Search results for: depression detection
3612 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography
Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz
Abstract:
Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology
Procedia PDF Downloads 2213611 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit
Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras
Abstract:
Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition
Procedia PDF Downloads 1643610 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads
Authors: Seyed Sadegh Naseralavi
Abstract:
This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation
Procedia PDF Downloads 2873609 I Can’t Escape the Scars, Even If I Do Get Better”: A Discourse Analysis of Adolescent Talk About Their Self-Harm During Cognitive-Behavioural Therapy Sessions for Major Depressive Disorder
Authors: Anna Kristen
Abstract:
There has been a pronounced increase in societal discourses around adolescent self-harm, yet there is a paucity of literature examining adolescent talk about self-harm that accounts for the sociocultural context. The objective of this study was to explore how adolescents with Depression talk about their self-harm engagement in consideration of both socio-cultural discourses and the therapy context during Cognitive-Behavioural Therapy (CBT) sessions. Utilizing a sample from the Improving Mood with Psychoanalytic and Cognitive Therapies study, discourse analysis was carried out on audio-recorded CBT sessions. The study established three groupings of results: (a) adolescent positioning as stuck in self-harm engagement; (b) adolescent positioning as ambivalent in the talk about ceasing self-harm; and (c) adolescent use of stigma discourses in self-harm talk & constructions of self-harm scars. These findings indicate that clinician awareness of adolescent use of language and discourse may inform interventions beyond Manualized CBT strategies. These findings are highly relevant in light of research that demonstrates CBT treatment for adolescent depression does not effectively address concurring self-harm and given that self-harm is the most significant risk factor predictive of subsequent suicidal behaviours.Keywords: adolescence, cognitive-behavioral therapy, discourse, self-harm, stigma
Procedia PDF Downloads 2493608 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 4533607 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2553606 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2933605 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images
Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai
Abstract:
In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.Keywords: Harris corner, infrared image, feature detection, registration, matching
Procedia PDF Downloads 3043604 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits
Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar
Abstract:
Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.Keywords: anxiety, depression, CART, ethanol, immunocytochemistry
Procedia PDF Downloads 3953603 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems
Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi
Abstract:
The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks
Procedia PDF Downloads 3553602 A Supervised Approach for Detection of Singleton Spam Reviews
Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim
Abstract:
In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine
Procedia PDF Downloads 3093601 Signal Processing of the Blood Pressure and Characterization
Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig
Abstract:
In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.Keywords: blood pressure, SBP, DBP, detection algorithm
Procedia PDF Downloads 4393600 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1463599 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 733598 Dependency on Social Media and Psychological Well-Being among Young Adults: Case Study of University Students in Pakistan
Authors: Ghazala Yasmeen, Zahid Yousaf
Abstract:
Frequent social media use has significantly changed people's life and communication styles during the last two decades. Social media use has multiple dimensions, and there are nuanced relationships between it and how it affects different societal subgroups. With the increased popularity and rapid growth of social networking sites, people are experiencing potential social media addiction, which causes severe mental health problems. How social media is dramatically influencing the lives and mental health of its users, and particularly of the students, creating psychological issues, e.g., isolation, depression, and anxiety, will be the primary objective of this study. This research will address the problems confronted by many students who are regular social media users and can undergo mental distress. This study aims to explore how social media use can lead to isolation, depression, and anxiety. This research will also investigate the effects of cyber-bullying on social, emotional, and psychological wellbeing. For this purpose, the researcher will use the survey technique as a method of inquiry. Ryff's theory of Psychological wellbeing will be used as a theoretical framework to explore the association between social media addiction and psychological effects among users. For data collection, the researcher will use the quantitative research method through a survey questionnaire from three universities in Pakistan from the public and private sectors. This study will imply a two-stage random sampling technique. At first, the researcher will select 20% of students from universities. In the second stage, 20% of students using different social networking sites will be chosen, and draw a representative sample from these will be. The intended study will use questionnaires comprising two portions. The first section will consist of social media engagement by the students, following impacts on their mental health and reported attitude towards psychological wellbeing. This study will spotlight the considerations of parents, educationists, and policymakers to take measures against the devastating effects of cyber-crimes on young adults.Keywords: anxiety, depression, isolation, social media, wellbeing
Procedia PDF Downloads 803597 Evaluation of the Impact of Neuropathic Pain on the Quality of Life of Patients
Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani
Abstract:
Introduction: Neuropathic pain (NP) is chronic pain; it can be observed in a large number of clinical situations. This pain results from a lesion of the peripheral or central nervous system. It is a frequent reason for consultations in rheumatology. This pain being chronic, can become disabling for the patient, thereby altering his quality of life. Objective: The objective of this study was to evaluate the impact of neuropathic pain on the quality of life of patients followed-up for chronic neuropathic pain. Material and Method: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the hospital anxiety, and depression scale (HAD) score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. Results: A total of 1528 patient data were collected; the average age of the patients was 57 years (standard deviation: 13 years) with extremes ranging from 17 years to 94 years, 91% were women and 9% men with a sex ratio man/woman equal to 0.10. 67% of our patients were married, and 63% of our patients were housewives. 43% of patients were followed-up for degenerative pathology. The NP was cervical radiculopathy in 26%, lumbosacral radiculopathy in 51%, and carpal tunnel syndrome in 20%. 23% of our patients had poor sleep quality, and 54% had average sleep quality. The pain was very intense in 5% of patients; 33% had severe pain, and 58% had moderate pain. The function was limited in 55% of patients. The average HAD score for anxiety and depression was 4.39 (standard deviation: 2.77) and 3.21 (standard deviation: 2.89), respectively. Conclusion: Our data clearly illustrate that neuropathic pain has a negative impact on the quality of sleep and function, as well as the mood of patients, thus influencing their quality of life.Keywords: neuropathic pain, sleep, quality of life, chronic pain
Procedia PDF Downloads 1343596 Parental Negative Emotional States, Parenting Style and Child Emotional and Behavioural Problems: Australia-Indonesia Cross-Cultural Study
Authors: Yulina E. Riany, Divna Haslam, Matthew Sanders
Abstract:
This cross-cultural study aims to compare the level of parental depression and stress, parenting style use, and child emotional and behavioural problems between parents in Australia as an example of a Western country and parents in Indonesia as an example of Asian culture. A series of hierarchical regressions were undertaken to determine two models examining the factors that predict child problems residing in Australia (Model 1) and in Indonesia (Model 2). The online survey was completed by 179 parents in Australia and 448 parents in Indonesia. Results indicated that Australian parents reported higher levels of depression, authoritative parenting and higher levels of child misbehaviours compared to Indonesian parents. In comparison, Indonesian parents reported higher authoritarian parenting. Analyses performed to examine Model 1 and 2 revealed that parental negative emotional states and parenting style predicted child emotional and behavioural problems in both countries.Keywords: cross-cutural study, parental stress, parenting, child misbehaviour
Procedia PDF Downloads 1193595 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.Keywords: agricultural object detection, deep learning, machine vision, YOLO family
Procedia PDF Downloads 2013594 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 523593 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 663592 YOLO-IR: Infrared Small Object Detection in High Noise Images
Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long
Abstract:
Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion
Procedia PDF Downloads 793591 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion
Authors: Adnan A. Y. Mustafa
Abstract:
Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping
Procedia PDF Downloads 1553590 Stigma Associated with Living in a Care Home: Perspectives of Older Residents Living in Care Homes in Thailand
Authors: Suhathai Tosangwarn, Philip Clissett, Holly Blake
Abstract:
Background: High prevalence of depression has been reported among older adults living in care homes in Thailand, associated with physical impairment, low social support, low self-esteem and particularly stigma associated with living in a care home. However, little is understood about how such stigma is experienced among Thai care home residents. This study examines residents’ perceptions of stigma and their strategies for coping with stigma. Method/Design: Case study research was used to gain an in-depth view about the stigma of residents’ perspectives and experiences from two care homes in the northeast of Thailand by conducting an in-depth interview and non-participant observation. Qualitative interviews were conducted with 30 older residents (aged >60 years), purposively sampled from both care homes. Non-participant observation was conducted in various public spaces of the care homes, including the dining room, corridors, and activities areas for approximately one to two hours per day at different times; morning and afternoon including weekdays and weekend in both care homes for one month. Thematic analysis was used to analyse the data. Results: The study identified three major themes related to the causes of stigma, the reactions towards stigma and the mitigating factors. Negative beliefs about care homes, negative attitudes, and stereotypes toward the elderly and perceptions of unequal power relations between staff and residents were the main factors precipitating stigma. Consequently, residents exhibited negative emotions and behaviours, including depressive symptoms, while living in care homes. Residents reported the use of particular coping strategies, including accessing support from the public and staff and engaging in care home activities which these helped them to cope with their perception of stigma. Conclusion: Improved understanding of the underlying factors behind perceived stigma in care home residents may help to prevent depression and reduce perceptions of stigma associated with living in a care home, by informing strategy, supportive intervention and guidelines for appropriate care for older Thai residents.Keywords: care home, depression, older adult, stigma, Thailand
Procedia PDF Downloads 4563589 The Role of Physical Activities in Improving the Psychological State, Reducing Stress and Anxiety Resulting from the Corona (Covid-19) Pandemic
Authors: Saidia Houari
Abstract:
The current coronavirus pandemic (COVID-19) is a special and unusual reality. It can affect people physically, but also psychologically. Indeed, in such a context, many people will experience reactions of stress, anxiety and depression, and Sports is known to be a great in improving the effectiveness of the nervous system and mental health. Professor Ango Frubuze“many studies proved that sports play an important role in fighting psychological tension and some other psychological problems, such as depression and sleep difficulties, but on condition of practicing them properly,choosing the kind that generates comfort and happiness for man “ .The sports university professor in the German city of Cologne added that the effort exerted during the exercise works on restoring balance to the stress hormones like cortisol.The case report provides an insight into the COVID-19 current situation and represents a picture of the current state of mental health and an overview of novel coronavirus (Covid-19) outbreaks in some countries of the world. Some procedures taken to combat the coronavirus. We proposed the practice of physical activities during the quarantine period, and we showed their importance and their positive effects.Keywords: COVID-19, psycholiqical impacts, stress, physical activities
Procedia PDF Downloads 773588 An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm
Authors: Cebrail Çiflikli, Emre Öner Tartan
Abstract:
Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor.Keywords: Android mobile application, ECG monitoring, QRS detection, Pan-Tompkins Algorithm
Procedia PDF Downloads 2353587 Distorted Document Images Dataset for Text Detection and Recognition
Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan
Abstract:
With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.Keywords: document analysis, open dataset, optical character recognition, text detection
Procedia PDF Downloads 1753586 A Diagnostic Accuracy Study: Comparison of Two Different Molecular-Based Tests (Genotype HelicoDR and Seeplex Clar-H. pylori ACE Detection), in the Diagnosis of Helicobacter pylori Infections
Authors: Recep Kesli, Huseyin Bilgin, Yasar Unlu, Gokhan Gungor
Abstract:
Aim: The aim of this study was to compare diagnostic values of two different molecular-based tests (GenoType® HelicoDR ve Seeplex® H. pylori-ClaR- ACE Detection) in detection presence of the H. pylori from gastric biopsy specimens. In addition to this also was aimed to determine resistance ratios of H. pylori strains against to clarytromycine and quinolone isolated from gastric biopsy material cultures by using both the genotypic (GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection) and phenotypic (gradient strip, E-test) methods. Material and methods: A total of 266 patients who admitted to Konya Education and Research Hospital Department of Gastroenterology with dyspeptic complaints, between January 2011-June 2013, were included in the study. Microbiological and histopathological examinations of biopsy specimens taken from antrum and corpus regions were performed. The presence of H. pylori in all the biopsy samples was investigated by five differnt dignostic methods together: culture (C) (Portagerm pylori-PORT PYL, Pylori agar-PYL, GENbox microaer, bioMerieux, France), histology (H) (Giemsa, Hematoxylin and Eosin staining), rapid urease test (RUT) (CLOtest, Cimberly-Clark, USA), and two different molecular tests; GenoType® HelicoDR, Hain, Germany, based on DNA strip assay, and Seeplex ® H. pylori -ClaR- ACE Detection, Seegene, South Korea, based on multiplex PCR. Antimicrobial resistance of H. pylori isolates against clarithromycin and levofloxacin was determined by GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection, and gradient strip (E-test, bioMerieux, France) methods. Culture positivity alone or positivities of both histology and RUT together was accepted as the gold standard for H. pylori positivity. Sensitivity and specificity rates of two molecular methods used in the study were calculated by taking the two gold standards previously mentioned. Results: A total of 266 patients between 16-83 years old who 144 (54.1 %) were female, 122 (45.9 %) were male were included in the study. 144 patients were found as culture positive, and 157 were H and RUT were positive together. 179 patients were found as positive with GenoType® HelicoDR and Seeplex ® H. pylori -ClaR- ACE Detection together. Sensitivity and specificity rates of studied five different methods were found as follows: C were 80.9 % and 84.4 %, H + RUT were 88.2 % and 75.4 %, GenoType® HelicoDR were 100 % and 71.3 %, and Seeplex ® H. pylori -ClaR- ACE Detection were, 100 % and 71.3 %. A strong correlation was found between C and H+RUT, C and GenoType® HelicoDR, and C and Seeplex ® H. pylori -ClaR- ACE Detection (r:0.644 and p:0.000, r:0.757 and p:0.000, r:0.757 and p:0.000, respectively). Of all the isolated 144 H. pylori strains 24 (16.6 %) were detected as resistant to claritromycine, and 18 (12.5 %) were levofloxacin. Genotypic claritromycine resistance was detected only in 15 cases with GenoType® HelicoDR, and 6 cases with Seeplex ® H. pylori -ClaR- ACE Detection. Conclusion: In our study, it was concluded that; GenoType® HelicoDR and Seeplex ® H. pylori -ClaR- ACE Detection was found as the most sensitive diagnostic methods when comparing all the investigated other ones (C, H, and RUT).Keywords: Helicobacter pylori, GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection, antimicrobial resistance
Procedia PDF Downloads 1693585 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 4333584 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk
Authors: Kashif Jabbar
Abstract:
Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation
Procedia PDF Downloads 833583 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes
Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park
Abstract:
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy
Procedia PDF Downloads 123