Search results for: differential fuel flow meter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7759

Search results for: differential fuel flow meter

619 Study of a Complete Free Route Implementation in the European Airspace

Authors: Cesar A. Nava-Gaxiola, C. Barrado

Abstract:

Harmonized with SESAR (Single European Sky Research) initiatives, a new concept related with airspace structures have been introduced in Europe, the Free Route Airspace. The key of free route is based in an airspace where users may freely plan a route between a defined entry and exit waypoint, with the possibility of routing via intermediate points, the free route flights remain subject to air traffic control (ATC) for the established separations. Free route airspace does not present anymore fixed airways to airspace users, as a consequence it brings a new paradigm for managing safe separations of aircrafts inside these airspace blocks . Nowadays, several European nations have been introduced the concept, some of them in a complete or partial stage, but finally offering limited benefits to airspace users for this condition. This research evaluates the future scenario of free route implementation across Europe, considering a unique airspace block configuration with a complete upper airspace with free route. The paper is centered in investigating the benefits for airspace users, and the study of possible increments of Air Traffic Controllers task loads with a full application. In this research, fast time simulations are carrying out for discovering how much flight time and distance aircrafts can save with an overall free route establishment. In the other side, the paper explains the evolution of conflicts derivate from possible separation losses between aircrafts in this new environment. Free route conflicts can emerges in any points of the airspace, requiring a great effort for solving it, in comparison with fixed airways, where conflicts normally were found by controllers in known waypoints, and they solved using the fixed network as reference. The airspace configuration modelled in this study take into account the actual navigation waypoints structure, moving into a future scenario, where new ones waypoints are added and new traffic flow patterns appears. In this sense, this research explores the advantages and unknown difficulties that a large scale application of free route concept can carry out in the European airspace.

Keywords: ATC conflicts, efficiency, free route airspace, SESAR

Procedia PDF Downloads 180
618 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 444
617 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust

Authors: Sardar Khana, Zar Ali Khana

Abstract:

Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.

Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake

Procedia PDF Downloads 124
616 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 129
615 Cross Reactivity of Risperidone in Fentanyl Point of Care Devices

Authors: Barry D. Kyle, Jessica Boyd, Robin Pickersgill, Nicole Squires, Cynthia Balion

Abstract:

Background-Aim: Fentanyl is a highly-potent synthetic μ-opioid receptor agonist used for exceptional pain management. Its main metabolite, norfentanyl, is typically present in urine at significantly high concentrations (i.e. ~20%) representing an effective targeting molecule for immunoassay detection. Here, we evaluated the NCSTM One Step Fentanyl Test Device© and the BTNX Rapid ResponseTM Single Drug Test Strip© point of care (POC) test strips targeting norfentanyl (20 ng/ml) and fentanyl (100 ng/ml) molecules for potential risperidone interference. Methods: POC tests calibrated against norfentanyl (20 ng/ml) used [immunochromatographic] lateral flow devices to provide qualitative results within five minutes of urine sample contact. Results were recorded as negative if lines appeared in the test and control regions according to manufacturer’s instructions. Positive results were recorded if no line appeared in the test region (i.e., control line only visible). Pooled patient urine (n=20), that screened negative for drugs of abuse (using NCS One Step Multi-Line Screen) and fentanyl (using BTNX Rapid Response Strip) was used for spiking studies. Urine was spiked with risperidone alone and with combinations of fentanyl, norfentanyl and/or risperidone to evaluate cross-reactivity in each test device. Results: A positive screen result was obtained when 8,000 ng/mL of risperidone was spiked into drug free urine using the NCS test device. Positive screen results were also obtained in spiked urine samples containing fentanyl and norfentanyl combinations below the cut-off concentrations when 4000 ng/mL risperidone was present using the NCS testing device. There were no screen positive test results using the BTNX test strip with up to 8,000 ng/mL alone or in combination with concentrations of fentanyl and norfentanyl below the cut-off. Both devices screened positive when either fentanyl or norfentanyl exceeded the cut-off threshold in the absence and presence of risperidone. Conclusion: We report that urine samples containing risperidone may give a false positive result using the NCS One Step Fentanyl Test Device.

Keywords: fentanyl, interferences, point of care test, Risperidone

Procedia PDF Downloads 261
614 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 319
613 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 70
612 Culture of Human Mesenchymal Stem Cells Culture in Xeno-Free Serum-Free Culture Conditions on Laminin-521

Authors: Halima Albalushi, Mohadese Boroojerdi, Murtadha Alkhabori

Abstract:

Introduction: Maintenance of stem cell properties during culture necessitates the recreation of the natural cell niche. Studies reported the promising outcome of mesenchymal stem cells (MSC) properties maintenance after using extracellular matrix such as CELLstart™, which is the recommended coating material for stem cells cultured in serum-free and xeno-free conditions. Laminin-521 is known as a crucial adhesion protein, which is found in natural stem cell niche, and plays an important role in facilitating the maintenance of self-renewal, pluripotency, standard morphology, and karyotype of human pluripotent stem cells (PSCs). The aim of this study is to investigate the effects of Laminin-521 on human umbilical cord-derived mesenchymal stem cells (UC-MSC) characteristics as a step toward clinical application. Methods: Human MSC were isolated from the umbilical cord via the explant method. Umbilical cord-derived-MSC were cultured in serum-free and xeno-free conditions in the presence of Laminin-521 for six passages. Cultured cells were evaluated by morphology and expansion index for each passage. Phenotypic characterization of UC-MSCs cultured on Laminin-521 was evaluated by assessment of cell surface markers. Results: Umbilical cord derived-MSCs formed small colonies and expanded as a homogeneous monolayer when cultured on Laminin-521. Umbilical cord derived-MSCs reached confluence after 4 days in culture. No statistically significant difference was detected in all passages when comparing the expansion index of UC-MSCs cultured on LN-521 and CELLstart™. Phenotypic characterization of UC-MSCs cultured on LN-521 using flow cytometry revealed positive expression of CD73, CD90, CD105 and negative expression of CD34, CD45, CD19, CD14 and HLA-DR.Conclusion: Laminin-521 is comparable to CELLstart™ in supporting UC-MSCs expansion and maintaining their characteristics during culture in xeno-free and serum-free culture conditions.

Keywords: mesenchymal stem cells, culture, laminin-521, xeno-free serum-free

Procedia PDF Downloads 64
611 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs

Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis

Abstract:

Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.

Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification

Procedia PDF Downloads 86
610 Audience Members' Perspective-Taking Predicts Accurate Identification of Musically Expressed Emotion in a Live Improvised Jazz Performance

Authors: Omer Leshem, Michael F. Schober

Abstract:

This paper introduces a new method for assessing how audience members and performers feel and think during live concerts, and how audience members' recognized and felt emotions are related. Two hypotheses were tested in a live concert setting: (1) that audience members’ cognitive perspective taking ability predicts their accuracy in identifying an emotion that a jazz improviser intended to express during a performance, and (2) that audience members' affective empathy predicts their likelihood of feeling the same emotions as the performer. The aim was to stage a concert with audience members who regularly attend live jazz performances, and to measure their cognitive and affective reactions during the performance as non-intrusively as possible. Pianist and Grammy nominee Andy Milne agreed, without knowing details of the method or hypotheses, to perform a full-length solo improvised concert that would include an ‘unusual’ piece. Jazz fans were recruited through typical advertising for New York City jazz performances. The event was held at the New School’s Glass Box Theater, the home of leading NYC jazz venue ‘The Stone.’ Audience members were charged typical NYC jazz club admission prices; advertisements informed them that anyone who chose to participate in the study would be reimbursed their ticket price after the concert. The concert, held in April 2018, had 30 attendees, 23 of whom participated in the study. Twenty-two minutes into the concert, the performer was handed a paper note with the instruction: ‘Perform a 3-5-minute improvised piece with the intention of conveying sadness.’ (Sadness was chosen based on previous music cognition lab studies, where solo listeners were less likely to select sadness as the musically-expressed emotion accurately from a list of basic emotions, and more likely to misinterpret sadness as tenderness). Then, audience members and the performer were invited to respond to a questionnaire from a first envelope under their seat. Participants used their own words to describe the emotion the performer had intended to express, and then to select the intended emotion from a list. They also reported the emotions they had felt while listening using Izard’s differential emotions scale. The concert then continued as usual. At the end, participants answered demographic questions and Davis’ interpersonal reactivity index (IRI), a 28-item scale designed to assess both cognitive and affective empathy. Hypothesis 1 was supported: audience members with greater cognitive empathy were more likely to accurately identify sadness as the expressed emotion. Moreover, audience members who accurately selected ‘sadness’ reported feeling marginally sadder than people who did not select sadness. Hypotheses 2 was not supported; audience members with greater affective empathy were not more likely to feel the same emotions as the performer. If anything, members with lower cognitive perspective-taking ability had marginally greater emotional overlap with the performer, which makes sense given that these participants were less likely to identify the music as sad, which corresponded with the performer’s actual feelings. Results replicate findings from solo lab studies in a concert setting and demonstrate the viability of exploring empathy and collective cognition in improvised live performance.

Keywords: audience, cognition, collective cognition, emotion, empathy, expressed emotion, felt emotion, improvisation, live performance, recognized emotion

Procedia PDF Downloads 122
609 Effect of Halo Protection Device on the Aerodynamic Performance of Formula Racecar

Authors: Mark Lin, Periklis Papadopoulos

Abstract:

This paper explores the aerodynamics of the formula racecar when a ‘halo’ driver-protection device is added to the chassis. The halo protection device was introduced at the start of the 2018 racing season as a safety measure against foreign object impacts that a driver may encounter when driving an open-wheel racecar. In the one-year since its introduction, the device has received wide acclaim for protecting the driver on two separate occasions. The benefit of such a safety device certainly cannot be disputed. However, by adding the halo device to a car, it changes the airflow around the vehicle, and most notably, to the engine air-intake and the rear wing. These negative effects in the air supply to the engine, and equally to the downforce created by the rear wing are studied in this paper using numerical technique, and the resulting CFD outputs are presented and discussed. Comparing racecar design prior to and after the introduction of the halo device, it is shown that the design of the air intake and the rear wing has not followed suit since the addition of the halo device. The reduction of engine intake mass flow due to the halo device is computed and presented for various speeds the car may be going. Because of the location of the halo device in relation to the air intake, airflow is directed away from the engine, making the engine perform less than optimal. The reduction is quantified in this paper to show the correspondence to reduce the engine output when compared to a similar car without the halo device. This paper shows that through aerodynamic arguments, the engine in a halo car will not receive unobstructed, clean airflow that a non-halo car does. Another negative effect is on the downforce created by the rear wing. Because the amount of downforce created by the rear wing is influenced by every component that comes before it, when a halo device is added upstream to the rear wing, airflow is obstructed, and less is available for making downforce. This reduction in downforce is especially dramatic as the speed is increased. This paper presents a graph of downforce over a range of speeds for a car with and without the halo device. Acknowledging that although driver safety is paramount, the negative effect of this safety device on the performance of the car should still be well understood so that any possible redesign to mitigate these negative effects can be taken into account in next year’s rules regulation.

Keywords: automotive aerodynamics, halo device, downforce. engine intake

Procedia PDF Downloads 100
608 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade

Authors: Yanqun Li, Hong Geng

Abstract:

The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.

Keywords: social relations, social support networks, industrial division, capital allocation, public space

Procedia PDF Downloads 146
607 Hydrothermal Alteration and Mineralization of Cisarua, Nanggung District, Bogor Regency, West Java, Indonesia

Authors: A. Asaga, N. I. Basuki

Abstract:

The research area is located in Cisarua, Bogor Regency, West Java, with 12,8 km2 wide. This area belongs to mining region of PT Aneka Tambang Tbk. The purpose of this research is to study geological condition, alteration type and pattern, and type of mineralization. Geomorphology of the research area is at young to mature stage, which can be divided into Ciparigi’s Parasite Volcanic Cone Unit, Ciparigi Caldera Valley Unit, Ciparigi Caldera Rim Hill Unit, and Pongkor Volcanic Hill. Stratigraphy of the research area consist of five units, they are Laharic Breccia (Pliocene), Pyroclastic Breccia, Lapilli Tuff, Flow Tuff, Fall Tuff, and Andesite Lava (Pleistocene). Based on mineral composition, it is interpreted that there is magma composition changing from rhyolite to andesitic. Geological structures in the research area are caused by NE-SW and N-S stress direction; they are Ciparay Right Strike-Slip Fault (Pliocene), Cisarua Right Strike-Slip Fault, G. Singa Left Strike-Slip Fault, and Cinyuncung Right Strike-Slip Fault (Pleistocene). Weak to strong hydrothermal alteration can be found in the research area.They are Chlorite ± Smectite ± Halloysite Zone, Smectite - Illite - Quartz Zone, Smectite - Kaolinite - Illite - Chlorite Zone, and Smectite - Chlorite - Calcite - Quartz Zone. The distribution and assemblage of alteration minerals is controlled by lithology and geological structures in Pleistocene. Mineralization produce ore minerals, those are pyrite, marcasite, chalcopyrite, sphalerite, galena, and chalcocite. There are calcite and quartz veins that show colloform, comb, and crystalline textures. Hydrothermal alteration assemblages, ore minerals, and cavity filling textures suggest that mineralization type in research area is epithermal low sulphidation.

Keywords: Pongkor, hydrothermal alteration, epithermal, geochemistry

Procedia PDF Downloads 393
606 Economic Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gas, fossil fuel power plants

Procedia PDF Downloads 388
605 Relationship between Left Ventricle Position and Hemodynamic Parameters during Cardiopulmonary Resuscitation in a Pig Model

Authors: Hyun Chang Kim, Yong Hun Jung, Kyung Woon Jeung

Abstract:

Background: From the viewpoint of cardiac pump theory, the area of the left ventricle (LV) subjected to compression increases as the LV lies closer to the sternum, possibly resulting in higher blood flow in patients with LV closer to the sternum. However, no study has evaluated LV position during cardiac arrest or its relationship with hemodynamic parameters during cardiopulmonary resuscitation (CPR). The objectives of this study were to determine whether the position of the LV relative to the anterior-posterior axis representing the direction of chest compression shifts during cardiac arrest and to examine the relationship between LV position and hemodynamic parameters during CPR. Methods: Subcostal view echocardiograms were obtained from 15 pigs with the transducer parallel to the long axis of the sternum before inducing ventricular fibrillation (VF) and during cardiac arrest. Computed tomography was performed in three pigs to objectively observe LV position during cardiac arrest. LV position parameters including the shortest distance between the anterior-posterior axis and the mid-point of the LV chamber (DAP-MidLV), the shortest distance between the anterior-posterior axis and the LV apex (DAP-Apex), and the area fraction of the LV located on the right side of the anterior-posterior axis (LVARight/LVATotal) were measured. Results: DAP-MidLV, DAP-Apex, and LVARight/LVATotal decreased progressively during untreated VF and basic life support (BLS), and then increased during advanced cardiovascular life support (ACLS). A repeated measures analysis of variance revealed significant time effects for these parameters. During BLS, the end-tidal carbon dioxide and systolic right atrial pressure were significantly correlated with the LV position parameters. During ACLS, systolic arterial pressure and systolic right atrial pressure were significantly correlated with DAP-MidLV and DAP-Apex. Conclusions: LV position changed significantly during cardiac arrest compared to the pre-arrest baseline. LV position during CPR had significant correlations with hemodynamic parameters.

Keywords: heart arrest, cardiopulmonary resuscitation, heart ventricle, hemodynamics

Procedia PDF Downloads 183
604 Quality of So-Called Organic Fertilizers in Vietnam's Market

Authors: Hoang Thi Quynh, Shima Kazuto

Abstract:

Organic farming is gaining interest in Vietnam. However, organic fertilizer production is not sufficiently regulated, resulting in unknown quality. This study investigated characteristics of so-called organic fertilizers in the Vietnam’s market and their mineralization in soil-plant system. We collected 15 commercial products (11 domestic and 4 imported) which labelled 'organic fertilizer' in the market to analyze nutrients composition. A 20 day-incubation experiment was carried on with 80 g sandy-textured soil, amended with the fertilizer at a rate of 109.4 mgN.kg⁻¹soil in 150 mL glass bottle at 25℃. We categorized them according to nutrients content and mineralization rate, and then selected 8 samples for cultivation experiment. The experiment was conducted by growing Komatsuna (Brassica campestris) in sandy-textured soil using an automatic watering apparatus in a greenhouse. The fertilizers were applied to the top one-third of the soil stratum at a rate of 200 mgN.kg⁻¹ soil. Our study also analyzed material flow of coffee husk compost in Central Highland of Vietnam. Total N, P, K, Ca, Mg and C: N ratio varied greatly cross the domestic products, whereas they were quite similar among the imported materials. The proportion of inorganic-N to T-N of domestic products was higher than 25% in 8 of 11 samples. These indicate that N concentration increased dramatically in most domestic products compared with their raw materials. Additionally, most domestic products contained less P, and their proportions of Truog-P to T-P were greatly different. These imply that some manufactures were interested in adjusting P concentration, but some ones were not. Furthermore, the compost was made by mixing with chemical substances to increase nutrients content (N, P), and also added construction surplus soil to gain weight before packing product to sell in the market as 'organic fertilizer'. There was a negative correlation between C:N ratio and mineralization rate of the fertilizers. There was a significant difference in N efficiency among the fertilizer treatments. N efficiency of most domestic products was higher than chemical fertilizer and imported organic fertilizers. These results suggest regulations on organic fertilizers production needed to support organic farming that is based on internationally accepted standards in Vietnam.

Keywords: inorganic N, mineralization, N efficiency, so-called organic fertilizers, Vietnam’s market

Procedia PDF Downloads 177
603 Analysis of Standard Tramway Surge Protection Methods Based on Real Cases

Authors: Alain Rousseau, Alfred Aragones, Gilles Rougier

Abstract:

The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means.

Keywords: surge arrester, traction, lightning, risk, surge protective device

Procedia PDF Downloads 252
602 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 61
601 Development and Validation of a Liquid Chromatographic Method for the Quantification of Related Substance in Gentamicin Drug Substances

Authors: Sofiqul Islam, V. Murugan, Prema Kumari, Hari

Abstract:

Gentamicin is a broad spectrum water-soluble aminoglycoside antibiotics produced by the fermentation process of microorganism known as Micromonospora purpurea. It is widely used for the treatment of infection caused by both gram positive and gram negative bacteria. Gentamicin consists of a mixture of aminoglycoside components like C1, C1a, C2a, and C2. The molecular structure of Gentamicin and its related substances showed that it has lack of presence of chromophore group in the molecule due to which the detection of such components were quite critical and challenging. In this study, a simple Reversed Phase-High Performance Liquid Chromatographic (RP-HPLC) method using ultraviolet (UV) detector was developed and validated for quantification of the related substances present in Gentamicin drug substances. The method was achieved by using Thermo Scientific Hypersil Gold analytical column (150 x 4.6 mm, 5 µm particle size) with isocratic elution composed of methanol: water: glacial acetic acid: sodium hexane sulfonate in the ratio 70:25:5:3 % v/v/v/w as a mobile phase at a flow rate of 0.5 mL/min, column temperature was maintained at 30 °C and detection wavelength of 330 nm. The four components of Gentamicin namely Gentamicin C1, C1a, C2a, and C2 were well separated along with the related substance present in Gentamicin. The Limit of Quantification (LOQ) values were found to be at 0.0075 mg/mL. The accuracy of the method was quite satisfactory in which the % recovery was resulted between 95-105% for the related substances. The correlation coefficient (≥ 0.995) shows the linearity response against concentration over the range of Limit of Quantification (LOQ). Precision studies showed the % Relative Standard Deviation (RSD) values less than 5% for its related substance. The method was validated in accordance with the International Conference of Harmonization (ICH) guideline with various parameters like system suitability, specificity, precision, linearity, accuracy, limit of quantification, and robustness. This proposed method was easy and suitable for use for the quantification of related substances in routine analysis of Gentamicin formulations.

Keywords: reversed phase-high performance liquid chromatographic (RP-HPLC), high performance liquid chromatography, gentamicin, isocratic, ultraviolet

Procedia PDF Downloads 155
600 Media Framing and Democratization Under Multi-Party System: A Case Study of the 2023 Malaysian Six-State Elections

Authors: Chew Zhao Hong

Abstract:

Since the transition of power in 2018, the Malaysian political landscape has experienced substantial shifts and complexities. The decline of the longstanding ruling party, United Malays National Organization (UMNO), following the party rotation, has given rise to splinter parties such as the Indigenous Unity Party (Bersatu), along with the enduring presence of the Pan-Malaysian Islamic Party (PAS) in the northern region of the Malay Peninsula. However, the "Sheraton Move" in 2020 led to the fall of the Pakatan Harapan government and the emergence of Perikatan Nasional, signifying the ascent of a third political force. The 2022 general elections marked Malaysia's entry into a hung parliament, culminating in an intricate negotiation that resulted in a coalition government formed by Pakatan Harapan, Barisan Nasional, and the Sarawak parties alliance (GPS), collectively governing the Malaysian federal administration. During the 2023 state elections, Pakatan Harapan and Barisan Nasional formed an unprecedented alliance, yet the media framing benefited Perikatan Nasional, even securing substantial support from UMNO's traditional constituencies. In the era of converging new media, Malaysia’s democratization faces new challenges: first, political leaders leveraging media to cultivate unfiltered personas risk inducing populism; second, under the influence of agenda-setting and two-step flow theories, media contributes to polarization; lastly, Malaysia's multi-party system is no longer effectively moderate extreme ideologies into the political center. This study examines the role of media framing and its impact on the democratization process within Malaysia's consociational democracy under a multi-party system and analyzes media discourse before and after the 2023 Malaysian state elections to explore how different parties shape public opinion and political discourse, and how political messages may be amplified or distorted in the process.

Keywords: multi-party system, democratization, elections, political polarization, Malaysia, media framing

Procedia PDF Downloads 68
599 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model

Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo

Abstract:

Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.

Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish

Procedia PDF Downloads 321
598 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology

Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan

Abstract:

In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.  

Keywords: fluid dynamics, prototype design, natural ventilation, simulations, water table apparatus, wind incidence angles

Procedia PDF Downloads 220
597 Laboratory Investigation of the Pavement Condition in Lebanon: Implementation of Reclaimed Asphalt Pavement in the Base Course and Asphalt Layer

Authors: Marinelle El-Khoury, Lina Bouhaya, Nivine Abbas, Hassan Sleiman

Abstract:

The road network in the north of Lebanon is a prime example of the lack of pavement design and execution in Lebanon.  These roads show major distresses and hence, should be tested and evaluated. The aim of this research is to investigate and determine the deficiencies in road surface design in Lebanon, and to propose an environmentally friendly asphalt mix design. This paper consists of several parts: (i) evaluating pavement performance and structural behavior, (ii) identifying the distresses using visual examination followed by laboratory tests, (iii) deciding the optimal solution where rehabilitation or reconstruction is required and finally, (iv) identifying a sustainable method, which uses recycled material in the proposed mix. The asphalt formula contains Reclaimed Asphalt Pavement (RAP) in the base course layer and in the asphalt layer. Visual inspection of the roads in Tripoli shows that these roads face a high level of distress severity. Consequently, the pavement should be reconstructed rather than simply rehabilitated. Coring was done to determine the pavement layer thickness. The results were compared to the American Association of State Highway and Transportation Officials (AASHTO) design methodology and showed that the existing asphalt thickness is lower than the required asphalt thickness. Prior to the pavement reconstruction, the road materials were tested according to the American Society for Testing and Materials (ASTM) specification to identify whether the materials are suitable. Accordingly, the ASTM tests that were performed on the base course are Sieve analysis, Atterberg limits, modified proctor, Los Angeles, and California Bearing Ratio (CBR) tests. Results show a CBR value higher than 70%. Hence, these aggregates could be used as a base course layer. The asphalt layer was also tested and the results of the Marshall flow and stability tests meet the ASTM specifications. In the last section, an environmentally friendly mix was proposed. An optimal RAP percentage of 30%, which produced a well graded base course and asphalt mix, was determined through a series of trials.

Keywords: asphalt mix, reclaimed asphalt pavement, California bearing ratio, sustainability

Procedia PDF Downloads 117
596 Recovery of Draw Solution in Forward Osmosis by Direct Contact Membrane Distillation

Authors: Su-Thing Ho, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is an emerging technology for direct and indirect potable water reuse application. However, successful implementation of FO is still hindered by the lack of draw solution recovery with high efficiency. Membrane distillation (MD) is a thermal separation process by using hydrophobic microporous membrane that is kept in sandwich mode between warm feed stream and cold permeate stream. Typically, temperature difference is the driving force of MD which attributed by the partial vapor pressure difference across the membrane. In this study, the direct contact membrane distillation (DCMD) system was used to recover diluted draw solution of FO. Na3PO4 at pH 9 and EDTA-2Na at pH 8 were used as the feed solution for MD since it produces high water flux and minimized salt leakage in FO process. At high pH, trivalent and tetravalent ions are much easier to remain at draw solution side in FO process. The result demonstrated that PTFE with pore size of 1 μm could achieve the highest water flux (12.02 L/m2h), followed by PTFE 0.45 μm (10.05 L/m2h), PTFE 0.1 μm (7.38 L/m2h) and then PP (7.17 L/m2h) while using 0.1 M Na3PO4 draw solute. The concentration of phosphate and conductivity in the PTFE (0.45 μm) permeate were low as 1.05 mg/L and 2.89 μm/cm respectively. Although PTFE with the pore size of 1 μm could obtain the highest water flux, but the concentration of phosphate in permeate was higher than other kinds of MD membranes. This study indicated that four kinds of MD membranes performed well and PTFE with the pore size of 0.45 μm was the best among tested membranes to achieve high water flux and high rejection of phosphate (99.99%) in recovery of diluted draw solution. Besides that, the results demonstrate that it can obtain high water flux and high rejection of phosphate when operated with cross flow velocity of 0.103 m/s with Tfeed of 60 ℃ and Tdistillate of 20 ℃. In addition to that, the result shows that Na3PO4 is more suitable for recovery than EDTA-2Na. Besides that, while recovering the diluted Na3PO4, it can obtain the high purity of permeate water. The overall performance indicates that, the utilization of DCMD is a promising technology to recover the diluted draw solution for FO process.

Keywords: membrane distillation, forward osmosis, draw solution, recovery

Procedia PDF Downloads 179
595 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 248
594 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population

Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli

Abstract:

Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 µl blood) by LC-MS/MS in a 10 min. chromatographic run.

Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring

Procedia PDF Downloads 407
593 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications

Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui

Abstract:

Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.

Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow

Procedia PDF Downloads 259
592 Effect of Aquatic Seed Extract of (Cichorium intybus L.) and Metformin on Nitric Oxide in Type 2 Diabetic Rats

Authors: Lotfollah Rezagholizadeh

Abstract:

Background and Aim: Diabetes mellitus is related to high mortality and morbidity caused by the early development of atherosclerosis correlated to diabetic macroangiopathy. The endothelium-derived vasodilator, nitric oxide (NO) has been implicated in the development of vascular complications via the regulation of blood flow, and various antiatherosclerotic actions. Patients with type 2 diabetes (T2D) have a decreased level of endothelial nitric oxide release. In this study we aimed to examine the effect of aquatic seed extract of Cichorium intybus L. (chicory) and metformin (a known prescription drug for diabetes) on NO levels in T2D rats. Methods: Five groups of adult male Wistar rats were used (n=6): Non-diabetic controls without extract treatment (Control), Non-diabetic controls with extract treatment (Chicory-control), T2D rats without extract treatment (NIA/STZ), T2D rats treated with the extract (Chicory-NIA/STZ), and T2D groups that received metformin (100 mg/kg) but no extract (Metformin-NIA/STZ). T2D was induced with intraperitoneal (i.p) injection of niacinamide (NIA, 200 mg/kg), 15 min after an i.p administration of streptozotocin (STZ, 55 mg/kg). Lyophilized chicory extract (125 mg/kg) was dissolved in 0.2 ml normal saline and administered one dose a day. The experiments lasted for 3 weeks after the diabetes induction. NO analysis was performed by assay based on the Griess reaction. Data were reported as the mean ± SD and statistical analysis was performed by ANOVA. Results: Serum nitric oxide levels decreased significantly in NIA/STZ group compared with Control and Chicory-control. Treatment with chicory extract caused a significant increase in serum levels of NO in Chicory-NIA/STZ group compare to NIA/STZ group (p<05). Metformin-NIA/STZ group did not show considerable difference when compared with NIA/STZ, with respect to NO levels. In a group of rats made diabetic by STZ alone (type 1 diabetic rats, T1D), chicory did not have a significant ameliorating effect. Conclusion: In this study, we clearly showed a relationship between low serum nitric oxide levels and diabetes mellitus in rats. The increase in serum nitric oxide by chicory extract is an indication of antiatherogenic effect of this plant. Chicory seed extract was more efficient than metformin in improving the NO levels in NO-deficient T2D diabetic rats.

Keywords: type 2 diabetes mellitus, nitric oxide, chicory, metformin

Procedia PDF Downloads 324
591 Experimental Study of the Antibacterial Activity and Modeling of Non-isothermal Crystallization Kinetics of Sintered Seashell Reinforced Poly(Lactic Acid) And Poly(Butylene Succinate) Biocomposites Planned for 3D Printing

Authors: Mohammed S. Razali, Kamel Khimeche, Dahah Hichem, Ammar Boudjellal, Djamel E. Kaderi, Nourddine Ramdani

Abstract:

The use of additive manufacturing technologies has revolutionized various aspects of our daily lives. In particular, 3D printing has greatly advanced biomedical applications. While fused filament fabrication (FFF) technologies have made it easy to produce or prototype various medical devices, it is crucial to minimize the risk of contamination. New materials with antibacterial properties, such as those containing compounded silver nanoparticles, have emerged on the market. In a previous study, we prepared a newly sintered seashell filler (SSh) from bio-based seashells found along the Mediterranean coast using a suitable heat treatment process. We then prepared a series of polylactic acid (PLA) and polybutylene succinate (PBS) biocomposites filled with these SSh particles using a melt mixing technique with a twin-screw extruder to use them as feedstock filaments for 3D printing. The study consisted of two parts: evaluating the antibacterial activity of newly prepared biocomposites made of PLA and PBS reinforced with a sintered seashell in the first part and experimental and modeling analysis of the non-isothermal crystallization kinetics of these biocomposites in the second part. In the first part, the bactericidal activity of the biocomposites against three different bacteria, including Gram-negative bacteria such as (E. coli and Pseudomonas aeruginosa), as well as Gram-positive bacteria such as (Staphylococcus aureus), was examined. The PLA-based biocomposite containing 20 wt.% of SSh particles exhibited an inhibition zone with radial diameters of 8mm and 6mm against E. coli and Pseudo. Au, respectively, while no bacterial activity was observed against Staphylococcus aureus. In the second part, the focus was on investigating the effect of the sintered seashell filler particles on the non-isothermal crystallization kinetics of PLA and PBS 3D-printing composite materials. The objective was to understand the impact of the filler particles on the crystallization mechanism of both PLA and PBS during the cooling process of a melt-extruded filament in (FFF) to manage the dimensional accuracy and mechanical properties of the final printed part. We conducted a non-isothermal melt crystallization kinetic study of a series of PLA-SS and PBS-SS composites using differential scanning calorimetry at various cooling rates. We analyzed the obtained kinetic data using different crystallization kinetic models such as modified Avrami, Ozawa, and Mo's methods. Dynamic mode describes the relative crystallinity as a function of temperature; it found that time half crystallinity (t1/2) of neat PLA decreased from 17 min to 7.3 min for PLA+5 SSh and the (t1/2) of virgin PBS was reduced from 3.5 min to 2.8 min for the composite containing 5wt.% of SSh. We found that the coated SS particles with stearic acid acted as nucleating agents and had a nucleation activity, as observed through polarized optical microscopy. Moreover, we evaluated the effective energy barrier of the non-isothermal crystallization process using the Iso conversional methods of Flynn-Wall-Ozawa (F-W-O) and Kissinger-Akahira-Sunose (K-A-S). The study provides significant insights into the crystallization behavior of PLA and PBS biocomposites.

Keywords: avrami model, bio-based reinforcement, dsc, gram-negative bacteria, gram-positive bacteria, isoconversional methods, non-isothermal crystallization kinetics, poly(butylene succinate), poly(lactic acid), antbactirial activity

Procedia PDF Downloads 71
590 Strategies For Management Of Massive Intraoperative Airway Haemorrhage Complicating Surgical Pulmonary Embolectomy

Authors: Nicholas Bayfield, Liam Bibo, Kaushelandra Rathore, Lucas Sanders, Mark Newman

Abstract:

INTRODUCTION: Surgical pulmonary embolectomy is an established therapy for acute pulmonary embolism causing right heart dysfunction and haemodynamic instability. Massive intraoperative airway haemorrhage is a rare complication of pulmonary embolectomy. We present our institutional experience with massive airway haemorrhage complicating pulmonary embolectomy and discuss optimal therapeutic strategies. METHODS: A retrospective review of emergent surgical pulmonary embolectomy patients was undertaken. Cases complicated by massive intra-operative airway haemorrhage were identified. Intra- and peri-operative management strategies were analysed and discussed. RESULTS: Of 76 patients undergoing emergent or salvage pulmonary embolectomy, three cases (3.9%) of massive intraoperative airway haemorrhage were identified. Haemorrhage always began on weaning from cardiopulmonary bypass. Successful management strategies involved intraoperative isolation of the side of bleeding, occluding the affected airway with an endobronchial blocker, institution of veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) and reversal of anticoagulation. Running the ECMO without heparinisation allows coagulation to occur. Airway haemorrhage was controlled within 24 hours of operation in all patients, allowing re-institution of dual lung ventilation and decannulation from ECMO. One case in which positive end-expiratory airway pressure was trialled initially was complicated by air embolism. Although airway haemorrhage was controlled successfully in all cases, all patients died in-hospital for reasons unrelated to the airway haemorrhage. CONCLUSION: Massive intraoperative airway haemorrhage during pulmonary embolectomy is a rare complication with potentially catastrophic outcomes. Re-perfusion alveolar and capillary injury is the likely aetiology. With a systematic approach to management, airway haemorrhage can be well controlled intra-operatively and often resolves within 24 hours. Stopping blood flow to the pulmonary arteries and support of oxygenation by the institution of VA ECMO is important. This management has been successful in our 3 cases.

Keywords: pulmonary embolectomy, cardiopulmonary bypass, cardiac surgery, pulmonary embolism

Procedia PDF Downloads 171