Search results for: forest disturbance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1251

Search results for: forest disturbance

561 Therapeutic Efficacy and Safety Profile of Tolvaptan Administered in Hyponatremia Patients

Authors: Sree Vennela P., V. Samyuktha Bhardwaj

Abstract:

Hyponatremia is an electrolyte disturbance in which the sodium ion concentration in the serum is lower than normal. Sodium is the dominant extracellular cation (positive ion) and cannot freely cross from the interstitial space through the cell membrane, into the cell. Its homeostasis (stability of concentration) inside the cell is vital to the normal function of any cell. Normal serum sodium levels are between 135 and 145 mEq/L. Hyponatremia is defined as a serum level of less than 135 mEq/L and is considered severe when the serum level is below 125 mEq/L. In the vast majority of cases, Hyponatremia occurs as a result of excess body water diluting the serum sodium (salt level in the blood). Hyponatremia is often a complication of other medical illnesses in which excess water accumulates in the body at a higher rate than can be excreted (for example in congestive heart failure, syndrome of inappropriate antidiuretic hormone, SIADH, or polydipsia). Sometimes it may be a result of over-hydration (drinking too much water).Lack of sodium (salt) is very rarely the cause of Hyponatremia, although it can promote Hyponatremia indirectly. In particular, sodium loss can lead to a state of volume depletion (loss of blood volume in the body), with volume depletion serving as a signal for the release of ADH (anti-diuretic hormone). As a result of ADH-stimulated water retention (too much water in the body), blood sodium becomes diluted and Hyponatremia results.

Keywords: Tolvaptan, hyponatremia, syndrome of insufficient anti diuretic hormone (SIADH), euvolemic hyponatremia

Procedia PDF Downloads 261
560 Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species

Authors: Rayhaneh Amooaghaie, Maryam Norouzi

Abstract:

In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.

Keywords: chlorophyll, lipid peroxidation, nano TiO₂, seed germination

Procedia PDF Downloads 166
559 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 9
558 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 171
557 Clean Technology: Hype or Need to Have

Authors: Dirk V. H. K. Franco

Abstract:

For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.

Keywords: clean technologies, catastrophic, climate, possible solutions

Procedia PDF Downloads 500
556 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems

Authors: Lei Zhang

Abstract:

The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.

Keywords: classification system, land cover, ecosystem, carbon storage, object based

Procedia PDF Downloads 70
555 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis

Authors: Mahdi Bazarganigilani

Abstract:

Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.

Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning

Procedia PDF Downloads 212
554 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
553 Prevalence of Endemic Goiter in School Children and Women of Reproductive Age Group during Post Salt Iodization Period in Andro Constituency, Imphal-East District, Manipur, India

Authors: Y. Suchitra Devi, L. Hemchandra Singh

Abstract:

Background: Because of its geographical location, Manipur lies in the conventional goiter endemic belt. During the post salt iodization period, endemic goiter was prevalent in the valley districts of Manipur without iodine deficiency. Objectives: The present study aim at the prevalence of goiter among school children (6-12 years) and women of reproductive age group (above 20 years) of Andro Assembly Constituency, Imphal- East, Manipur, India. Method: A total of 3992 individuals were clinically examined for thyroid enlargement. Hormones like TSH, FT₄, FT₃, and Anti-TPO, Anti-Tg were tested, UIC, USCN, testing of iodine in water and salt. Result: Total goiter prevalence was found to be 13.98%, median urinary iodine level was 166.0 µg/l, mean urinary thiocyanate concentration was 0.726 ± 0.408, mean water iodine concentration was 3.843 ± 2.291, and all the salt samples were above 15ppm. 6 out of 41 children and 93 out of 176 women were auto antibody positive. 41 children and 176 women were tested for TSH, FT₄, and FT₃, which shows disturbance in hormone level. Conclusion: The present study showed that the region is mildly goiter endemic without biochemical iodine deficiency.

Keywords: goiter, TSH, FT₄, FT₃, anti-TPO, anti-Tg, UIC, USCN, school children and women of reproductive age

Procedia PDF Downloads 112
552 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 248
551 Diversity and Use of Agroforestry Yards of Family Farmers of Ponte Alta – Gama, Federal District, Brazil

Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Martins

Abstract:

The home gardens areas are production systems, which are located near the homes and are quite common in the tropics. They consist of agricultural and forest species and may also involve the raising of small animals to produce food for subsistence as well as income generation, with a special focus on the conservation of biodiversity. Home gardens are diverse Agroforestry systems with multiple uses, among many, food security, income aid, traditional medicine. The work was carried out on rural properties of the family farmers of the Ponte Alta Rural Nucleus, Gama Administrative Region, in the city of Brasília, Federal District- Brazil. The present research is characterized methodologically as a quantitative, exploratory and descriptive nature. The instruments used in this research were: bibliographic survey and semi-structured questionnaire. The data collection was performed through the application of a semi-structured questionnaire, containing questions that referred to the perception and behavior of the interviewed producer on the subject under analysis. In each question, the respondent explained his knowledge about sustainability, agroecological practices, environmental legislation, conservation methods, forest and medicinal species, ago social and socioeconomic characteristics, use and purpose of agroforestry and technical assistance. The sample represented 55.62% of the universe of the study. We interviewed 99 people aged 18-83 years, with a mean age of 49 years. The low level of education, coupled with the lack of training and guidance for small family farmers in the Ponte Alta Rural Nucleus, is one of the limitations to the development of practices oriented towards sustainable and agroecological agriculture in the nucleus. It is observed that 50.5% of the interviewed people landed with agroforestry yards less than 20 years ago, and only 16.17% of them are older than 35 years. In identifying agriculture as the main activity of most of the rural properties studied, attention is drawn to the cultivation of medicinal plants, fruits and crops as the most extracted products. However, it is verified that the crops in the backyards have the exclusive purpose of family consumption, which could be complemented with the marketing of the surplus, as well as with the aggregation of value to the cultivated products. Initiatives such as this may contribute to the increase in family income and to the motivation and value of the crop in agroecological gardens. We conclude that home gardens of Ponte Alta are highly diverse thus contributing to local biodiversity conservation of are managed by women to ensure food security and allows income generation. The tradition of existing knowledge on the use and management of the diversity of resources used in agroforestry yards is of paramount importance for the development of sustainable alternative practices.

Keywords: agriculture, agroforestry system, rural development, sustainability

Procedia PDF Downloads 141
550 A Machine Learning Approach to Detecting Evasive PDF Malware

Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran

Abstract:

The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.

Keywords: PDF, PDF malware, decision tree classifier, random forest classifier

Procedia PDF Downloads 92
549 Survey of Free-Range inhabitants of Federal University of Agriculture Abeokuta Zoological Park

Authors: Matthew Olanrewaju Ibiyomi

Abstract:

The study examined the abundance of free-range natural inhabitants of the Federal University of Agriculture, Abeokuta (FUNAAB) Zoo Park. A baseline data of free-ranging inhabitants of the Park is essential to monitor trends and institute conservation plans through unsustainable natural resources exploitation and habitat destruction. Four transects were selected across the study area. Each transect was traversed for a period of four months and observations was carried out twice a day. The Four existing tracks explored during the study were the aviary, reptile, carnivore and primate tracks. Data were analyzed using descriptive statistics. The findings from this study revealed that 8 species of natural inhabitants were identified, which were the Vervet monkey (Chlorocebuspygerythrus), Maxwell duiker(Philantombamaxwellii), Mongoose (Herpestidaespp), Bushbuck(Tragelaphusscriptus), Cobra (Najanaja), Ground squirrel (Marmotinispp), Senegal coucal(Centropus senegalensis), Black kite (Milvus migrans). The result further showed that a total of 115 animals were encountered in the primate transect, 77 animals in the carnivores transect, 46 animals in the aviary transect and 34 animals in the ungulates transect by the representative of 43.3%, 28.3%, 15.8% and 12.5% respectively. Human activities and level of disturbance were observed to have affected the abundance and distribution of animals at Funaab Zoo Park. Continuous field inventory is recommended to ascertain the dynamics of animals observed as free-range inhabitants in this study.

Keywords: abundance, ecosystem, extinction, free-range

Procedia PDF Downloads 93
548 Dietary Supplementation of Betaine and Response to Warm Weather in Broiler Chicken: A Review

Authors: Hassan Nabipour Afrouzi, Naser Mahmoudnia

Abstract:

Broiler production has increased rapidly in tropical and subtropical regions in the past and sustained growth is forecast for the future. One of the greatest challenges to efficient production in these regions is reduced performance from warm and hot weather conditions. There are many ways to decrease these detrimental effects of heat on broiler chickens. One way is to supplement broiler diet with betaine added to feed or drinking water. A review of the results of this study suggest that betaine supplement was effective to significantly improve body weight and feed conversion ratio at the initial stages of growth but not in the finisher stages (P<0/05). It was also demonstrated that the use of betaine significantly reduced the percentage of abdominal meat and the percentage of breast meat (P<0/05), but had no effect on other carcass compositions. Betaine may improve the digestibility of specific nutrients. Betaine, as a methyl donor provides labile methyl groups for the synthesis of several metabolically active substances such as creatine and carnitine. Oil in a broiler diet is known to promote a response to dietary betaine supplements, that is, chicks have a higher demand for betaine with a high fat diet. This study implies that betaine supplement may stimulate protection of intestinal epithelium against osmotic disturbance, improve digestion and absorption conditions of the gastrointestinal tract and promote amended use of nutrients.

Keywords: heat stress, betaine, performance, broiler‚ growth

Procedia PDF Downloads 592
547 Epidemiological, Ecology, and Case Management of Plasmodium Knowlesi Malaria in Phang-Nga Province, Thailand

Authors: Surachart Koyadun

Abstract:

Introduction: Plasmodium knowlesi (P. knowlesi) malaria is a zoonotic disease that is classified as type 5 of human malaria. Commonly found in macaques (Macaca fascicularis) and (Macaca nemestrina), P. knowlesi is capable of resulting in both uncomplicated and severe malaria in humans. Situation of P. knowlesi malaria in Phang-Nga province for the past 3 years from 2020 – 2022 revealed no case report in 2020, however, a total of 14 cases had been reported in 2021 - 2022. This research aimed to 1) study the epidemiology of P. knowlesi, 2) examine the clinical manifestations of P. knowlesi patients, 3) analyze the ecology and entomology of P. knowlesi, and 4) analyze the diagnosis and treatment of P. knowlesi. Method: This research was a retrospective descriptive study/case report. The study was conducted in 14 patients with P. knowlesi malaria between 2021 and 2022 in 4 districts of Phang-Nga Province, Thailand including Thapput, Kapong, Takuapa and Khuraburi. Results: The study subjects of P. knowlesi malaria were all males. Most of them were working age groups as farmers and worked in forest or plantation areas. All had no history of blood transfusions. Most of the patients did not use mosquito nets and had a history of camping in the forest prior to the onset of fever. An analysis of all 14 sources of infection unveiled the area is home to macaques, and that area has detected Anopheles mosquito, which is the carrier of the disease. Majority of them got sick in the dry season of Thailand (December-April). The main symptoms brought to the hospital were fever, chills, headache, body aches. Laboratory findings on the first day of diagnosis were as follows: The white blood cell count was found within the normal range. In the proportion of white blood cells, eosinophils were found to be slightly higher than normal. Slight anemia was found on early examination. The platelet count was found to be below normal in all cases. Severely low platelet count (2,000 cells/mm3) was found in severe cases with multiple complications. No patient was found dead but 85.7% of complications were found, with acute renal failure being the most common. Patients with delayed diagnosis and treatment of malaria (inaccurate diagnosis or late access to the hospital) had the highest severity and complications than those who had seen the doctor since the first 3-4 days of illness or the screening of symptoms and risk history by the malaria clinic staff at vector-borne disease control unit. Conclusion and Recommendation: P. knowlesi malaria is an emerging infectious disease transmitted from animals to humans. There are challenges in epidemiology, entomology, ecology for effective surveillance, prevention and control. Early diagnosis and treatment would reduce complications and prevent death.

Keywords: malaria, plasmodium knowlesi, epidemiology, ecology, entomology, diagnosis, treatment

Procedia PDF Downloads 72
546 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils

Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev

Abstract:

The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.

Keywords: slope, channel, landslide, collapse, swell, soil, structure

Procedia PDF Downloads 90
545 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 151
544 Applied Free Living Nematode as Bioindicator to Assess Environmental Impact of Dam Construction in Ba Lai Estuary, Vietnam

Authors: Ngo Xuan Quang, Tran Thanh Thai, Ann Vanreusel

Abstract:

The Ba Lai dam construction was created in 2000 in the Ba Lai estuarine river, Ben Tre province, Vietnam to prevent marine water infiltration, drainage and de-acidification, and to build a reservoir of freshwater for land reclamation in the Ba Lai tributary. However, this dam is considered as an environmental failure for the originally connected estuarine and river ecosystem, especially to bad effect to benthic fauna distribution. This research aims to study applying free living nematode communities’ distribution in disturbance of dam construction as bioindicator to detect environmental impact. Nematode samples were collected together measuring physical–chemical environmental parameters such as chlorophyll, CPE, coliform, nutrient, grain size, salinity, dissolved oxygen, turbidity, conductivity, temperature in three stations within three replicates. Results showed that free living nematode communities at the dam construction was significantly low densities, low diversity (Hurlbert’s index, Hill diversity indices) and very low maturity index in comparison with two remaining stations. Strong correlation of nematode feeding types and communities’ structure was found in relation with sediment grain size and nutrient enrichment such nitrite, nitrate, phosphate and pigment concentration. Moreover, greatly negative link between nematode maturity index with nutrient parameters can serve as warning organic pollution of the Ba Lai river due to dam construction.

Keywords: Ba Lai, dam impact, nematode, environment

Procedia PDF Downloads 355
543 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 214
542 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia

Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron

Abstract:

The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.

Keywords: endemic species, land use change, maximum entropy, spatial distribution

Procedia PDF Downloads 159
541 Development and Characterization of Synthetic Non-Woven for Sound Absorption

Authors: P. Sam Vimal Rajkumar, K. Priyanga

Abstract:

Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.

Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient

Procedia PDF Downloads 303
540 Identifying Promoters and Their Types Based on a Two-Layer Approach

Authors: Bin Liu

Abstract:

Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.

Keywords: promoter, promoter type, random forest, sequence information

Procedia PDF Downloads 185
539 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 154
538 Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve

Authors: Krzysztof Gwozdzinski, Janusz Mazur

Abstract:

Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve.

Keywords: Bory Tucholskie Biosphere Reserve, Bory Tucholskie National Park, heavy metals, lakes

Procedia PDF Downloads 123
537 Mapping Potential Soil Salinization Using Rule Based Object Oriented Image Analysis

Authors: Zermina Q., Wasif Y., Naeem S., Urooj S., Sajid R. A.

Abstract:

Land degradation, a leading environemtnal problem and a decrease in the quality of land has become a major global issue, caused by human activities. By land degradation, more than half of the world’s drylands are affected. The worldwide scope of main saline soils is approximately 955 M ha, whereas inferior salinization affected approximately 77 M ha. In irrigated areas, a total of 58% of these soils is found. As most of the vegetation types requires fertile soil for their growth and quality production, salinity causes serious problem to the production of these vegetation types and agriculture demands. This research aims to identify the salt affected areas in the selected part of Indus Delta, Sindh province, Pakistan. This particular mangroves dominating coastal belt is important to the local community for their crop growth. Object based image analysis approach has been adopted on Landsat TM imagery of year 2011 by incorporating different mathematical band ratios, thermal radiance and salinity index. Accuracy assessment of developed salinity landcover map was performed using Erdas Imagine Accuracy Assessment Utility. Rain factor was also considered before acquiring satellite imagery and conducting field survey, as wet soil can greatly affect the condition of saline soil of the area. Dry season considered best for the remote sensing based observation and monitoring of the saline soil. These areas were trained with the ground truth data w.r.t pH and electric condutivity of the soil samples. The results were obtained from the object based image analysis of Keti bunder and Kharo chan shows most of the region under low saline soil.Total salt affected soil was measured to be 46,581.7 ha in Keti Bunder, which represents 57.81 % of the total area of 80,566.49 ha. High Saline Area was about 7,944.68 ha (9.86%). Medium Saline Area was about 17,937.26 ha (22.26 %) and low Saline Area was about 20,699.77 ha (25.69%). Where as total salt affected soil was measured to be 52,821.87 ha in Kharo Chann, which represents 55.87 % of the total area of 94,543.54 ha. High Saline Area was about 5,486.55 ha (5.80 %). Medium Saline Area was about 13,354.72 ha (14.13 %) and low Saline Area was about 33980.61 ha (35.94 %). These results show that the area is low to medium saline in nature. Accuracy of the soil salinity map was found to be 83 % with the Kappa co-efficient of 0.77. From this research, it was evident that this area as a whole falls under the category of low to medium saline area and being close to coastal area, mangrove forest can flourish. As Mangroves are salt tolerant plant so this area is consider heaven for mangrove plantation. It would ultimately benefit both the local community and the environment. Increase in mangrove forest control the problem of soil salinity and prevent sea water to intrude more into coastal area. So deforestation of mangrove should be regularly monitored.

Keywords: indus delta, object based image analysis, soil salinity, thematic mapper

Procedia PDF Downloads 620
536 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 123
535 The Effect of Aerobic Exercise Training on the Improvement of Nursing Staff's Sleep Quality: A Randomized Controlled Study

Authors: Niu Shu Fen

Abstract:

Sleep disturbance is highly prevalent among shift-working nurses. We aimed to evaluate whether aerobic exercise (i.e., walking combined with jogging) improves objective Sleepparameters among female nurses at the end of an 8-week exercise program and 4 weeks after study completion. This single-blinded, parallel design, randomized controlled trial was conducted in the floor classroom of a would-be medical center in northern Taiwan. Sixtyeligible female nurses were randomly assigned to either aerobic exercise (n = 30) or usual care (n = 30) group. The moderate-intensity aerobic exercise program was performed over 5days (60 min per day) a week for 8 weeks after work hours. Objective sleep outcomes including total sleep time (TST), sleep onset latency (SOL), wake after sleep onset (WASO), and sleep efficiency (SE), were retrieved using an Actigraph device. A generalized estimated equation model was used for data analyses. The aerobic exercise group had significant improvements in TST and SE at 4 weeks and 8 weeks compared with baseline evaluation(TST: B = 70.49 and 55.96, both p < 0.001; SE: B = 5.21 and 3.98, p < 0.001 and 0.002).Significant between-group differences were observed in SOL and WASO at 4 weeks but not8 weeks compared with the baseline evaluation (SOL: B = −7.18, p = 0.03; WASO: B =−11.38, p = 0.008). The positive lasting effects for TST were observed only until the 4-week follow-up. To improve sleep quality and quantity, we encourage female nurses to regularly perform moderate-intensity aerobic exercise.

Keywords: sleep quality, aerobic exercise, nurses, shift work

Procedia PDF Downloads 144
534 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 152
533 Determining the Nitrogen Mineralization Rate by Industrially Manufactured Organic Fertilizers on Alfisol in Southwestern Nigeria

Authors: Ayeni Leye Samuel

Abstract:

Laboratory incubation study was carried out at Adeyemi College of Education, Ondo Southwestern Nigeria to determine the rate of NO3-N, NH4-N, total N, OC and available P released to the soil samples collected from Okitipupa mangrove forest. The soil samples were incubated with organic (OG), organomineral (OMF) and NPK 15:15:15 (NPKF) fertilizers. Organic and organomineral fertilizers were separately applied at the rate of 0, 0.25 and 0.5mg/100 g soil while NPKF was applied at the rate of 0.002g/100g soil. The treatments were replicated three times and arranged on CRD. The treatments were incubated for 90 days. Compared with control, OG and NPKF at all rates significantly increased (p<0.05) soil NH4-N, NO3-N, total N and available P. The order of increase in NH4-N were 10t/ha OMF> 5t/ha OMF> 5t/ha OG>10t/ha OG>control>400 kg/ha while the order of increase in NO3-N were 5t/ha OMF>10t/ha OMF>10t/ha OG>5t/ha OG>control>400 kg/ha NPKF. 5t/ha OMF had the highest, 5t/ha OMF recorded the highest pH, 5t/ha OG had the highest OC while 10t/ha OG had the highest available P.

Keywords: c/n ratio, immobilization, incubation study, organomineral fertilizer

Procedia PDF Downloads 325
532 Impact of Ecosystem Engineers on Soil Structuration in a Restored Floodplain in Switzerland

Authors: Andreas Schomburg, Claire Le Bayon, Claire Guenat, Philip Brunner

Abstract:

Numerous river restoration projects have been established in Switzerland in recent years after decades of human activity in floodplains. The success of restoration projects in terms of biodiversity and ecosystem functions largely depend on the development of the floodplain soil system. Plants and earthworms as ecosystem engineers are known to be able to build up a stable soil structure by incorporating soil organic matter into the soil matrix that creates water stable soil aggregates. Their engineering efficiency however largely depends on changing soil properties and frequent floods along an evolutive floodplain transect. This study, therefore, aims to quantify the effect of flood frequency and duration as well as of physico-chemical soil parameters on plants’ and earthworms’ engineering efficiency. It is furthermore predicted that these influences may have a different impact on one of the engineers that leads to a varying contribution to aggregate formation within the floodplain transect. Ecosystem engineers were sampled and described in three different floodplain habitats differentiated according to the evolutionary stages of the vegetation ranging from pioneer to forest vegetation in a floodplain restored 15 years ago. In addition, the same analyses were performed in an embanked adjacent pasture as a reference for the pre-restored state. Soil aggregates were collected and analyzed for their organic matter quantity and quality using Rock Eval pyrolysis. Water level and discharge measurements dating back until 2008 were used to quantify the return period of major floods. Our results show an increasing amount of water stable aggregates in soil with increasing distance to the river and show largest values in the reference site. A decreasing flood frequency and the proportion of silt and clay in the soil texture explain these findings according to F values from one way ANOVA of a fitted mixed effect model. Significantly larger amounts of labile organic matter signatures were found in soil aggregates in the forest habitat and in the reference site that indicates a larger contribution of plants to soil aggregation in these habitats compared to the pioneer vegetation zone. Earthworms’ contribution to soil aggregation does not show significant differences in the floodplain transect, but their effect could be identified even in the pioneer vegetation with its large proportion of coarse sand in the soil texture and frequent inundations. These findings indicate that ecosystem engineers seem to be able to create soil aggregates even under unfavorable soil conditions and under frequent floods. A restoration success can therefore be expected even in ecosystems with harsh soil properties and frequent external disturbances.

Keywords: ecosystem engineers, flood frequency, floodplains, river restoration, rock eval pyrolysis, soil organic matter incorporation, soil structuration

Procedia PDF Downloads 271