Search results for: linear and body measurements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9407

Search results for: linear and body measurements

8717 Relationship between Static Balance and Body Characteristics in the Elderly

Authors: J. W. Kim, Y. R. Kwon, Y. J. Ho, H. M. Jeon, G. M. Eom

Abstract:

The aim of this study was to investigate the association of anthropometry with static balance in the elderly and their possible gender difference. Forty six subjects (23 men and 23 women) participated in this study. COP (Center of Pressure) was measured on a force-platform during quiet feet-together standing. As outcome measures, mean distance were derived from the COP. Weight was significantly correlated with postural variable only in the elderly men. This result suggests that the gender should be considered when normalizing postural variables.

Keywords: body characteristics, postural balance, elderly, gender difference

Procedia PDF Downloads 421
8716 Multiscale Model of Blast Explosion Human Injury Biomechanics

Authors: Raj K. Gupta, X. Gary Tan, Andrzej Przekwas

Abstract:

Bomb blasts from Improvised Explosive Devices (IEDs) account for vast majority of terrorist attacks worldwide. Injuries caused by IEDs result from a combination of the primary blast wave, penetrating fragments, and human body accelerations and impacts. This paper presents a multiscale computational model of coupled blast physics, whole human body biodynamics and injury biomechanics of sensitive organs. The disparity of the involved space- and time-scales is used to conduct sequential modeling of an IED explosion event, CFD simulation of blast loads on the human body and FEM modeling of body biodynamics and injury biomechanics. The paper presents simulation results for blast-induced brain injury coupling macro-scale brain biomechanics and micro-scale response of sensitive neuro-axonal structures. Validation results on animal models and physical surrogates are discussed. Results of our model can be used to 'replicate' filed blast loadings in laboratory controlled experiments using animal models and in vitro neuro-cultures.

Keywords: blast waves, improvised explosive devices, injury biomechanics, mathematical models, traumatic brain injury

Procedia PDF Downloads 232
8715 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 567
8714 Age, Body Composition, Body Mass Index and Chronic Venous Diseases in Postmenopausal Women

Authors: Grygorii Kostromin, Vladyslav Povoroznyuk

Abstract:

Chronic venous diseases (CVD) are one of the common, though controversial problems in medicine. It is generally accepted that this pathology predominantly occurs in women. The issue of excessive weight as a risk factor for CVD is still considered debatable. To the author's best knowledge, today in Ukraine, there are barely any studies that describe the relationship between CVD and obesity. Our study aims to determine the association between age, body composition, obesity and CVD in postmenopausal women. The study was conducted in D. F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine. We have examined 96 postmenopausal women aged 46-85 years (mean age – 66.19 ± 0.96 years), who were divided into two groups depending on the presence of CVD. The women were examined by vascular surgeons. For the diagnosis of CVD, we used clinical, anatomic and pathophysiologic classifications. We also performed clinical, ultrasound and densitometry examinations. We found that the CVD frequency in postmenopausal women increased with age (from 72% in those aged 45-59 years to 84% in those aged 75-89 years). A significant correlation between the total fat mass and age was determined in postmenopausal women with CVD. We also observed a significant correlation between the lower extremities’ fat mass and age in both examined groups. A significant correlation between body mass index and age was determined only in postmenopausal women without CVD.

Keywords: chronic venous disease, risk factors, age, obesity, postmenopausal women

Procedia PDF Downloads 114
8713 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well-known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: functionally graded material, pressure, steady state creep, thick-cylinder

Procedia PDF Downloads 459
8712 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires

Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja

Abstract:

The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.

Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources

Procedia PDF Downloads 375
8711 Anti-Obesity Effect of Cordyceps militaris Fermented Black Rice

Authors: Chih-Hung Liang, Jung-Jung Chen, Shen-Shih Chiang

Abstract:

Obesity is defined as abnormal or excessive fat accumulation that presents a risk to health, which are major risk factors for a number of chronic diseases, including diabetes, cardiovascular diseases and cancer. Cordyceps militaris (CM) is a well-known traditional medicine in Asian countries and a rich source of biologically active components. Black rice (Oryza sativa L.) is a special cultivar of rice that contains rich anthocyanins and regarded as a health-promoting food in China and other Eastern. The aim of this study was to investigate the anti-obesity effect of Cordyceps militaris fermented black rice (CB) on HFD-induced BALB/c mice model. The results indicated that administration of low and high dosage of CB powder significantly reduced the body weights (7.38% and 7.78%), body fat ratio (2.37% and 2.78%), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels compared to the HF group (p<0.05). Histopathological analysis showed that the score of fatty liver in HF group (5.0) was significantly higher than CB groups (2.1 and 3.6) (p<0.05). In conclusion, Cordyceps militaris fermented black rice can reduce the body weight via inhibition of the fat accumulation in liver and body and possess the anti-obesity potency.

Keywords: Cordyceps militaris, black rice, obesity, HFD-induced mice

Procedia PDF Downloads 296
8710 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 379
8709 The Effect of Rowing Exercise on Elderly Health

Authors: Rachnavy Pornthep, Khaothin Thawichai

Abstract:

The purpose of this paper was to investigate the effects of rowing ergometer exercise on older persons health. The subjects were divided into two groups. Group 1 was control group (10 male and 10 female) Group 2 was experimental group (10 male and 10 female). The time for study was 12 week. Group 1 engage in normal daily activities Group 2 Training with rowing machine for 20 minutes three days a week. The average age of the experimental group was 73.7 years old, mean weight 55.4 kg, height 154.8 cm in the control group, mean age was 74.95 years, mean weight 48.6 kg, mean height 153.85 cm. Physical fitness test composted of body size, flexibility, Strength, muscle endurance and cardiovascular endurance. The comparison between the experimental and control groups before training showed that body weight, body mass index and waist to hip ratio were significantly different. The flexibility, strength, cardiovascular endurance was not significantly different. The comparison between the control group and the experimental group after training showed that body weight, body mass index and cardiovascular endurance were significantly different. The ratio of waist to hips, flexibility and muscular strength were not significantly different. Comparison of physical fitness before training and after training of the control group showed that body weight, flexibility (Sit and reach) and muscular strength (30 – Second chair stand) were significantly different. Body mass index, waist to hip ratio, muscles flexible (Shoulder girdle flexibility), muscle strength (30 – Second arm curl) and the cardiovascular endurance were not significantly difference. Comparison of physical fitness before training and after training the experimental group showed that waist to hip ratio, flexibility (sit and reach) muscle strength (30 – Second chair stand), cardiovascular endurance (Standing leg raises - up to 2 minutes) were significantly different. The Body mass index and the flexibility (Shoulder girdle flexibility) no significantly difference. The study found that exercising with rowing machine can improve the physical fitness of the elderly, especially the cardiovascular endurance, corresponding with the past research on the effects of exercise in the elderly with different exercise such as cycling, treadmill, walking on the elliptical machine. Therefore, we can conclude that exercise by using rowing machine can improve cardiovascular system and flexibility in the elderly.

Keywords: effect, rowing, exercise, elderly

Procedia PDF Downloads 482
8708 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 535
8707 Bi-Axial Stress Effects on Barkhausen-Noise

Authors: G. Balogh, I. A. Szabó, P.Z. Kovács

Abstract:

Mechanical stress has a strong effect on the magnitude of the Barkhausen-noise in structural steels. Because the measurements are performed at the surface of the material, for a sample sheet, the full effect can be described by a biaxial stress field. The measured Barkhausen-noise is dependent on the orientation of the exciting magnetic field relative to the axis of the stress tensor. The sample inhomogenities including the residual stress also modifies the angular dependence of the measured Barkhausen-noise. We have developed a laboratory device with a cross like specimen for bi-axial bending. The measuring head allowed performing excitations in two orthogonal directions. We could excite the two directions independently or simultaneously with different amplitudes. The simultaneous excitation of the two coils could be performed in phase or with a 90 degree phase shift. In principle this allows to measure the Barkhausen-noise at an arbitrary direction without moving the head, or to measure the Barkhausen-noise induced by a rotating magnetic field if a linear superposition of the two fields can be assumed.

Keywords: Barkhausen-noise, bi-axial stress, stress measuring, stress dependency

Procedia PDF Downloads 277
8706 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 440
8704 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution

Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques

Abstract:

The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.

Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)

Procedia PDF Downloads 281
8703 The Associations between Ankle and Brachial Systolic Blood Pressures with Obesity Parameters

Authors: Matei Tudor Berceanu, Hema Viswambharan, Kirti Kain, Chew Weng Cheng

Abstract:

Background - Obesity parameters, particularly visceral obesity as measured by the waist-to-height ratio (WHtR), correlate with insulin resistance. The metabolic microvascular changes associated with insulin resistance causes increased peripheral arteriolar resistance primarily to the lower limb vessels. We hypothesize that ankle systolic blood pressures (SBPs) are more significantly associated with visceral obesity than brachial SBPs. Methods - 1098 adults enriched in south Asians or Europeans with diabetes (T2DM) were recruited from a primary care practice in West Yorkshire. Their medical histories, including T2DM and cardiovascular disease (CVD) status, were gathered from an electronic database. The brachial, dorsalis pedis, and posterior tibial SBPs were measured using a Doppler machine. Their body mass index (BMI) and WHtR were calculated after measuring their weight, height, and waist circumference. Linear regressions were performed between the 6 SBPs and both obesity parameters, after adjusting for covariates. Results - Generally, the left posterior tibial SBP (P=4.559*10⁻¹⁵) and right posterior tibial SBP (P=1.114* 10⁻¹³ ) are the pressures most significantly associated with the BMI, as well as in south Asians (P < 0.001) and Europeans (P < 0.001) specifically. In South Asians, although the left (P=0.032) and right brachial SBP (P=0.045) were associated to the WHtR, the left posterior tibial SBP (P=0.023) showed the strongest association. Conclusion - Regardless of ethnicity, ankle SBPs are more significantly associated with generalized obesity than brachial SBPs, suggesting their screening potential for screening for early detection of T2DM and CVD. A combination of ankle SBPs with WHtR is proposed in south Asians.

Keywords: ankle blood pressures, body mass index, insulin resistance, waist-to-height-ratio

Procedia PDF Downloads 123
8702 Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics

Authors: Aakash Chhunchha, Assma Begum

Abstract:

The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.

Keywords: aero-thermodynamics, blunt-nosed bodies, computational fluid dynamics (CFD), hypersonic flow

Procedia PDF Downloads 126
8701 Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics

Authors: Mohammad Al- Rawi, Ahmad Al- Jumaily

Abstract:

This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site.

Keywords: arterial blockage, pulse wave, atherosclerosis, CFD

Procedia PDF Downloads 268
8700 Propagation of Weak Non-Linear Waves in Non-Equilibrium Flow

Authors: J. Jena, Monica Saxena

Abstract:

In this paper, the propagation of weak nonlinear waves in non-equilibrium flow has been studied in detail using the perturbation method. The expansive action of receding piston undergoing infinite acceleration has been discussed. Central expansion fan, compression waves and shock fronts have been discussed and the solutions up to the first order in the characteristic plane and physical plane have been obtained.

Keywords: Characteristic wave front, weak non-linear waves, central expansion fan, compression waves

Procedia PDF Downloads 349
8699 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis

Authors: Jamal Takhchi

Abstract:

The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.

Keywords: structural intensity, NVH, body in white, irrotatational intensity

Procedia PDF Downloads 138
8698 The Impact of Garlic and Citrus Extracts on Energy Retention and Methane Production in Ruminants in vitro

Authors: Michael Graz, Natasha Hurril, Andrew Shearer

Abstract:

Research on feed supplementation with natural compounds is currently being intensively pursued with a view to improving energy utilisation in ruminants and mitigating the production of methane by these animals. Towards this end, a novel combination of extracts from garlic and bitter orange was therefore selected for trials on the basis of their previously published in vitro anti-methanogenic potential. Three separate in vitro experiments were conducted to determine energy utilisation and greenhouse gas production. These included use of rumen fluid from fistulated cows and sheep in batch culture, the Hohenheim gas test, and the Rusitec technique. Experimental and control arms were utilised, with 5g extracts per kilogram of total dietary dry matter (0.05g/kg active compounds) being used to supplement or not supplement the in vitro systems. Respiratory measurements were conducted on experimental day 1 for the batch culture and Hohenheim gas test and on day 14-21 for the Rusitec Technique (in a 21-day trial). Measurements included methane (CH4) production, total volatile fatty acid (VFA) concentration, molar proportions of acetate, propionate and butyrate and degradation of organic matter (Rusitec). CH4 production was reduced by 82% (±16%), 68% (±11%) and 37% (±4%) in the batch culture, Hohenheim gas test and Rusitec, respectively. Total VFA production was reduced by 13% (±2%) and 2% (±0.1%) in the batch culture and Hohenheim gas test whilst it was increased by 8% (±2%) in the Rusitec. Total VFA production was reduced in all tests between 2 and 10%, whilst acetate production was reduced between 10% and 29%. Propionate production which is an indicator of weight gain was increased in all cases between 16% and 30%. Butyrate production which is considered an indicator of potential milk yield was increased by between 6 and 11%. Degradation of organic matter in the Rusitec experiments was improved by 10% (±0.1%). In conclusion, the study demonstrated the potential of the combination of garlic and citrus extracts to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake.

Keywords: citrus, garlic, methane, ruminants

Procedia PDF Downloads 318
8697 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 88
8696 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia

Authors: Zouhaier Nasr, Mohamed Nouri

Abstract:

The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.

Keywords: forest, soil, carbon, climate change, Tunisia

Procedia PDF Downloads 113
8695 Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity

Authors: Vladyslav Povoroznyuk, Nataliia Dzerovych, Larysa Martynyuk, Tetiana Kovtun

Abstract:

Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is site-specific. The aim of this study was to evaluate the Bone Mineral Density (BMD) and Trabecular Bone Score (TBS) in the obese Ukrainian women. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group a included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of < 30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1-L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body, and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to non-obese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50-59, 60-69, and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the non-obese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%.

Keywords: obesity, trabecular bone score, bone mineral density, women

Procedia PDF Downloads 422
8694 Effect of Aerobic Training on Visfatin Levels and Lipid Profile in Obese Women

Authors: Banaeifar Abdolali, Rahmanimoghadam Neda, Sohyli Shahram

Abstract:

Obesity is an increase in body fat , in addition it has been introduced as a risk factor for the progress of lipid disorders, hypertension, cardiovascular disease and type 2 diabetes (1,2). In recent years, Adipose tissue is now recognized as an endocrine organ that secretes many cytokines such as: interleukin 6, leptin, and visfatin (3). Visfatin is an adipocytokine that release from adiposities. It is unidentified whether training also influences concentrations of visfatin. Purpose: The purpose of this study was to examine the effects of 12 weeks of aerobic training on visfatin levels and lipid profile in obese women. Method: Thirty two obese women (age = 37.8 ± 13.2 years, body mass index = of 39.4 ± 6.4 kg/m2 .) volunteered to participate in a 12-wk exercise program. They were randomly assigned to either a training (n = 16) or control (n = 14) group. The training group exercised for 70 minutes per session, 3 days per week during the 12 week training program. The control group was asked to maintain their normal daily activities. Samples were obtained before and at the end of training program. We use t.paire and independent,test for data analyzes. Results: Exercise training resulted in a decrease in body weight (p < 0.05), percent body fat (% fat) and BMI (p < 0.05), fasting glucose level and visfatin concentration decreased but wasn’t significant (p > 0.05). Also the levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol did not change significantly. Conclution: In conclusion, three month aerobic training program used in this study was very effective for producing significant benefits to body composition and HDL.c but didn’t significant chenging visfatin levels and lipid profile in these obese women.

Keywords: aerobic training, visfatin, lipid profile, women

Procedia PDF Downloads 446
8693 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 167
8692 Bulk Amounts of Linear and Cyclic Polypeptides on Our Hand within a Short Time

Authors: Yu Zhang, Il Kim

Abstract:

Polypeptides with defined peptide sequences illustrate the power of remarkable applications in drug delivery, tissue engineering, sensing and catalysis. Especially the cyclic polypeptides, the distinctive topological architecture imparts many characteristic properties comparing to linear polypeptides. Here, a facile and highly efficient strategy for the synthesis of linear and cyclic polypeptides is reported using N-heterocyclic carbenes (NHCs)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA) in the presence or absence of primary amine initiator. The polymerization proceeds rapidly in a quasi-living manner, allowing access to linear and cyclic polypeptides of well-defined chain length and narrow polydispersity, as evidenced by nuclear magnetic resonance spectrum (1H NMR and 13C NMR spectra) and size exclusion chromatography (SEC) analysis. The cyclic architecture of the polypeptides was further verified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra (MALDI-TOF MS) and electrospray ionization (ESI) mass spectra, as well as viscosity studies. This approach can also simplify workup procedures and make bulk scale synthesis possible, which thereby opens avenues for practical uses in diverse areas, opening up the new generation of polypeptide synthesis.

Keywords: α-amino acid N-carboxyanhydrides, living polymerization, polypeptides, N-heterocyclic carbenes, ring-opening polymerization

Procedia PDF Downloads 153
8691 Experts' Opinions of Considerations for Competition Landings in Gymnastics

Authors: Helmut Geiblinger

Abstract:

Dismounts performed by elite gymnasts during competition require great courage and virtuoso displays of precisely organized movements and skills. The dismount and landing leave the final impression in a routine and are often the key to a successful evaluation by the judges. Landings require precise body control and the skillful dissipation of substantial body momentum. The aim of this research study was to investigate landing techniques and strategies used by elite male gymnasts through the eyes of gymnastics experts. It drew from the accrued knowledge and experience of 21 male expert participants who were elite coaches, elite gymnasts, international judges or combinations of these. The experts made a number of subtle points, many of which are not in the extant literature. The experts highlighted concerns about safety and the study concluded that on-going monitoring of the rules on competition landings within the Code of Points would be beneficial to the sport.

Keywords: controlled competition landings, landing technique, landing strategies, optimal body segment coordination

Procedia PDF Downloads 196
8690 Stability of Solutions of Semidiscrete Stochastic Systems

Authors: Ramazan Kadiev, Arkadi Ponossov

Abstract:

Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.

Keywords: abrupt changes, exponential stability, regularization, stochastic noises

Procedia PDF Downloads 171
8689 Contribution of Crime Scene and Autopsy Investigation to the Solving of the Case in the Case of Death as a Result of Self-Harm

Authors: Murat Mert, Yusuf Ozer, Fatih Kolay

Abstract:

Behaviour of giving harm to the body in literature has been named as “self-injury”, “self-mutilation” ve “self-harm”. “Self-injury”, or “self-mutilation” is generally used for the same meaning and mentioned as an action which is committed to the body itself directly. As is seen that alcohol and drug users have injured their bodies because of deprivation, whereas behaviour of self-injury in some societies is accepted as religious and cultural, it has nevertheless been diagnosed in people who have a borderline personality disorder, histrionic personality disorder, psychotic personality disorder and mood disorder. There has not been any direct self-murder tendency in people having self-harmed. However, death cases can be seen together with loss of consciousness depending on loss of blood by exceeding the limit in the course of injury action. 34- year old – male person who was alcohol addicted, having had a psycological treatment beforehand, had mutilated his small intestine together with fatty tissue by cutting his body with a razor-blade at the thought of insects strolling around the body (delirium tremens) due to deprivation attack and had died in the result of various cuts. In this study, crime scene investigation and death mechanism of the person having had self-harmed in a result of abstinence syndrome will be explained. Relevant criteria which differentiate this case from homicide will be examined.

Keywords: self-injury, autopsy, abstinence syndrome, CSI

Procedia PDF Downloads 73
8688 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 130