Search results for: plasma deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1786

Search results for: plasma deposition

1126 Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells

Authors: Shivaji M. Sonawane, N. B. Chaure

Abstract:

ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries.

Keywords: ohmic back contact, zinc telluride, electrodeposition, photovoltaic devices

Procedia PDF Downloads 210
1125 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 63
1124 Thermodynamics during the Deconfining Phase Transition

Authors: Amal Ait El Djoudi

Abstract:

A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition.

Keywords: equation of state, thermodynamics, deconfining phase transition, quark–gluon plasma (QGP)

Procedia PDF Downloads 410
1123 Influence of Counterface and Environmental Conditions on the Lubricity of Multilayer Graphene Coatings Produced on Nickel by Chemical Vapour Deposition

Authors: Iram Zahra

Abstract:

Friction and wear properties of multilayer graphene coatings (MLG) on nickel substrate were investigated at the macroscale, and different failure mechanisms working at the interface of nickel-graphene coatings were evaluated. Multilayer graphene coatings were produced on a nickel substrate using the atmospheric chemical vapour deposition (CVD) technique. Wear tests were performed on the pin-on-disk tribometer apparatus under dry air conditions, and using the saltwater solution, distilled water, and mineral oil lubricants and counterparts used in these wear tests were fabricated of stainless steel, chromium, and silicon nitride. The wear test parameters such as rotational speed, wear track diameter, temperature, relative humidity, and load were 60 rpm, 6 mm, 22˚C, 45%, and 2N, respectively. To analyse the friction and wear behaviour, coefficient of friction (COF) vs time curves were plotted, and the sliding surfaces of the samples and counterparts were examined using the optical microscope. Results indicated that graphene-coated nickel in mineral oil lubrication and dry conditions gave the minimum average value of COP (0.05) and wear track width ( ̴151 µm) against the three different types of counterparts. In contrast, uncoated nickel samples indicated a maximum wear track width ( ̴411 µm) and COF (0.5). Thorough investigation and analysis concluded that graphene-coated samples have two times lower COF and three times lower wear than the bare nickel samples. Furthermore, mechanical failures were significantly lower in the case of graphene-coated nickel. The overall findings suggested that multilayer graphene coatings have drastically decreased wear and friction on nickel substrate at the macroscale under various lubricating conditions and against different counterparts.

Keywords: friction, lubricity, multilayer graphene, sliding, wear

Procedia PDF Downloads 124
1122 Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering

Authors: Jerman Madonsela, Wallace Matizamhuka, Akiko Yamamoto, Ronald Machaka, Brendon Shongwe

Abstract:

In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed.

Keywords: biocompatibility, osteoblast, corrosion, surface wettability, protein adsorption

Procedia PDF Downloads 204
1121 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 183
1120 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing

Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee

Abstract:

AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.

Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase

Procedia PDF Downloads 83
1119 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features

Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed

Abstract:

Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.

Keywords: 3D printing, fluorescent, packaging, security

Procedia PDF Downloads 82
1118 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria

Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh

Abstract:

Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.

Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app

Procedia PDF Downloads 129
1117 Antioxidant Effects of Regular Aerobic Exercise in Postmenopausal Women with Type 2 Diabetes Mellitus

Authors: Parvin Farzanegi

Abstract:

Background: Diabetes is a metabolic disorder associated with increased free radicals and oxidative stress. The evidence indicates that physical inactivity is a modifiable behavioral risk factor for a wide range of chronic disorders such as diabetes mellitus. We investigated the effects of eight-week aerobic exercise on some antioxidant enzyme activities in postmenopausal women with type 2 diabetes mellitus (T2DM). Methods: sixteen sedentary postmenopausal women with T2DM were randomly assigned to the control (n=8; CG) and exercise group (n=8; EG). The exercise consisted of progressive aerobic training at a moderate intensity (50-70% of the maximum heart rate), for 25-60 min/day, and 3 days/week for 8 weeks. Age, sex, and body mass index were similar in the two groups. Antioxidant status was evaluated by measuring the superoxide dismutase (SOD) and catalase (CAT) activity. Also levels of malondialdehyde (MDA) as an index of lipid peroxidation and glucose in the plasma were measured before and after the intervention. Results: Following the 8 weeks of exercise training, the plasma MDA and glucose levels were significantly reduced in EG compared to CG (P=0.001 and P=0.011 respectively). However, SOD (P=0.017) and CAT (P=0.011) activities were increased in EG compared to CG. Conclusion: The present study suggests regular aerobic exercise appears can exert protective effects against oxidative stress due to its ability to increase antioxidant defense and glucose control in postmenopausal women with T2DM.

Keywords: aerobic exercise, antioxidant, diabetes mellitus, type 2

Procedia PDF Downloads 155
1116 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals

Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner

Abstract:

Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Keywords: exercise, BDNF, schizophrenia, time-points

Procedia PDF Downloads 236
1115 Directional Dust Deposition Measurements: The Influence of Seasonal Changes and the Meteorological Conditions Influencing in Witbank Area and Carletonville Area

Authors: Maphuti Georgina Kwata

Abstract:

Coal mining in Mpumalanga Province is known of contributing to the atmospheric pollution from various activities. Gold mining in North-West Province is known of also contributing to the atmospheric pollution especially with the production of radon gas. In this research directional dust deposition gauge was used to measure source of direction and meteorological data was used to determine the wind rose blowing and the influence of the seasonal changes. Fourteen months of dust collection was undertaken in Witbank Area and Carletonville Area. The results shows that the sources of direction for Ericson Dam its East in February 2010 and Tip Area shows that the source of direction its West in October 2010. In the East direction there were mining operations, power stations which contributed to the East to be the sources of direction. In the West direction there were smelters, power stations and agricultural activities which contributed for the source of direction to be the West direction for Driefontein Mine: East Recreational Village Club. The East of Leslie Williams hospital is the source of direction which also indicated that there dust generating activities such as mining operation, agricultural activities. The meteorological results for Emalahleni Area in summer and winter the wind rose blow with wind speed of 5-10 ms-1 from the East sector. Annual average for the wind rose blow its East South eastern sector with 20 ms-1 and day time the wind rose from northwestern sector with excess of 20 ms-1. The night time wind direction East-eastern direction with a maximum wind speed of 20 ms-1. The meteorogical results for Driefontein Mine show that North-western sector and north-eastern sector wind rose is blowing with 5-10 ms-1 win speed. Day time wind blows from the West sector and night time wind blows from the north sector. In summer the wind blows North-east sector with 5-10 ms-1 and winter wind blows from North-west and it’s also predominant. In spring wind blows from north-east. The conclusion is that not only mining operation where the directional dust deposit gauge were installed contributed to the source of direction also the power stations, smelters, and other activities nearby the mining operation contributed. The recommendations are the dust suppressant for unpaved roads should be used on a regular basis and there should be monitoring of the weather conditions (the wind speed and direction prior to blasting to ensure minimal emissions).

Keywords: directional dust deposition gauge, BS part 5 1747 dust deposit gauge, wind rose, wind blowing

Procedia PDF Downloads 492
1114 Subclinical Renal Damage Induced by High-Fat Diet in Young Rats

Authors: Larissa M. Vargas, Julia M. Sacchi, Renata O. Pereira, Lucas S. Asano, Iara C. Araújo, Patricia Fiorino, Vera Farah

Abstract:

The aim of this study was to evaluate the occurrence of subclinical organ injuries induced by high-fat diet. Male wistar rats (n=5/group) were divided in control diet group (CD), commercial rat chow, and hyperlipidic diet (30% lipids) group (HD) administrated during 8 weeks, starting after weaning. All the procedures followed the rules of the Committee of Research and Ethics of the Mackenzie University (CEUA Nº 077/03/2011). At the end of protocol the animals were euthanized by anesthesia overload and the left kidney was removed. Intrarenal lipid deposition was evaluated by histological analyses with oilred. Kidney slices were stained with picrosirius red to evaluate the area of the Bowman's capsule (AB) and space (SB), and glomerular tuft area (GT). The renal expression of sterol regulatory element–binding protein (SREBP-2) was performed by Western Blotting. Creatinine concentration (serum and urine) and lipid profile were determined by colorimetric kit (Labtest). At the end of the protocol there was no differences in body weight between the groups, however the HD showed a marked increase in lipid deposits, glomeruli and tubules, and biochemical analysis for cholesterol and triglycerides. Moreover, in the kidney, the high-fat diet induced a reduction in the AB (13%), GT (18%) and SB (17%) associated with a reduction in glomerular filtration rate (creatinine clearance). The renal SRBP2 expression was increased in HD group. These data suggests that consumption of high-fat diet starting in childhood is associated with subclinical renal damage and function.

Keywords: high-fat diet, kidney, intrarenal lipid deposition, SRBP2

Procedia PDF Downloads 277
1113 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films

Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska

Abstract:

Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).

Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity

Procedia PDF Downloads 277
1112 Readout Development of a LGAD-based Hybrid Detector for Microdosimetry (HDM)

Authors: Pierobon Enrico, Missiaggia Marta, Castelluzzo Michele, Tommasino Francesco, Ricci Leonardo, Scifoni Emanuele, Vincezo Monaco, Boscardin Maurizio, La Tessa Chiara

Abstract:

Clinical outcomes collected over the past three decades have suggested that ion therapy has the potential to be a treatment modality superior to conventional radiation for several types of cancer, including recurrences, as well as for other diseases. Although the results have been encouraging, numerous treatment uncertainties remain a major obstacle to the full exploitation of particle radiotherapy. To overcome therapy uncertainties optimizing treatment outcome, the best possible radiation quality description is of paramount importance linking radiation physical dose to biological effects. Microdosimetry was developed as a tool to improve the description of radiation quality. By recording the energy deposition at the micrometric scale (the typical size of a cell nucleus), this approach takes into account the non-deterministic nature of atomic and nuclear processes and creates a direct link between the dose deposited by radiation and the biological effect induced. Microdosimeters measure the spectrum of lineal energy y, defined as the energy deposition in the detector divided by most probable track length travelled by radiation. The latter is provided by the so-called “Mean Chord Length” (MCL) approximation, and it is related to the detector geometry. To improve the characterization of the radiation field quality, we define a new quantity replacing the MCL with the actual particle track length inside the microdosimeter. In order to measure this new quantity, we propose a two-stage detector consisting of a commercial Tissue Equivalent Proportional Counter (TEPC) and 4 layers of Low Gain Avalanche Detectors (LGADs) strips. The TEPC detector records the energy deposition in a region equivalent to 2 um of tissue, while the LGADs are very suitable for particle tracking because of the thickness thinnable down to tens of micrometers and fast response to ionizing radiation. The concept of HDM has been investigated and validated with Monte Carlo simulations. Currently, a dedicated readout is under development. This two stages detector will require two different systems to join complementary information for each event: energy deposition in the TEPC and respective track length recorded by LGADs tracker. This challenge is being addressed by implementing SoC (System on Chip) technology, relying on Field Programmable Gated Arrays (FPGAs) based on the Zynq architecture. TEPC readout consists of three different signal amplification legs and is carried out thanks to 3 ADCs mounted on a FPGA board. LGADs activated strip signal is processed thanks to dedicated chips, and finally, the activated strip is stored relying again on FPGA-based solutions. In this work, we will provide a detailed description of HDM geometry and the SoC solutions that we are implementing for the readout.

Keywords: particle tracking, ion therapy, low gain avalanche diode, tissue equivalent proportional counter, microdosimetry

Procedia PDF Downloads 151
1111 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 304
1110 The Ameliorative Effects of Nanoencapsulated Triterpenoids from Petri-Dish Cultured Antrodia cinnamomea on Reproductive Function of Diabetic Male Rats

Authors: Sabri Sudirman, Yuan-Hua Hsu, Zwe-Ling Kong

Abstract:

Male reproductive dysfunction is predominantly due to insulin resistance and hyperglycemia result in inflammation and oxidative stress. Furthermore, nanotechnology provides an alternative approach to improve the bioavailability of natural active food ingredients. Therefore, the aim of this study were to investigate nanoencapsulated triterpenoids from petri-dish cultured Antrodia cinnamomea (PAC) nanoparticles whether it could increase the bioavailability; in addition, the anti-inflammatory and anti-oxidative effects could more effectively ameliorate the reproductive function of diabetic male rats. First, PAC encapsulated in chitosan-silica nanoparticles (Nano-PAC) were prepared by biosilicification method. Scanning electron micrographs confirm the average particle size is about 30 nm, and the encapsulation efficiency is 83.7% by HPLC. Diabetic male Sprague-Dawley rats were induced by high fat diet (40% kcal from fat) and streptozotocin (35 mg/kg). Nano-PAC was administered by oral gavage in three doses (4, 8 and 20 mg/kg) for 6 weeks. Besides, metformin (300 mg/kg) and nanoparticles (Nano) were treated as the positive and negative control respectively. Results indicated that 4 mg/kg Nano-PAC administration for 6 weeks improved hyperglycemia, insulin resistance, and also reduced advanced glycation end products in plasma. In addition, 8 mg/kg Nano-PAC ameliorated morphological of testicular seminiferous tubules, sperm morphology and motility, reactive oxygen species production and mitochondrial membrane potential. Moreover, 20 mg/kg Nano-PAC restored reproductive endocrine system function and increased KiSS-1 level in plasma. In plasma or testis anti-oxidant superoxide dismutase, glutathione peroxidase and catalase were increased whereas malondialdehyde, as well as pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, and interferon-gamma, decreased. Most importantly, 8 mg/kg Nano-PAC down-regulated the oxidative stress induced c-Jun N-terminal kinase (JNK) signaling pathway. Our study successfully nanoencapsulated PAC to form nanoparticles and low-dose Nano-PAC improved diabetes-induced hyperglycemia, inflammation and oxidative stress to ameliorate the reproductive function of diabetic male rats.

Keywords: Antrodia cinnamomea, diabetes mellitus, male reproduction, nanoparticles

Procedia PDF Downloads 210
1109 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan

Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad

Abstract:

Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.

Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)

Procedia PDF Downloads 44
1108 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors

Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low

Abstract:

In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.

Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis

Procedia PDF Downloads 279
1107 Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells

Authors: N. Slepickova Kasalkova, P. Slepicka, L. Bacakova, V. Svorcik

Abstract:

Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable,  semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.

Keywords: poly(L-lactic acid), plasma treatment, surface characterization, cytocompatibility, human osteoblast, rat vascular smooth muscle cells, human stem cells

Procedia PDF Downloads 220
1106 The Effect of Sago Supplementation on Physiology and Performance in a Hot and Humid Environment

Authors: Che Jusoh, Mohd Rahimi, Toby Mundel

Abstract:

This study was designed to investigate the physiological and performance effects of a local Malaysian native starch (Metroxylin sago) on cycling in a hot (30°C) and humid (78% RH) environment. Eight male, non-heat acclimated, well-trained club cyclists (VO2max 65 ± 10 ml kg-1 min-1, peak aerobic power 397 ± 71 W) completed one familiarization and three experimental trials in our laboratory simulating cycling in environmental conditions of heat and humidity. Each trial consisted of 45 minutes at a fixed workload (55% VO2max) followed by a 15 minute time-trial (~75% VO2max). Sago in porridge form was consumed 1h before exercise (Pre), in gel form during exercise (Dur) and compared to a control trial (Con), using a random, cross-over design. Plasma glucose concentration did not differ between trials (P = 0.06) with an increase from 4.1 ± 0.6 to 6.1 ± 1.6 mmol-1 (Con), 4.8 ± 1.7 to 5.7 ± 0.4 mmol-1 (Pre) and 4.7 ± 0.8 to 6.9 ± 1.4 mmol-1 (Dur) from start to end of exercise. Plasma lactate increased (P = 0.02) from 1.6 ± 0.3 to 7.6 ± 2.2 mmol-1 (Con), 1.7 ± 0.5 to 7.3 ± 2.9 mmol-1 (Pre) and 1.6 ± 0.2 to 7.3 ± 1.8 mmol-1 (Dur) with no effect of trial (P = 0.74). No differences were found between trials for RER (P = 0.328) with values of 0.93 ± 0.05 (Con), 0.94 ± 0.04 (Pre) and 0.92 ± 0.04 (Dur). There were no differences between trials in rectal (P = 0.64) and skin (P = 0.56) temperatures; values reaching 39.1 ± 0.5°C (Con), 38.9 ± 0.4°C (Pre) and 39.1 ± 0.4°C (Dur) for rectal and 32.7 ± 1.2°C (Con), 32.8 ± 1.4°C (Pre) and 32.8 ± 1.8°C (Dur) for skin temperature, respectively. Heart rate (P = 0.07) also did not differ between trials but reached maximal values by the end of time-trial for all trials. Performance was unaffected by trial (P = 0.98) with the average work completed in 15 minutes being 221 ± 33 kJ (Con), 222 ± 31 kJ (Pre) and 219 ± 32 kJ (Dur), respectively. Therefore, the results of this investigation do not support consumption of sago, either before or during exercise, in altering the thermoregulatory, metabolic or performance responses in a hot and humid environment.

Keywords: hot and humid, physiology, time trial performance, thermoregulatory

Procedia PDF Downloads 387
1105 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 44
1104 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 370
1103 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 204
1102 Ovarian Surface Epithelium Receptors during Pregnancy and Estrus Cycle of Rats with Emphasis on Steroids and Gonadotropins Fluctuation

Authors: Salina Yahya Saddik

Abstract:

The present study is designed to demonstrate the Ovarian Surface Epithelial cells (OSE) Estrogen Receptor α (ERα) and Progesterone Receptor (PR) during pregnancy and estrous cycle in rat. Moreover, determination of the levels of plasma progesterone, estradiol, FSH and LH were also made. The levels of plasma progesterone, estradiol, FSH and LH concentrations were determined on days 7 (n=5), 14 (n=5), and 21(n=5) of pregnancy in three groups of rats and during the estrous cycle (n=5) using ELISA kit. Immunohistochemical method for PR and ERα expression was also made on the ovary. During pregnancy, FSH and LH remained low except at term when LH levels began to increase from 16 ng/ml to 47 ng/ml. Progesterone levels significantly exceeded estradiol values in all pregnant rats with a peak value of 202 ng/ml on day 14. Elevated progesterone levels were associated negatively with LH and estradiol levels during pregnancy. The levels of estradiol surged significantly on day 21. Immunohistochemistry of the ovary showed low levels of OSE cells staining positive for ERα expression. ERα positive cells were absent on day 7 and 14 of pregnancy, only day 21 recorded a very low percentage of immunostaining (0.5%) within the nuclei of OSE cells. On the contrary, immunostaining of PR was not observed within the nuclei of OSE cells in all groups of study. In conclusions, these results may suggest that progesterone effect during pregnancy seems to be overriding the positive effect of estrogens on OSE cells. High progesterone levels may have a direct negative effect on gonadotropin production and thereby it might inhibit events leading to both follicular development and OSE proliferation. Understanding the factors affecting OSE proliferation may help elucidating the mechanism(s) of assisted diseases such as ovarian cancer.

Keywords: ovarian surface, pregnancy, gonadotropins, steroids

Procedia PDF Downloads 297
1101 An In-Situ Integrated Micromachining System for Intricate Micro-Parts Machining

Authors: Shun-Tong Chen, Wei-Ping Huang, Hong-Ye Yang, Ming-Chieh Yeh, Chih-Wei Du

Abstract:

This study presents a novel versatile high-precision integrated micromachining system that combines contact and non-contact micromachining techniques to machine intricate micro-parts precisely. Two broad methods of micro fabrication-1) volume additive (micro co-deposition), and 2) volume subtractive (nanometric flycutting, ultrafine w-EDM (wire Electrical Discharge Machining), and micro honing) - are integrated in the developed micromachining system, and their effectiveness is verified. A multidirectional headstock that supports various machining orientations is designed to evaluate the feasibility of multifunctional micromachining. An exchangeable working-tank that allows for various machining mechanisms is also incorporated into the system. Hence, the micro tool and workpiece need not be unloaded or repositioned until all the planned tasks have been completed. By using the designed servo rotary mechanism, a nanometric flycutting approach with a concentric rotary accuracy of 5-nm is constructed and utilized with the system to machine a diffraction-grating element with a nano-metric scale V-groove array. To improve the wear resistance of the micro tool, the micro co-deposition function is used to provide a micro-abrasive coating by an electrochemical method. The construction of ultrafine w-EDM facilitates the fabrication of micro slots with a width of less than 20-µm on a hardened tool. The hardened tool can thus be employed as a micro honing-tool to hone a micro hole with an internal diameter of 200 µm on SKD-11 molded steel. Experimental results prove that intricate micro-parts can be in-situ manufactured with high-precision by the developed integrated micromachining system.

Keywords: integrated micromachining system, in-situ micromachining, nanometric flycutting, ultrafine w-EDM, micro honing

Procedia PDF Downloads 395
1100 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition

Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova

Abstract:

This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.

Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy

Procedia PDF Downloads 31
1099 Active Thermography Technique for High-Entropy Alloy Characterization Deposited with Cold Spray Technique

Authors: Nazanin Sheibanian, Raffaella Sesana, Sedat Ozbilen

Abstract:

In recent years, high-entropy alloys (HEAs) have attracted considerable attention due to their unique properties and potential applications. In this study, novel HEA coatings were prepared on Mg substrates using mechanically alloyed HEA powder feedstocks based on Al_(0.1-0.5)CoCrCuFeNi and MnCoCrCuFeNi multi-material systems. The coatings were deposited by the Cold Spray (CS) process using three different temperatures of the process gas (N2) (650°C, 750°C, and 850°C) to examine the effect of gas temperature on coating properties. In this study, Infrared Thermography (non-destructive) was examined as a possible quality control technique for HEA coatings applied to magnesium substrates. Active Thermography was employed to characterize coating properties using the thermal response of the coating. Various HEA chemical compositions and deposition temperatures have been investigated. As a part of this study, a comprehensive macro and microstructural analysis of Cold Spray (CS) HEA coatings has been conducted using macrophotography, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM+EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microhardness tests, roughness measurements, and porosity assessments. These analyses provided insight into phase identification, microstructure characterization, deposition, particle deformation behavior, bonding mechanisms, and identifying a possible relationship between physical properties and thermal responses. Based on the figures and tables, it is evident that the Maximum Relative Radiance (∆RMax) of each sample differs depending on both the chemical composition of HEA and the temperature at which Cold Spray is applied.

Keywords: active thermography, coating, cold spray, high- entropy alloy, material characterization

Procedia PDF Downloads 54
1098 Assessment of Water Quality of Selected Lakes of Coimbatore District, Tamil Nadu, India

Authors: K. P. Ganesh, T. Gomathi, L. Arul Pragasan

Abstract:

Degradation of lake water quality is one of the serious environmental threats for the last few decades, particularly, the lakes situated in and around urban and industrial areas. The present study aimed to analyze the physicochemical and biological parameters, and metal elements to determine the water quality of Krishnampathi, Ukkadam, Kurichi, Sulur and Singanallur Lakes. Of the 23 physicochemical parameters analyzed in the five lakes, except TDS, Chloride and Total hardness values all the 20 parameters were found within the prescribed limit as recommended by World Health Organization (WHO) and Bureau of Indian Standards (BIS). In case of biological parameter, both Total Coliform and Fecal Coliform bacteria (Escherichia coli) were identified. This indicates the contamination of lakes by fecal matter, and warns of potential of disease causing by viruses, bacteria and other organisms. Among the twelve metal elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Cd and Pb) determined by inductively coupled plasma-mass spectroscopy, except Cd (for all lakes), and Pb (for Ukkadam, Kurichi, Sulur & Singanallur), all the elements were found above the prescribed limits of BIS. The results of the present study revealed that all the five major lakes of Coimbatore were contaminated. It is recommended that proper implementation of the new wetland waste management system and monitoring of water quality be of the urgent need to sustain the water bodies for future generations.

Keywords: heavy metals, inductively coupled plasma-mass spectroscopy, physicochemical and biological parameters, water quality

Procedia PDF Downloads 164
1097 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition

Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang

Abstract:

The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.

Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer

Procedia PDF Downloads 432