Search results for: M. P. Dandekar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: M. P. Dandekar

2 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits

Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar

Abstract:

Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.

Keywords: anxiety, depression, CART, ethanol, immunocytochemistry

Procedia PDF Downloads 369
1 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases

Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar

Abstract:

Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.

Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases

Procedia PDF Downloads 113