Search results for: cluster computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1831

Search results for: cluster computing

1141 The Effect of Technology in Improving Tourism Cluster Competitiveness

Authors: Michael Safwat Kotit Istemalek

Abstract:

In this study, a project on a small project called Zeytinseli, which plays an important role from the beginning to the end of olive oil and olive oil production, is presented with the help of tourism companies that play an important role in the tourism sector. In the study, first of all, a framework of ideas about travel agency, tourism, specific tourism agency and rural tourism was created and tourism knowledge in the modern world was emphasized. After this, the "olive", which had an important place in both mythology and the religion of God, disappeared in the field of rural tourism. Since Didim Zeytinseli is the Aydın district, accommodation prices were calculated within the scope of the project and a 15-day factory tour was given at the end of the project. It can be said that the study is an original study as it covers not only environmental and agricultural tourism but also cultural tourism and non-traditional tourism98.

Keywords: financial problems, the problems of tourism businesses, tourism businesses, internet, marketing, tourism, tourism management economic competitiveness, enhancing competitiveness

Procedia PDF Downloads 30
1140 Understanding Student Engagement through Sentiment Analytics of Response Times to Electronically Shared Feedback

Authors: Yaxin Bi, Peter Nicholl

Abstract:

The rapid advancement of Information and communication technologies (ICT) is extremely influencing every aspect of Higher Education. It has transformed traditional teaching, learning, assessment and feedback into a new era of Digital Education. This also introduces many challenges in capturing and understanding student engagement with their studies in Higher Education. The School of Computing at Ulster University has developed a Feedback And Notification (FAN) Online tool that has been used to send students links to personalized feedback on their submitted assessments and record students’ frequency of review of the shared feedback as well as the speed of collection. The feedback that the students initially receive is via a personal email directing them through to the feedback via a URL link that maps to the feedback created by the academic marker. This feedback is typically a Word or PDF report including comments and the final mark for the work submitted approximately three weeks before. When the student clicks on the link, the student’s personal feedback is viewable in the browser and they can view the contents. The FAN tool provides the academic marker with a report that includes when and how often a student viewed the feedback via the link. This paper presents an investigation into student engagement through analyzing the interaction timestamps and frequency of review by the student. We have proposed an approach to modeling interaction timestamps and use sentiment classification techniques to analyze the data collected over the last five years for a set of modules. The data studied is across a number of final years and second-year modules in the School of Computing. The paper presents the details of quantitative analysis methods and describes further their interactions with the feedback overtime on each module studied. We have projected the students into different groups of engagement based on sentiment analysis results and then provide a suggestion of early targeted intervention for the set of students seen to be under-performing via our proposed model.

Keywords: feedback, engagement, interaction modelling, sentiment analysis

Procedia PDF Downloads 103
1139 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data

Authors: Rishabh Srivastav, Divyam Sharma

Abstract:

We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.

Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets

Procedia PDF Downloads 247
1138 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 438
1137 Relationship between Dimensions of Psychological Capital and Psychological Well-Being

Authors: Touraj Hashemi, Zahara Saeidi, Paxshan H. Gader-l-Shateri

Abstract:

The present study aimed to determine the relationship between dimensions of psychological capital and psychological well-being. This research was conducted with a correlatiove method. The study population included the students of Sulaymaniyah, Garmian, and Halabja Universities in the Kurdistan region of Iraq. Therefore, using the one-stage cluster method, 300 subjects were selected and completed Riff's psychological well-being scale, and Luthans' psychological capital questionnaire. Data were analyzed using the multiple regression method. Results showed that self-efficacy, optimism, hope, and resilience had a positive relationship with psychological well-being. Hence, it can be concluded the four dimensions of psychological capital are able, in addition to modulating the effects of stress sources, to set the stage for the motivational use of life's stressors in order to develop new challenges and help the individual to continuous effort in order to develop new goals and expand happiness.

Keywords: psychological well-being, self-efficacy, optimism, hope, resilience

Procedia PDF Downloads 72
1136 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.

Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing

Procedia PDF Downloads 110
1135 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 426
1134 A Review of Spatial Analysis as a Geographic Information Management Tool

Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku

Abstract:

Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.

Keywords: aspatial technique, buffer analysis, epidemiology, interpolation

Procedia PDF Downloads 319
1133 Decision Trees Constructing Based on K-Means Clustering Algorithm

Authors: Loai Abdallah, Malik Yousef

Abstract:

A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.

Keywords: ensemble clustering, decision trees, classification, K nearest neighbors

Procedia PDF Downloads 191
1132 Factors That Influence Decision Making of Foreign Volunteer Tourists in Thailand

Authors: Paramet Damchoo

Abstract:

The purpose of this study is to study the factors that influence the decision making of foreign volunteer tourists in Thailand. A sample size was 400 drawn from 10 provinces of Thailand using cluster sampling method. The factor analysis was used to analysis the data. The findings indicate that volunteer tourism which was based in Thailand contained a total of 45 activities which could be divided into 4 categories. The most of these tourists were from Europe including UK and Scandinavia which was 54.50 percent. Moreover, the tourists were male rather than female and 63.50 Percent of them ware younger than 20 years old. It is also found that there are 67.00 percent of the tourists used website to find where the volunteer tourism was based. Finally, the factors that influence the decision making of foreign volunteer tourists in Thailand consist of a wide variety of activities together with a flexibility in their activities and also low prices.

Keywords: decision making, volunteer tourism, special interest tourism, GAP year

Procedia PDF Downloads 344
1131 Capacitated Multiple Allocation P-Hub Median Problem on a Cluster Based Network under Congestion

Authors: Çağrı Özgün Kibiroğlu, Zeynep Turgut

Abstract:

This paper considers a hub location problem where the network service area partitioned into predetermined zones (represented by node clusters is given) and potential hub nodes capacity levels are determined a priori as a selection criteria of hub to investigate congestion effect on network. The objective is to design hub network by determining all required hub locations in the node clusters and also allocate non-hub nodes to hubs such that the total cost including transportation cost, opening cost of hubs and penalty cost for exceed of capacity level at hubs is minimized. A mixed integer linear programming model is developed introducing additional constraints to the traditional model of capacitated multiple allocation hub location problem and empirically tested.

Keywords: hub location problem, p-hub median problem, clustering, congestion

Procedia PDF Downloads 492
1130 Bilateral Thalamic Hypodense Lesions in Computing Tomography

Authors: Angelis P. Barlampas

Abstract:

Purpose of Learning Objective: This case depicts the need for cooperation between the emergency department and the radiologist to achieve the best diagnostic result for the patient. The clinical picture must correlate well with the radiology report and when it does not, this is not necessarily someone’s fault. Careful interpretation and good knowledge of the limitations, advantages and disadvantages of each imaging procedure are essential for the final diagnostic goal. Methods or Background: A patient was brought to the emergency department by their relatives. He was suddenly confused and his mental status was altered. He hadn't any history of mental illness and was otherwise healthy. A computing tomography scan without contrast was done, but it was unremarkable. Because of high clinical suspicion of probable neurologic disease, he was admitted to the hospital. Results or Findings: Another T was done after 48 hours. It showed a hypodense region in both thalamic areas. Taking into account that the first CT was normal, but the initial clinical picture of the patient was alerting of something wrong, the repetitive CT exam is highly suggestive of a probable diagnosis of bilateral thalamic infractions. Differential diagnosis: Primary bilateral thalamic glioma, Wernicke encephalopathy, osmotic myelinolysis, Fabry disease, Wilson disease, Leigh disease, West Nile encephalitis, Greutzfeldt Jacob disease, top of the basilar syndrome, deep venous thrombosis, mild to moderate cerebral hypotension, posterior reversible encephalopathy syndrome, Neurofibromatosis type 1. Conclusion: As is the case of limitations for any imaging procedure, the same applies to CT. The acute ischemic attack can not depict on CT. A period of 24 to 48 hours has to elapse before any abnormality can be seen. So, despite the fact that there are no obvious findings of an ischemic episode, like paresis or imiparesis, one must be careful not to attribute the patient’s clinical signs to other conditions, such as toxic effects, metabolic disorders, psychiatric symptoms, etc. Further investigation with MRI or at least a repeated CT must be done.

Keywords: CNS, CT, thalamus, emergency department

Procedia PDF Downloads 121
1129 The Effect of Micro-Order in Family on Divorce: A Case Study on Married Offspring of the Martyr in the City of Mashhad, Iran

Authors: Maryam Eskafi

Abstract:

Purpose: Frequent referrals of the martyr offspring to The Martyr Foundation and studying divorce documents revealed the depth of family quarrels among the martyr families. For this reason, conducting the research of this type can be effective. Method: Research method is survey. Statistical population is the total of married offspring of the martyr living in Mashhad City of Iran. Data were gathered by using questionnaire administered with a sample of 250 selected by using cluster sampling method. Results: Family order may lead to the ground actions for divorce through life satisfaction. Conclusion: life satisfaction with -0.62 beta value has a strong negative effect on the ground actions for divorce.

Keywords: ground actions for divorce, life satisfaction, family order, satisfaction

Procedia PDF Downloads 308
1128 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 278
1127 Religiosity and Involvement in Purchasing Convenience Foods: Using Two-Step Cluster Analysis to Identify Heterogenous Muslim Consumers in the UK

Authors: Aisha Ijaz

Abstract:

The paper focuses on the impact of Muslim religiosity on convenience food purchases and involvement experienced in a non-Muslim culture. There is a scarcity of research on the purchasing patterns of Muslim diaspora communities residing in risk societies, particularly in contexts where there is an increasing inclination toward industrialized food items alongside a renewed interest in the concept of natural foods. The United Kingdom serves as an appropriate setting for this study due to the increasing Muslim population in the country, paralleled by the expanding Halal Food Market. A multi-dimensional framework is proposed, testing for five forms of involvement, specifically Purchase Decision Involvement, Product Involvement, Behavioural Involvement, Intrinsic Risk and Extrinsic Risk. Quantitative cross-sectional consumer data were collected through a face-to-face survey contact method with 141 Muslims during the summer of 2020 in Liverpool located in the Northwest of England. proportion formula was utilitsed, and the population of interest was stratified by gender and age before recruitment took place through local mosques and community centers. Six input variables were used (intrinsic religiosity and involvement dimensions), dividing the sample into 4 clusters using the Two-Step Cluster Analysis procedure in SPSS. Nuanced variances were observed in the type of involvement experienced by religiosity group, which influences behaviour when purchasing convenience food. Four distinct market segments were identified: highly religious ego-involving (39.7%), less religious active (26.2%), highly religious unaware (16.3%), less religious concerned (17.7%). These segments differ significantly with respects to their involvement, behavioural variables (place of purchase and information sources used), socio-cultural (acculturation and social class), and individual characteristics. Choosing the appropriate convenience food is centrally related to the value system of highly religious ego-involving first-generation Muslims, which explains their preference for shopping at ethnic food stores. Less religious active consumers are older and highly alert in information processing to make the optimal food choice, relying heavily on product label sources. Highly religious unaware Muslims are less dietary acculturated to the UK diet and tend to rely on digital and expert advice sources. The less-religious concerned segment, who are typified by younger age and third generation, are engaged with the purchase process because they are worried about making unsuitable food choices. Research implications are outlined and potential avenues for further explorations are identified.

Keywords: consumer behaviour, consumption, convenience food, religion, muslims, UK

Procedia PDF Downloads 56
1126 Effect of Financial and Institutional Ecosystems on Startup Mergers and Acquisitions

Authors: Saurabh Ahluwalia, Sul Kassicieh

Abstract:

The conventional wisdom has maintained that being in proximity to entrepreneurial ecosystems helps startups to raise financing, develop and grow. In this paper, we examine the effect of a major component of an entrepreneurial ecosystem- financial or venture capital clusters on the exit of a startup through mergers and acquisitions (M&A). We find that the presence of a venture capitalist in a venture capital (VC) cluster is a major success factor for M&A exits. The location of startups in the top VC clusters did not turn out to be significant for success. Our results are robust to different specifications of the model that use different time periods, types of success, the reputation of VC, industry and the quality of the startup company. Our results provide evidence for VCs, startups and policymakers who want to better understand the components of entrepreneurial ecosystems and their relation to the M&A exits of startups.

Keywords: financial institution, mergers and acquisitions, startup financing, venture capital

Procedia PDF Downloads 201
1125 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 536
1124 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake

Authors: Minami Ito, Akihiro Iijima

Abstract:

On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.

Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster

Procedia PDF Downloads 220
1123 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 228
1122 Bacterial Diversity in Human Intestinal Microbiota and Correlations with Nutritional Behavior, Physiology, Xenobiotics Intake and Antimicrobial Resistance in Obese, Overweight and Eutrophic Individuals

Authors: Thais O. de Paula, Marjorie R. A. Sarmiento, Francis M. Borges, Alessandra B. Ferreira-Machado, Juliana A. Resende, Dioneia E. Cesar, Vania L. Silva, Claudio G. Diniz

Abstract:

Obesity is currently a worldwide public health threat, being considered a pandemic multifactorial disease related to the human gut microbiota (GM). Add to that GM is considered an important reservoir of antimicrobial resistance genes (ARG) and little is known on GM and ARG in obesity, considering the altered physiology and xenobiotics intake. As regional and social behavior may play important roles in GM modulation, and most of the studies are based on small sample size and various methodological approaches resulting in difficulties for data comparisons, this study was focused on the investigation of GM bacterial diversity in obese (OB), overweight (OW) and eutrophic individuals (ET) considering their nutritional, clinical and social characteristics; and comparative screening of AGR related to their physiology and xenobiotics intake. Microbial community was accessed by FISH considering phyla as a taxonomic level, and PCR-DGGE followed by dendrograms evaluation (UPGMA method) from fecal metagenome of 72 volunteers classified according to their body mass index (BMI). Nutritional, clinical, social parameters and xenobiotics intake were recorded for correlation analysis. The fecal metagenome was also used as template for PCR targeting 59 different ARG. Overall, 62% of OB were hypertensive, and 12% or 4% were, regarding the OW and ET individuals. Most of the OB were rated as low income (80%). Lower relative bacterial densities were observed in the OB compared to ET for almost all studied taxa (p < 0.05) with Firmicutes/Bacteroidetes ratio increased in the OB group. OW individuals showed a bacterial density representative of GM more likely to the OB. All the participants were clustered in 3 different groups based on the PCR-DGGE fingerprint patterns (C1, C2, C3), being OB mostly grouped in C1 (83.3%) and ET mostly grouped in C3 (50%). The cluster C2 showed to be transitional. Among 27 ARG detected, a cluster of 17 was observed in all groups suggesting a common core. In general, ARG were observed mostly within OB individuals followed by OW and ET. The ratio between ARG and bacterial groups may suggest that AGR were more related to enterobacteria. Positive correlations were observed between ARG and BMI, calories and xenobiotics intake (especially use of sweeteners). As with nutritional and clinical characteristics, our data may suggest that GM of OW individuals behave in a heterogeneous pattern, occasionally more likely to the OB or to the ET. Regardless the regional and social behaviors of our population, the methodological approaches in this study were complementary and confirmatory. The imbalance of GM over the health-disease interface in obesity is a matter of fact, but its influence in host's physiology is still to be clearly elucidated to help understanding the multifactorial etiology of obesity. Although the results are in agreement with observations that GM is altered in obesity, the altered physiology in OB individuals seems to be also associated to the increased xenobiotics intake and may interfere with GM towards antimicrobial resistance, as observed by the fecal metagenome and ARG screening. Support: FAPEMIG, CNPQ, CAPES, PPGCBIO/UFJF.

Keywords: antimicrobial resistance, bacterial diversity, gut microbiota, obesity

Procedia PDF Downloads 170
1121 Correlation between Electromyographic and Textural Parameters for Different Textured Indian Foods Using Principal Component Analysis

Authors: S. Rustagi, N. S. Sodhi, B. Dhillon, T. Kaur

Abstract:

The objective of this study was to check whether there is any relationship between electromyographic (EMG) and textural parameters during food texture evaluation. In this study, a total of eighteen mastication variables were measured for entire mastication, per chew mastication and three different stages of mastication (viz. early, middle and late) by EMG for five different foods using eight human subjects. Cluster analysis was used to reduce the number of mastication variables from 18 to 5, so that principal component analysis (PCA) could be applied on them. The PCA further resulted in two meaningful principal components. The principal component scores for each food were measured and correlated with five textural parameters (viz. hardness, cohesiveness, chewiness, gumminess and adhesiveness). Correlation coefficients were found to be statistically significant (p < 0.10) for cohesiveness and adhesiveness while if we reduce the significance level (p < 0.20) then chewiness also showed correlation with mastication parameters.

Keywords: electromyography, mastication, sensory, texture

Procedia PDF Downloads 341
1120 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films

Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu

Abstract:

Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.

Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain

Procedia PDF Downloads 153
1119 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data

Authors: Shinji Kawakura, Ryosuke Shibasaki

Abstract:

We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.

Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis

Procedia PDF Downloads 394
1118 Exploring Nature and Pattern of Mentoring Practices: A Study on Mentees' Perspectives

Authors: Nahid Parween Anwar, Sadia Muzaffar Bhutta, Takbir Ali

Abstract:

Mentoring is a structured activity which is designed to facilitate engagement between mentor and mentee to enhance mentee’s professional capability as an effective teacher. Both mentor and mentee are important elements of the ‘mentoring equation’ and play important roles in nourishing this dynamic, collaborative and reciprocal relationship. Cluster-Based Mentoring Programme (CBMP) provides an indigenous example of a project which focused on development of primary school teachers in selected clusters with a particular focus on their classroom practice. A study was designed to examine the efficacy of CBMP as part of Strengthening Teacher Education in Pakistan (STEP) project. This paper presents results of one of the components of this study. As part of the larger study, a cross-sectional survey was employed to explore nature and patterns of mentoring process from mentees’ perspectives in the selected districts of Sindh and Balochistan. This paper focuses on the results of the study related to the question: What are mentees’ perceptions of their mentors’ support for enhancing their classroom practice during mentoring process? Data were collected from mentees (n=1148) using a 5-point scale -‘Mentoring for Effective Primary Teaching’ (MEPT). MEPT focuses on seven factors of mentoring: personal attributes, pedagogical knowledge, modelling, feedback, system requirement, development and use of material, and gender equality. Data were analysed using SPSS 20. Mentees perceptions of mentoring practice of their mentors were summarized using mean and standard deviation. Results showed that mean scale scores on mentees’ perceptions of their mentors’ practices fell between 3.58 (system requirement) and 4.55 (personal attributes). Mentees’ perceives personal attribute of the mentor as the most significant factor (M=4.55) towards streamlining mentoring process by building good relationship between mentor and mentees. Furthermore, mentees have shared positive views about their mentors efforts towards promoting gender impartiality (M=4.54) during workshop and follow up visit. Contrary to this, mentees felt that more could have been done by their mentors in sharing knowledge about system requirement (e.g. school policies, national curriculum). Furthermore, some of the aspects in high scoring factors were highlighted by the mentees as areas for further improvement (e.g. assistance in timetabling, written feedback, encouragement to develop learning corners). Mentees’ perceptions of their mentors’ practices may assist in determining mentoring needs. The results may prove useful for the professional development programme for the mentors and mentees for specific mentoring programme in order to enhance practices in primary classrooms in Pakistan. Results would contribute into the body of much-needed knowledge from developing context.

Keywords: cluster-based mentoring programme, mentoring for effective primary teaching (MEPT), professional development, survey

Procedia PDF Downloads 233
1117 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 393
1116 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success

Authors: Penelope Paliadelis, Asheley Jones, Glenn Campbell

Abstract:

This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.

Keywords: capability framework, human skills, work-integrated learning, credentialing, digital badging

Procedia PDF Downloads 79
1115 On Adaptive and Auto-Configurable Apps

Authors: Prisa Damrongsiri, Kittinan Pongpianskul, Mario Kubek, Herwig Unger

Abstract:

Apps are today the most important possibility to adapt mobile phones and computers to fulfill the special needs of their users. Location- and context-sensitive programs are hereby the key to support the interaction of the user with his/her environment and also to avoid an overload with a plenty of dispensable information. The contribution shows, how a trusted, secure and really bi-directional communication and interaction among users and their environment can be established and used, e.g. in the field of home automation.

Keywords: apps, context-sensitive, location-sensitive, self-configuration, mobile computing, smart home

Procedia PDF Downloads 396
1114 The Role of Mass Sport Guidance in the Health Service Industry of China

Authors: Qiu Jian-Rong, Li Qing-Hui, Zhan Dong, Zhang Lei

Abstract:

Facing the problem of the demand of economic restructuring and risk of social economy stagnation due to the ageing of population, the Health Service Industry will play a very important role in the structure of industry in the future. During the process, the orient of Chinese sports medicine as well as the joint with preventive medicine, and the integration with data bank and cloud computing will be involved.

Keywords: China, the health service industry, mass sport, data bank

Procedia PDF Downloads 628
1113 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
1112 The Study of Indigenous Communities in Sefidkuh Makran, the Showcase of Prehistoric Societies in the 21st Century, Based on Ethnoarchaeological Studies

Authors: Hossein Vahedi, Zahra Soleymani Fard

Abstract:

SefidKuh area in Baluchistan, Iran, is one of the impossible areas which the focused archeological investigations have not been on it. In the Sefidkuh area, there are colonies as if they were stopped in the Neolithic and Chalcolithic ages. These colonies exhibit culturally specific behaviors, which their study can reveal much of the cultural nature of the Neolithic, Chalcolithic inhabitants of the region. In the villages of this area, still, circular architecture is used in different types. The political management of the villages in the region is also the responsibility of Khan, whose characteristics can be compared to the prehistoric era. These people's livelihoods include hunting, animal husbandry, horticulture, and limited crop storage. Residents of Sefidkuh use the exchange of goods to obtain needed supplies that they themselves cannot produce. In this area, there are central location villages that are quite similar to the cluster model, and the Great Khan leads the surrounding villages.

Keywords: archaeology, social structure, neolithic, chalcolithic, Sefidkuh, Baluchistan

Procedia PDF Downloads 118