Search results for: stress parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5688

Search results for: stress parameter

4998 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: laser cladding, residual stress, neutron diffraction, HAZ

Procedia PDF Downloads 257
4997 Oxidative Stress Markers in Sports Related to Training

Authors: V. Antevska, B. Dejanova, L. Todorovska, J. Pluncevic, E. Sivevska, S. Petrovska, S. Mancevska, I. Karagjozova

Abstract:

Introduction: The aim of this study was to optimise the laboratory oxidative stress (OS) markers in soccer players. Material and methods: In a number of 37 soccer players (21±3 years old) and 25 control subjects (sedenters), plasma samples were taken for d-ROMs (reactive oxygen metabolites) and NO (nitric oxide) determination. The d-ROMs test was performed by measurement of hydroperoxide levels (Diacron, Italy). For NO determination the method of nitrate enzyme reduction with the Greiss reagent was used (OXIS, USA). The parameters were taken after the training of the soccer players and were compared with the control group. Training was considered as maximal exercise treadmill test. The criteria of maximum loading for each subject was established as >95% maximal heart rate. Results: The level of d-ROMs was found to be increased in the soccer players vs. control group but no significant difference was noticed. After the training d-ROMs in soccer players showed increased value of 299±44 UCarr (p<0.05). NO showed increased level in all soccer players vs. controls but significant difference was found after the training 102±29 μmol (p<0.05). Conclusion: Due to these results we may suggest that the measuring these OS markers in sport medicine may be useful for better estimation and evaluation of the training program. More oxidative stress should be used to clarify optimization of the training intensity program.

Keywords: oxidative stress markers, soccer players, training, sport

Procedia PDF Downloads 431
4996 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer

Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon

Abstract:

Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.

Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode

Procedia PDF Downloads 250
4995 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan

Authors: Tasir Khan, Yejuan Wang

Abstract:

The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.

Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments

Procedia PDF Downloads 63
4994 Secondary Traumatic Stress and Related Factors in Australian Social Workers and Psychologists

Authors: Cindy Davis, Samantha Rayner

Abstract:

Secondary traumatic stress (STS) is an indirect form of trauma affecting the psychological well-being of mental health workers; STS is found to be a prevalent risk in mental health occupations. Various factors impact the development of STS within the literature; including the level of trauma individuals are exposed to and their level of empathy. Research is limited on STS in mental health workers in Australia; therefore, this study examined STS and related factors of empathetic behavior and trauma caseload among mental health workers. The research utilized an online survey quantitative research design with a purposive sample of 190 mental health workers (176 females) recruited via professional websites and unofficial social media groups. Participants completed an online questionnaire comprising of demographics, the secondary traumatic stress scale and the empathy scale for social workers. A standard hierarchical regression analysis was conducted to examine the significance of covariates, traumatized clients, traumatic stress within workload and empathy in predicting STS. The current research found 29.5% of participants to meet the criteria for a diagnosis of STS. Age and past trauma within the covariates were significantly associated with STS. Amount of traumatized clients significantly predicted 4.7% of the variance in STS, traumatic stress within workload significantly predicted 4.8% of the variance in STS and empathy significantly predicted 4.9% of the variance in STS. These three independent variables and the covariates accounted for 18.5% of the variance in STS. Practical implications include a focus on developing risk strategies and treatment methods that can diminish the impact of STS.

Keywords: mental health, PTSD, social work, trauma

Procedia PDF Downloads 310
4993 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models

Authors: Azadeh Jafari, Robert G. Owens

Abstract:

In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.

Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics

Procedia PDF Downloads 345
4992 Practical Challenges of Tunable Parameters in Matlab/Simulink Code Generation

Authors: Ebrahim Shayesteh, Nikolaos Styliaras, Alin George Raducu, Ozan Sahin, Daniel Pombo VáZquez, Jonas Funkquist, Sotirios Thanopoulos

Abstract:

One of the important requirements in many code generation projects is defining some of the model parameters tunable. This helps to update the model parameters without performing the code generation again. This paper studies the concept of embedded code generation by MATLAB/Simulink coder targeting the TwinCAT Simulink system. The generated runtime modules are then tested and deployed to the TwinCAT 3 engineering environment. However, defining the parameters tunable in MATLAB/Simulink code generation targeting TwinCAT is not very straightforward. This paper focuses on this subject and reviews some of the techniques tested here to make the parameters tunable in generated runtime modules. Three techniques are proposed for this purpose, including normal tunable parameters, callback functions, and mask subsystems. Moreover, some test Simulink models are developed and used to evaluate the results of proposed approaches. A brief summary of the study results is presented in the following. First of all, the parameters defined tunable and used in defining the values of other Simulink elements (e.g., gain value of a gain block) could be changed after the code generation and this value updating will affect the values of all elements defined based on the values of the tunable parameter. For instance, if parameter K=1 is defined as a tunable parameter in the code generation process and this parameter is used to gain a gain block in Simulink, the gain value for the gain block is equal to 1 in the gain block TwinCAT environment after the code generation. But, the value of K can be changed to a new value (e.g., K=2) in TwinCAT (without doing any new code generation in MATLAB). Then, the gain value of the gain block will change to 2. Secondly, adding a callback function in the form of “pre-load function,” “post-load function,” “start function,” and will not help to make the parameters tunable without performing a new code generation. This means that any MATLAB files should be run before performing the code generation. The parameters defined/calculated in this file will be used as fixed values in the generated code. Thus, adding these files as callback functions to the Simulink model will not make these parameters flexible since the MATLAB files will not be attached to the generated code. Therefore, to change the parameters defined/calculated in these files, the code generation should be done again. However, adding these files as callback functions forces MATLAB to run them before the code generation, and there is no need to define the parameters mentioned in these files separately. Finally, using a tunable parameter in defining/calculating the values of other parameters through the mask is an efficient method to change the value of the latter parameters after the code generation. For instance, if tunable parameter K is used in calculating the value of two other parameters K1 and K2 and, after the code generation, the value of K is updated in TwinCAT environment, the value of parameters K1 and K2 will also be updated (without any new code generation).

Keywords: code generation, MATLAB, tunable parameters, TwinCAT

Procedia PDF Downloads 210
4991 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 261
4990 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media

Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li

Abstract:

The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.

Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium

Procedia PDF Downloads 123
4989 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.

Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation

Procedia PDF Downloads 259
4988 Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients

Authors: Shazia Anwer Bukhari, Madiha Javeed Ghani, Muhammad Ibrahim Rajoka

Abstract:

Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD.

Keywords: antioxidants, coronary artery disease, DNA damage, homocysteine, oxidative stress, malondialdehyde, 8-Hydroxy-2’deoxyguanosine

Procedia PDF Downloads 472
4987 Application of the Extended Kantorovich Method to Size-Dependent Vibrational Analysis of Fully Clamped Rectangular Micro-Plates

Authors: Amir R. Askari, Masoud Tahani

Abstract:

The objective of the present paper is to investigate the effect of size on the vibrational behavior of fully clamped rectangular micro-plates based on the modified couple stress theory (MCST). To this end, a size-dependent Kirchhoff plate model is considered and the equation of motion which accounts for the effect of residual and couple stress components is derived using the Hamilton's principle. The eigenvalue problem associated with the free vibrations of fully clamped micro-plates is extracted and solved analytically using the extended Kantorovich method (EKM). The present findings are compared and validated by available results in the literature and an excellent agreement between them is observed. A parametric study is also conducted to show the significant effects of couple stress components on natural frequencies of fully clamped micro-plates. It is found that the ratio of MCST natural frequencies to those obtained by the classical theory (CT) only depends on the Poisson's ratio of the plate and is totally independent of plate's aspect ratio for cases with no residual stresses.

Keywords: vibrational analysis, modified couple stress theory, fully clamped rectangular micro-plates, extended Kantorovich method.

Procedia PDF Downloads 368
4986 Virtual Reality Exposure Therapy for Post-Traumatic Stress Disorder: A Literature Review

Authors: Daniel Azizyan, Marina Vardanyan, Astghik Dallakyan

Abstract:

The objective of this literature review is to bring valuable and much-needed insight into Virtual Reality Exposure Therapy (VRET) for the treatment of Post-Traumatic Stress Disorder (PTSD) among military personnel. As the issues regarding war veterans who suffer from PTSD become more and more widespread, the task of finding possible solutions that would provide alternative approaches to existing methods being used today becomes more relevant than ever. By analyzing the previous applications of VRET, this literature review covers the state of the research done currently on the topic, reviews the known information while identifying the main problems, and aims to use missed opportunities and find potential solutions. It provides the answers to the most relevant questions concerning VRET and leads to important conclusions in the hope of making the technology more practical, widespread, and effective.

Keywords: military PTSD, post-traumatic stress disorder, prolonged exposure, virtual reality exposure therapy, VRE

Procedia PDF Downloads 88
4985 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation

Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale

Abstract:

It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.

Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition

Procedia PDF Downloads 148
4984 A Study on the Ideal and Actual Coping Responses of Public and Private College School Teachers on Job-Related Stress

Authors: Zaralyn Bernardo, Dante Boac, Annabelle Del Rosario

Abstract:

Professional individuals who are in a primary role to impart learning with the new generation are alarmingly tend to have a vast decrease in their workforce due to stress at work. Thus, the study used mixed method research design to explore the ideal and actual coping patterns of college school teachers, both private and public, using Coping Response Inventory-Adult (CRI-Adult). It was suggested that in order for coping to be effective there must be a congruence or good match between coping efforts and preferred coping style. Results basically provided the same information on sources of teacher stress. However, workload and low salary were more likely heightened, for public and private school, respectively. There is also a significant difference between the ideal and actual coping style of college school teachers. Though the public school teachers leaned towards problem-focused as their ideal way of coping, both public and private teachers are somewhat inclined to use emotion-focused coping in actual situation. Results of FGD identified the factors that contribute to the incongruence or mismatch in their preferred style of coping and actual efforts to cope. Identified factors based on thematic analysis (TA) are clustered into themes such as affectivity and rehearsal of the preferred coping responses, sensitivity to pressure impairs coping efficacy, seeking for social acceptance and approval, indefinite appraisal of perceived stress, emotional dysregulation, and impulsivity, immediate desire to terminate negative emotion and adversity. Most of the factors somewhat provide partial elucidation on the engagement of the respondents on emotion-focused coping.

Keywords: coping responses subtypes, appraisal, teacher stress, ideal and actual coping

Procedia PDF Downloads 143
4983 The Impact of COVID-19 on the Mental Health of Residents of Saudi Arabia

Authors: Khaleel Alyahya, Faizah Alotaibi

Abstract:

The coronavirus disease 19 (COVID-19) pandemic has caused an increase in general fear and anxiety around the globe. With the public health measures, including lockdown and travel restrictions, the COVID-19 period further resulted in a sudden increase in the vulnerability of people too ill mental health. This becomes greater among individuals who have a history of mental illness or are undergoing treatment and do not have easy access to medication and medical consultations. The study aims to measure the impact of COVID-19 and the degree of distress with the DASS scale on the mental health of residents living in Saudi Arabia. The study is a quantitative, observational, and cross-sectional conducted in Saudi Arabia to measure the impact of COVID-19 on the mental health of both citizens and residents of Saudi Arabia during pandemics. The study ran from February 2021 to June 2021, and a validated questionnaire was used. The targeted population of the study was Saudi citizens and non-Saudi residents. A sample size of 800 participants was calculated with a single proportion formula at 95% level of significance and 5% allowable error. The result revealed that participants who were always doing exercise experienced the lowest level of depression, anxiety, and stress. The highest prevalence of severe and extremely severe depression was among participants who sometimes do exercise at 53.2% for each. Similar results were obtained for anxiety and stress, where the extremely severe form was reported by those who sometimes did exercise at 54.8% and 72.2%, respectively. There was an inverse association between physical activity levels and levels of depression, anxiety, and stress during the COVID-19. Similarly, the levels of depression, anxiety, and stress differed significantly according to the exercise frequency during COVID-19.

Keywords: mental, COVID-19, pandemic, lockdown, depression, anxiety, stress

Procedia PDF Downloads 89
4982 Anatomical Adaptations of Three Astragalus Species under Salt Stress

Authors: Faycal Boughalleb, Raoudha Abdellaoui

Abstract:

The effect of NaCl stress on root and leaf anatomy was investigated in three Astragalus species grown in 0-300 mM NaCl for 30 days under greenhouse conditions. Root cross section and cortex thickness was reduced under salt stress in both species while A. tenuifolius showed thinner cortex and the root cross section was unchanged. The epidermis stele thickness was unaffected by salinity in A. armatus and A. tenuifolius and was reduced in A. mareoticus with smaller xylem vessel size. In addition, vessel density and wall thickness of xylem was increased under salt conditions in the studies species. The entire lamina and mesophyll of the three species were thinner in salt-stressed plants. A. armatus and A. tenuifolius showed the higher thickness with increased size of the lower epidermis. NaCl (300 mM) reduced leaf water content by 41.5 % in A. mareoticus while it was unchanged in the other species. The size of the vascular bundle increased under salinity in A. tenuifolius leaves and it was unchanged in the other ones. A longer distance between leaf vascular bundle was occurred in A. mareoticus. The effects of NaCl on root and leaf ultrastructure are discussed in relation to the degree of salt resistance of these species. The unchanged biomass production under salt stress confirmed the higher tolerance oft A. tenuifolius to salinity. A. armatus was moderately salt tolerant with decrease of biomass production by 14.2 % while A. mareoticus was considered as salt sensitive plant when the decrease in biomass production reached 56.8%.

Keywords: Astragalus species, leaf ultrastructure, root anatomy, salt stress

Procedia PDF Downloads 370
4981 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks

Authors: Rishabh Sharma

Abstract:

The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.

Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system

Procedia PDF Downloads 83
4980 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 355
4979 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 311
4978 Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai

Authors: E. Khattab, S. Halla

Abstract:

Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield.

Keywords: interval irrigation, growth and yield characters, oil, jojoba, Sinai

Procedia PDF Downloads 174
4977 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice

Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi

Abstract:

The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.

Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature

Procedia PDF Downloads 315
4976 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 298
4975 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method

Authors: Chong Wang, Alexandre Urbano Hoffmann

Abstract:

Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.

Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction

Procedia PDF Downloads 411
4974 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: film condensation, heat transfer, plain tube, shear stress

Procedia PDF Downloads 229
4973 Salicylic Acid Improves Growth, Physiological Attributes and Salt Tolerance in Bread Wheat Cultivar (Triticum Aestivum L.)

Authors: Faiza Ateeq, Huma Jawed, Kamran Azim, Nadeem Khalid

Abstract:

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on bread wheat cultivars AAI_10 from Faisalabad, Pakistan (Triticum aestivum L.) grown under salt stress in the presence and absence of 0.5 mM salicylic acid. The Physiological test was performed using different concentrations of salt solutions, i.e., 0%, 1%, 2%, 4%, and 6% on leaf blades, and determined the germination of seedlings growth after 14 days. Results showed a reduction in the weights of wheat seedlings when it’s dry and fresh in the consideration of salt stress. Salicylic Acid treatment has a positive effect when evaluated in the case of salt-treated control. The morphological test (Lowry method) was performed to determine the concentration of proteins in different samples. Results showed that the samples treated with SA showed the highest absorbance(720nm) as compared to the control and other treated samples absorbance was determined. Thus, Salicylic Acid treating wheat seedlings enables the growth of anti-stress effects, such as maintaining proline accumulation. The morphological and physiological parameters revealed that SA treatment not only decreased the negative effect of salinity on the development of the seedlings but also accelerated the reparation of the growth processes. These results suggested that salicylic acid application improved the salt tolerance of bread wheat cultivars.

Keywords: salinity, salicylic acid, biotic and abiotic stresses, proline

Procedia PDF Downloads 40
4972 Developing a Methodology to Examine Psychophysiological Responses during Stress Exposure and Relaxation: An Experimental Paradigm

Authors: M. Velana, G. Rinkenauer

Abstract:

Nowadays, nurses are facing unprecedented amounts of pressure due to the ongoing global health demands. Work-related stress can cause a high physical and psychological workload, which can lead, in turn, to burnout. On the physiological level, stress triggers an initial activation of the sympathetic nervous and adrenomedullary systems resulting in increases in cardiac activity. Furthermore, activation of the hypothalamus-pituitary-adrenal axis provokes endocrine and immune changes leading to the release of cortisol and cytokines in an effort to re-establish body balance. Based on the current state of the literature, it has been identified that resilience and mindfulness exercises among nurses can effectively decrease stress and improve mood. However, it is still unknown what relaxation techniques would be suitable for and to what extent would be effective to decrease psychophysiological arousal deriving from either a physiological or a psychological stressor. Moreover, although cardiac activity and cortisol are promising candidates to examine the effectiveness of relaxation to reduce stress, it still remains to shed light on the role of cytokines in this process so as to thoroughly understand the body’s response to stress and to relaxation. Therefore, the main aim of the present study is to develop a comprehensive experimental paradigm and assess different relaxation techniques, namely progressive muscle relaxation and a mindfulness exercise originating from cognitive therapy by means of biofeedback, under highly controlled laboratory conditions. An experimental between-subject design will be employed, where 120 participants will be randomized either to a physiological or a psychological stress-related experiment. Particularly, the cold pressor test refers to a procedure in which the participants have to immerse their non-dominant hands into ice water (2-3 °C) for 3 min. The participants are requested to keep their hands in the water throughout the whole duration. However, they can immediately terminate the test in case it would be barely tolerable. A pre-test anticipation phase and a post-stress period of 3 min, respectively, are planned. The Trier Social Stress Test will be employed to induce psychological stress. During this laboratory stressor, the participants are instructed to give a 5-min speech in front of a committee of communication specialists. Before the main task, there is a 10-min anticipation period. Subsequently, participants are requested to perform an unexpected arithmetic task. After stress exposure, the participants will perform one of the relaxation exercises (treatment condition) or watch a neutral video (control condition). Electrocardiography, salivary samples, and self-report will be collected at different time points. The preliminary results deriving from the pilot study showed that the aforementioned paradigm could effectively induce stress reactions and that relaxation might decrease the impact of stress exposure. It is of utmost importance to assess how the human body responds under different stressors and relaxation exercises so that an evidence-based intervention could be transferred in a clinical setting to improve nurses’ general health. Based on suggestive future laboratory findings, the research group plans to conduct a pilot-level randomized study to decrease stress and promote well-being among nurses who work in the stress-riddled environment of a hospital located in Northern Germany.

Keywords: nurses, psychophysiology, relaxation, stress

Procedia PDF Downloads 95
4971 Psychological Distress and Quality of Life in Inflammatory Bowel Disease Patients: The Role of Dispositional Mindfulness

Authors: Kelly E. Tow, Peter Caputi, Claudia Rogge, Thomas Lee, Simon R. Knowles

Abstract:

Inflammatory Bowel Disease (IBD) is a serious chronic health condition, characterised by inflammation of the gastrointestinal tract. Individuals with active IBD experience severe abdominal symptoms, which can adversely impact their physical and mental health, as well as their quality of life (QoL). Given that stress may exacerbate IBD symptoms and is frequently highlighted as a contributing factor for the development of psychological difficulties and poorer QoL, it is vital to investigate stress-management strategies aimed at improving the lives of those with IBD. The present study extends on the limited research in IBD cohorts by exploring the role of dispositional mindfulness and its impact on psychological well-being and QoL. The study examined how disease activity and dispositional mindfulness were related to psychological distress and QoL in a cohort of IBD patients. The potential role of dispositional mindfulness as a moderator between stress and anxiety, depression and QoL in these individuals was also examined. Participants included 47 patients with a clinical diagnosis of IBD. Each patient completed a series of psychological questionnaires and was assessed by a gastroenterologist to determine their disease activity levels. Correlation analyses indicated that disease activity was not significantly related to psychological distress or QoL in the sample of IBD patients. However, dispositional mindfulness was inversely related to psychological distress and positively related to QoL. Furthermore, moderation analyses demonstrated a significant interaction between stress and dispositional mindfulness on anxiety. These findings demonstrate that increased levels of dispositional mindfulness may be beneficial for individuals with IBD. Specifically, the results indicate positive links between dispositional mindfulness, general psychological well-being and QoL, and suggest that dispositional mindfulness may attenuate the negative impacts of stress on levels of anxiety in IBD patients. While further research is required to validate and expand on these findings, the current study highlights the importance of addressing psychological factors in IBD and indicates support for the use of mindfulness-based interventions for patients with the disease.

Keywords: anxiety, depression, dispositional mindfulness, inflammatory bowel disease, quality of life, stress

Procedia PDF Downloads 141
4970 Optimization of Dual Band Antenna on Silicon Substrate

Authors: Syrine lahmadi, Jamel Bel Hadj Tahar

Abstract:

In this paper, a rectangular antenna with slots integrated on silicon substrate operating in 60GHz, is studied and optimized. The effect of different parameter of the antenna (width, length, the position of the microstrip-feed line...) and the parameter of the substrate (the thickness, the dielectric constant) on gain, frequency is presented. Also, the paper presents a solution to ameliorate the bandwidth. The maximum simulated radiation gain of this rectangular dual band antenna is 5, 38 dB around 60GHz. The simulation studied id developed based on advanced design system tools. It is found that the designed antenna is 19 % smaller than a rectangular antenna with the same dimensions. This antenna with dual band can function for many communication systems as automobile or radar.

Keywords: dual band, enlargement of bandwidth, miniaturized antennas, printed antenna

Procedia PDF Downloads 338
4969 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 304