petrochemical raw materials, those obtained from EVO can be crosslinked with different agents to build polymeric networks and can also be reinforced with various additives to improve their thermal and mechanical performances. Among the multitude of known EVO, the most common in industrial practice are epoxidized linseed oils (ELO) and epoxidized soybean oils (ESO), the first with an iodine index over 180, the second having a lower iodine index but being cheaper. On the other hand, lignin (Ln) is the second natural organic material as a spread, whose use has long been hampered because of the high costs associated with its isolation and purification. In this context, our goal was to obtain new composite materials with satisfactory intermediate properties in terms of stiffness and elasticity using the characteristics of ELO and Ln and choosing the proper curing procedure. In the present study linseed oil (LO) epoxidation was performed using peracetic acid generated in situ. The obtained bio-based epoxy resin derived from linseed oil was used further to produce the new composites byloading Ln in various mass ratios. The resulted ELO-Ln blends were subjected to a dual-curing protocol, namely photochemical and thermal. The new ELO-Ln composites were investigated by FTIR spectrometry, thermal stability, water affinity, and morphology. The positive effect of lignin regarding the thermal stability of the composites could be proved. The results highlight again the still largely unexplored potential of lignin in industrial applications.

Keywords: composite materials, dual curing, epoxidized linseed oil, lignin

Procedia PDF Downloads 156
1463 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 302
1462 Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate

Authors: Amr Mohamed Bakry Ibrahim, Yingzhou Ni, Hao Cheng, Li Liang

Abstract:

Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries.

Keywords: Mentha piperita oil, microcapsule, tuna oil, whey protein isolate

Procedia PDF Downloads 349
1461 Thermosonic Devulcanization of Waste Ground Rubber Tires by Quaternary Ammonium-Based Ternary Deep Eutectic Solvents and the Effect of α-Hydrogen

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid

Abstract:

Landfills, water contamination, and toxic gas emission are a few impacts faced by the environment due to the increasing number of αof waste rubber tires (WRT). In spite of such concerning issue, only minimal efforts are taken to reclaim or recycle these wastes as their products are generally not-profitable for companies. Unlike the typical reclamation process, devulcanization is a method to selectively cleave sulfidic bonds within vulcanizates to avoid polymeric scissions that compromise elastomer’s mechanical and tensile properties. The process also produces devulcanizates that are re-processable similar to virgin rubber. Often, a devulcanizing agent is needed. In the current study, novel and sustainable ammonium chloride-based ternary deep eutectic solvents (TDES), with a different number of α-hydrogens, were utilised to devulcanize ground rubber tire (GRT) as an effort to implement green chemistry to tackle such issue. 40-mesh GRT were soaked for 1 day with different TDESs and sonicated at 37-80 kHz for 60-120 mins and heated at 100-140oC for 30-90 mins. Devulcanizates were then filtered, dried, and evaluated based on the percentage of by means of Flory-Rehner calculation and swelling index. The result shows that an increasing number of α-Hs increases the degree of devulcanization, and the value achieved was around eighty-percent, thirty percent higher than the typical industrial-autoclave method. Resulting bondages of devulcanizates were also analysed by Fourier transform infrared spectrometer (FTIR), Horikx fitting, and thermogravimetric analyser (TGA). The earlier two confirms only sulfidic scissions were experienced by GRT through the treatment, while the latter proves the absence or negligibility of carbon-chains scission.

Keywords: ammonium, sustainable, deep eutectic solvent, α-hydrogen, waste rubber tire

Procedia PDF Downloads 125
1460 Crafting a Livelihood: A Story of the Kotpad Dyers and Weavers

Authors: Anahita Suri

Abstract:

Craft -an integral part of the conduit to create something beautiful- is a visual representation of the human imagination given life through the hand. The Mirgan tribe in the Naxalite infested forests of Koraput, Odisha are not exempt from this craving for beauty. These skilled craftsmen dye and weave the simple yet sophisticated Kotpad textiles. The women undertake the time-consuming task of dyeing the cotton and silk yarns with the root of the aul tree. The men then weave these yarns into beautiful sarees and dupattas. The root of the aul tree lends the textile its maroon to brown color, which is offset against the unbleached cotton to create a minimalist and distinctive look. The motifs, incorporated through the extra weft technique, reflect the rich tribal heritage of the community. This is an eco-friendly, non-toxic textile. Kotpad fabrics were on the verge of extinction due to various factors like poor infrastructure, no innovation in traditional designs/products, customer ignorance leading to low demand. With livelihood opportunities through craft slowly dwindling, artisans were moving to alternative sources of income generation, like agriculture and daily wage labor. There was an urgent need for intervention to revive the craft, spread awareness about them in urban spaces, and strengthen the artisan’s ability to innovate and create. Recent efforts by government bodies and local designers have given Kotpad handloom a contemporary look without diluting its essence. This research explores the possibilities to leverage Kotpad handloom to find a place in the dynamic culture of the world by its promotion among different target groups and incorporating self-sustaining practices for the artisans. This could further encourage a space for handmade and handcrafted art, rich with stories about India, with a contemporary visual sensibility. This will strengthen environmental and ethical sustainability.

Keywords: craft, contemporary, handloom, natural dye, tribal

Procedia PDF Downloads 144
1459 Prevalence of Multidrug-resistant Escherichia coli Isolated from Ready to Eat: Crispy Fried Chicken in Jember, Indonesia

Authors: Enny Suswati, Supangat Supangat

Abstract:

Background. Ready-to-eat food products are becoming increasingly popular because consumers are increasingly busy, competitive, and changing lifestyles. Examples of ready-to-eat foods include crispy fried chicken. Escherichia coli is one of the most important causes of food-borne diseases and the most frequent antibiotic-resistant pathogen globally. This study assessed the prevalence and antibiotic resistance profile of E. coli from ready-to-eat crispy fried chicken in Jember city, Indonesia. Methodology. This cross-sectional study was conducted from November 2020 to April 2021 by collecting 81crispy fried chicken samples from 27 food stalls in campus area using a simple random sampling method. Isolation and determination of E. coli use were performed by conventional culture method. An antibiotic susceptibility test was conducted using Kirby Bauer disk diffusion method on the Mueller–Hinton agar. Result. Out of 81crispy fried chicken samples, 77 (95.06%) were positive for E. coli. High E. coli drug resistance was observed on ampicillin, amoxicillin (100%) followed by cefixime (98.72%), erythromycin (97.59%), sulfamethoxazole (93.59%), azithromicin (83.33%), cefotaxime (78.28%), choramphenicol (75.64%), and cefixime (74.36%). On the other hand, there was the highest susceptibility for ciprofloxacin (64.10%). The multiple antibiotic resistance indexes of E. coli isolates varied from 0.4 to 1. The predominant antimicrobial resistance profiles of E. coli were CfmCroAmlAmpAzmCtxSxtCE (n=17), CfmCroAmlCipAmpAzmCtxSxtCE (n=16), and CfmAmlAmpAzmCtxSxtCE (n=5), respectively. Multidrug resistance was also found in the isolates' 76/77 (98.70%). Conclusion. The resistance pattern CfmCroAmlAmpAzmCtxSxtCE was the most common among the E. coli isolates, with 17 showing it. The multiple antibiotic index (MAR index) ranged from 0.4 to 1. Hygienic measures should be rigorously implemented and monitoring resistance of E. coli is required to reduce the risks related to the emergence of multi-resistant bacteria

Keywords: antibacterial drug, ready to eat, crispy fried chicken, escherichia coli

Procedia PDF Downloads 108
1458 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology

Authors: Pranudda Pimsee, Caroline Sablayrolles, Pascale De Caro, Julien Guyomarch, Nicolas Lesage, Mireille Montréjaud-Vignoles

Abstract:

The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.

Keywords: mornitoring, PAHs, water soluble fraction, SBSE, Taguchi experimental design

Procedia PDF Downloads 323
1457 Destruction of Coastal Wetlands in Harper City-Liberia: Setting Nature against the Future Society

Authors: Richard Adu Antwako

Abstract:

Coastal wetland destruction and its consequences have recently taken the center stage of global discussions. This phenomenon is no gray area to humanity as coastal wetland-human interaction seems inevitably ingrained in the earliest civilizations, amidst the demanding use of its resources to meet their necessities. The severity of coastal wetland destruction parallels with growing civilizations, and it is against this backdrop that, this paper interrogated the causes of coastal wetland destruction in Harper City in Liberia, compared the degree of coastal wetland stressors to the non-equilibrium thermodynamic scale as well as suggested an integrated coastal zone management to address the problems. Literature complemented the primary data gleaned via global positioning system devices, field observation, questionnaire, and interviews. Multi-sampling techniques were used to generate data from the sand miners, institutional heads, fisherfolk, community-based groups, and other stakeholders. Non-equilibrium thermodynamic theory remains vibrant in discerning the ecological stability, and it would be employed to further understand the coastal wetland destruction in Harper City, Liberia and to measure the coastal wetland stresses-amplitude and elasticity. The non-equilibrium thermodynamics postulates that the coastal wetlands are capable of assimilating resources (inputs), as well as discharging products (outputs). However, the input-output relationship exceedingly stretches beyond the thresholds of the coastal wetlands, leading to coastal wetland disequilibrium. Findings revealed that the sand mining, mangrove removal, and crude dumping have transformed the coastal wetlands, resulting in water pollution, flooding, habitat loss and disfigured beaches in Harper City in Liberia. This paper demonstrates that the coastal wetlands are converted into developmental projects and agricultural fields, thus, endangering the future society against nature.

Keywords: amplitude, crude dumping, elasticity, non-equilibrium thermodynamics, wetland destruction

Procedia PDF Downloads 140
1456 A Multi-Scale Study of Potential-Dependent Ammonia Synthesis on IrO₂ (110): DFT, 3D-RISM, and Microkinetic Modeling

Authors: Shih-Huang Pan, Tsuyoshi Miyazaki, Minoru Otani, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Ammonia (NH₃) is crucial in renewable energy and agriculture, yet its traditional production via the Haber-Bosch process faces challenges due to the inherent inertness of nitrogen (N₂) and the need for high temperatures and pressures. The electrocatalytic nitrogen reduction (ENRR) presents a more sustainable option, functioning at ambient conditions. However, its advancement is limited by selectivity and efficiency challenges due to the competing hydrogen evolution reaction (HER). The critical roles of protonation of N-species and HER highlight the necessity of selecting optimal catalysts and solvents to enhance ENRR performance. Notably, transition metal oxides, with their adjustable electronic states and excellent chemical and thermal stability, have shown promising ENRR characteristics. In this study, we use density functional theory (DFT) methods to investigate the ENRR mechanisms on IrO₂ (110), a material known for its tunable electronic properties and exceptional chemical and thermal stability. Employing the constant electrode potential (CEP) model, where the electrode - electrolyte interface is treated as a polarizable continuum with implicit solvation, and adjusting electron counts to equalize work functions in the grand canonical ensemble, we further incorporate the advanced 3D Reference Interaction Site Model (3D-RISM) to accurately determine the ENRR limiting potential across various solvents and pH conditions. Our findings reveal that the limiting potential for ENRR on IrO₂ (110) is significantly more favorable than for HER, highlighting the efficiency of the IrO₂ catalyst for converting N₂ to NH₃. This is supported by the optimal *NH₃ desorption energy on IrO₂, which enhances the overall reaction efficiency. Microkinetic simulations further predict a promising NH₃ production rate, even at the solution's boiling point¸ reinforcing the catalytic viability of IrO₂ (110). This comprehensive approach provides an atomic-level understanding of the electrode-electrolyte interface in ENRR, demonstrating the practical application of IrO₂ in electrochemical catalysis. The findings provide a foundation for developing more efficient and selective catalytic strategies, potentially revolutionizing industrial NH₃ production.

Keywords: density functional theory, electrocatalyst, nitrogen reduction reaction, electrochemistry

Procedia PDF Downloads 17
1455 Intensity Modulated Radiotherapy of Nasopharyngeal Carcinomas: Patterns of Loco Regional Relapse

Authors: Omar Nouri, Wafa Mnejja, Nejla Fourati, Fatma Dhouib, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Jamel Daoud

Abstract:

Background and objective: Induction chemotherapy (IC) followed by concomitant chemo radiotherapy with intensity modulated radiation (IMRT) technique is actually the recommended treatment modality for locally advanced nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the prognostic factors predicting loco regional relapse with this new treatment protocol. Patients and methods: A retrospective study of 52 patients with NPC treated between June 2016 and July 2019. All patients received IC according to the protocol of the Head and Neck Radiotherapy Oncology Group (Gortec) NPC 2006 (3 TPF courses) followed by concomitant chemo radiotherapy with weekly cisplatin (40 mg / m2). Patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. Median age was 49 years (19-69) with a sex ratio of 3.3. Forty five tumors (86.5%) were classified as stages III - IV according to the 2017 UICC TNM classification. Loco regional relapse (LRR) was defined as a local and/or regional progression that occurs at least 6 months after the end of treatment. Survival analysis was performed according to Kaplan-Meier method and Log-rank test was used to compare anatomy clinical and therapeutic factors that may influence loco regional free survival (LRFS). Results: After a median follow up of 42 months, 6 patients (11.5%) experienced LRR. A metastatic relapse was also noted for 3 of these patients (50%). Target volumes coverage was optimal for all patient with LRR. Four relapses (66.6%) were in high-risk target volume and two (33.3%) were borderline. Three years LRFS was 85,9%. Four factors predicted loco regional relapses: histologic type other than undifferentiated (UCNT) (p=0.027), a macroscopic pre chemotherapy tumor volume exceeding 100 cm³ (p=0.005), a reduction in IC doses exceeding 20% (p=0.016) and a total cumulative cisplatin dose less than 380 mg/m² (p=0.0.34). TNM classification and response to IC did not impact loco regional relapses. Conclusion: For nasopharyngeal carcinoma, tumors with initial high volume and/or histologic type other than UCNT, have a higher risk of loco regional relapse. Therefore, they require a more aggressive therapeutic approaches and a suitable monitoring protocol.

Keywords: loco regional relapse, modulation intensity radiotherapy, nasopharyngeal carcinoma, prognostic factors

Procedia PDF Downloads 124
1454 Association of Glutathione S-transferase M1 and T1 Gene Polymorphisms with Vitiligo in Saudi Population

Authors: Ghaleb Bin Huraib, Fahad Al Harthi, Mohammad Mustafa, Abdulrahman Al-Asmari

Abstract:

Introduction: Vitiligo is an acquired pigmentary skin disorder with the regional disappearance of melanocytes. Vitiligo affects 0.1 to 2% of the global population, and the incidence varies substantially depending on ethnicity. Glutathione S-transferase (GST) is a multigene family of enzymes that detoxify oxidative stress products. The oxidative stress-related GSTM1/GSTT1 genes deletion may cause epidermal melanocytes destruction and the development of vitiligo. Hence, the present study aimed to investigate the association of GST gene polymorphisms with vitiligo in the Saudi population, if any. Materials and Methods: The present study includes 129 vitiligo cases and 130 age-matched healthy controls. The proportion of male and female patients with vitiligo is almost equal. The multiplex polymerase chain reaction (PCR) method was used for polymorphic analysis. Results: Increased odds of generalized vitiligo was observed with the null genotypes of GSTT1- gene (OR = 1.91, 95% CI = 1.07-3.42, p = 0.019). The possible genetic combinations of GSTM1/GSTT1 and their genotypic distribution showed the frequency of GSTM1+/GSTT1+ 62/130 (47.69%) and GSTM1-/GSTT1+ 52/130 (40.00%) were higher in controls than in cases 44/129 (34.11%), 43/129 (33.34%), respectively while GSTM1+/GSTT1- and GSTM1-/GSTT1- null genotypes were higher 22/129 (17.05%) and 20/129 (15.50%) in vitiligo patients as compared to controls 11/130 (8.46%), 5/130 (3.84%), respectively. The strength of association of different genetic combinations with cases have shown GSTM1+/GSTT1- (OR = 2.81, 95% CI = 1.24-6.40, p = 0.009) and GSTM1-/GSTT1- (OR = 5.63, 95% CI = 1.96 - 16.16, p = 0.0004) were significantly higher in vitiligo cases as compared to controls. We did not observe any significant association of age and gender of patients with GST gene polymorphisms. Conclusions: The GSTT1-, GSTM1+/GSTT1- and GSTM1-/GSTT1- null genotypes were significantly associated with vitiligo. These genetic polymorphisms may be the associative genetic risk factor for vitiligo among Saudis. It could be used as a genetic marker for screening vitiligo patients among Saudis. Further studies on GSTs gene polymorphism in larger sample sizes from different geographical areas and ethnicity are needed to strengthen the present findings.

Keywords: vitiligo, GSTM1, GSTT1, gene polymorphism, oxidative stress

Procedia PDF Downloads 123
1453 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 242
1452 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product

Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth

Abstract:

Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.

Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations

Procedia PDF Downloads 85
1451 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks

Authors: Andrew C. Eloka Eboka, Freddie L. Inambao

Abstract:

Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.

Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond

Procedia PDF Downloads 362
1450 In vitro Evaluation of Prebiotic Potential of Wheat Germ

Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado

Abstract:

Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.

Keywords: by-products, functional ingredients, prebiotic potential, wheat germ

Procedia PDF Downloads 484
1449 Determinants and Impact on Income: Special Reference to Household Level Coir Yarn Labourers

Authors: G. H. B. Dilhari, A. A. D. T. Saparamadu

Abstract:

The coir is one of the by-products of the coconut and the coir industry can be identified as one of the traditional industries in Sri Lanka. Sri Lanka is one of the prominent countries for the coir production. Due to the labour insensitiveness, the labourers are the significant factor in the coir production process. The study has analyzed the determinants and its impact on income of the household level coir yarn labourers. The study was conducted in the Kumarakanda Grama Niladhari division, Galle, Sri Lanka. Simple random sampling was used to generate the sample of 100 household level coir yarn labourers and structured questionnaire, personal interviews and discussion were performed to gather the required data. The obtained data were statistically analyzed by using Statistical Package for Social Science (SPSS) software. Mann-Whitney U and Kruskal-Wallis test were carried out. The findings revealed that the household level coir yarn industry is dominated by the female workers and fewer amounts of workers have engaged this industry as the main occupation. In addition to that, elderly participation of the industry is greater than younger participation and most of them engaged as an extra income source. Level of education, the methods of engagement, satisfaction, labour’s children employment in the coir industry, support from the government, method of government support, working hours per day, employed as a main job, no of completed units per day, suffering any job related diseases and type of the diseases were related with income level of household level coir yarn labourers. The recommendations were formulated in respect to these problems including technological transformation for coir yarn production, strengthening of the raw material base and regulating the raw material supply, introduction of new technologies, markets and training programs, the establishment of the labourers association, the initiation of micro credit schemes, better consideration about the job oriented diseases.

Keywords: coir, coir yarn labourers, income, Galle

Procedia PDF Downloads 191
1448 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 439
1447 Motif Search-Aided Screening of the Pseudomonas syringae pv. Maculicola Genome for Genes Encoding Tertiary Alcohol Ester Hydrolases

Authors: M. L. Mangena, N. Mokoena, K. Rashamuse, M. G. Tlou

Abstract:

Tertiary alcohol ester (TAE) hydrolases are a group of esterases (EC 3.1.1.-) that catalyze the kinetic resolution of TAEs and as a result, they are sought-after for the production of optically pure tertiary alcohols (TAs) which are useful as building blocks for number biologically active compounds. What sets these enzymes apart is, the presence of a GGG(A)X-motif in the active site which appears to be the main reason behind their activity towards the sterically demanding TAEs. The genome of Pseudomonas syringae pv. maculicola (Psm) comprises a multitude of genes that encode esterases. We therefore, hypothesize that some of these genes encode TAE hydrolases. In this study, Psm was screened for TAE hydrolase activity using the linalyl acetate (LA) plate assay and a positive reaction was observed. As a result, the genome of Psm was screened for esterases with a GGG(A)X-motif using the motif search tool and two potential TAE hydrolase genes (PsmEST1 and 2, 1100 and 1000bp, respectively) were identified, PsmEST1 was amplified by PCR and the gene sequenced for confirmation. Analysis of the sequence data with the SingnalP 4.1 server revealed that the protein comprises a signal peptide (22 amino acid residues) on the N-terminus. Primers specific for the gene encoding the mature protein (without the signal peptide) were designed such that they contain NdeI and XhoI restriction sites for directional cloning of the PCR products into pET28a. The gene was expressed in E. coli JM109 (DE3) and the clones screened for TAE hydrolase activity using the LA plate assay. A positive clone was selected, overexpressed and the protein purified using nickel affinity chromatography. The activity of the esterase towards LA was confirmed using thin layer chromatography.

Keywords: hydrolases, tertiary alcohol esters, tertiary alcohols, screening, Pseudomonas syringae pv., maculicola genome, esterase activity, linalyl acetate

Procedia PDF Downloads 354
1446 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems

Authors: Armando Cartenì

Abstract:

Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.

Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning

Procedia PDF Downloads 210
1445 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 79
1444 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: drying time, lyophilization, mango, vacuum induced freezing

Procedia PDF Downloads 409
1443 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 136
1442 Degradation and Detoxification of Tetracycline by Sono-Fenton and Ozonation

Authors: Chikang Wang, Jhongjheng Jian, Poming Huang

Abstract:

Among a wide variety of pharmaceutical compounds, tetracycline antibiotics are one of the largest groups of pharmaceutical compounds extensively used in human and veterinary medicine to treat and prevent bacterial infections. Because it is water soluble, biologically active, stable and bio-refractory, release to the environment threatens aquatic life and increases the risk posed by antibiotic-resistant pathogens. In practice, due to its antibacterial nature, tetracycline cannot be effectively destructed by traditional biological methods. Hence, in this study, two advanced oxidation processes such as ozonation and sono-Fenton processes were conducted individually to degrade the tetracycline for investigating their feasibility on tetracycline degradation. Effect of operational variables on tetracycline degradation, release of nitrogen and change of toxicity were also proposed. Initial tetracycline concentration was 50 mg/L. To evaluate the efficiency of tetracycline degradation by ozonation, the ozone gas was produced by an ozone generator (Model LAB2B, Ozonia) and introduced into the reactor with different flows (25 - 500 mL/min) at varying pH levels (pH 3 - pH 11) and reaction temperatures (15 - 55°C). In sono-Fenton system, an ultrasonic transducer (Microson VCX 750, USA) operated at 20 kHz combined with H₂O₂ (2 mM) and Fe²⁺ (0.2 mM) were carried out at different pH levels (pH 3 - pH 11), aeration gas and flows (air and oxygen; 0.2 - 1.0 L/min), tetracycline concentrations (10 - 200 mg/L), reaction temperatures (15 - 55°C) and ultrasonic powers (25 - 200 Watts), respectively. Sole ultrasound was ineffective on tetracycline degradation, where the degradation efficiencies were lower than 10% with 60 min reaction. Contribution of Fe²⁺ and H₂O₂ on the degradation of tetracycline was significant, where the maximum tetracycline degradation efficiency in sono-Fenton process was as high as 91.3% followed by 45.8% mineralization. Effect of initial pH level on tetracycline degradation was insignificant from pH 3 to pH 6 but significantly decreased as the pH was greater than pH 7. Increase of the ultrasonic power was slightly increased the degradation efficiency of tetracycline, which indicated that the hydroxyl radicals dominated the oxidation of tetracycline. Effects of aeration of air or oxygen with different flows and reaction temperatures were insignificant. Ozonation showed better efficiencies in tetracycline degradation, where the optimum reaction condition was found at pH 3, 100 mL O₃/min and 25°C with 94% degradation and 60% mineralization. The toxicity of tetracycline was significantly decreased due to the mineralization of tetracycline. In addition, less than 10% of nitrogen content was released to solution phase as NH₃-N, and the most degraded tetracycline cannot be full mineralized to CO₂. The results shown in this study indicated that both the sono-Fenton process and ozonation can effectively degrade the tetracycline and reduce its toxicity at profitable condition. The costs of two systems needed to be further investigated to understand the feasibility in tetracycline degradation.

Keywords: degradation, detoxification, mineralization, ozonation, sono-Fenton process, tetracycline

Procedia PDF Downloads 267
1441 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 61
1440 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis

Authors: V. V. Srinivasu, Jayashree Das

Abstract:

Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.

Keywords: co-doping, electro spin resonance, microwave absorption, spintronics

Procedia PDF Downloads 338