Search results for: flourescence microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1836

Search results for: flourescence microscopy

1836 Neural Rendering Applied to Confocal Microscopy Images

Authors: Daniel Li

Abstract:

We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.

Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing

Procedia PDF Downloads 623
1835 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 49
1834 Modified Lot Quality Assurance Sampling (LQAS) Model for Quality Assessment of Malaria Parasite Microscopy and Rapid Diagnostic Tests in Kano, Nigeria

Authors: F. Sarkinfada, Dabo N. Tukur, Abbas A. Muaz, Adamu A. Yahuza

Abstract:

Appropriate Quality Assurance (QA) of parasite-based diagnosis of malaria to justify Artemisinin-based Combination Therapy (ACT) is essential for Malaria Programmes. In Low and Middle Income Countries (LMIC), resource constrain appears to be a major challenge in implementing the conventional QA system. We designed and implemented a modified LQAS model for QA of malaria parasite (MP) microscopy and RDT in a State Specialist Hospital (SSH) and a University Health Clinic (UHC) in Kano, Nigeria. The capacities of both facilities for MP microscopy and RDT were assessed before implementing a modified LQAS over a period of 3 months. Quality indicators comprising the qualities of blood film and staining, MP positivity rates, concordance rates, error rates (in terms of false positives and false negatives), sensitivity and specificity were monitored and evaluated. Seventy one percent (71%) of the basic requirements for malaria microscopy was available in both facilities, with the absence of certifies microscopists, SOPs and Quality Assurance mechanisms. A daily average of 16 to 32 blood samples were tested with a blood film staining quality of >70% recorded in both facilities. Using microscopy, the MP positivity rates were 50.46% and 19.44% in SSH and UHS respectively, while the MP positivity rates were 45.83% and 22.78% in SSH and UHS when RDT was used. Higher concordance rates of 88.90% and 93.98% were recorded in SSH and UHC respectively using microscopy, while lower rates of 74.07% and 80.58% in SSH and UHC were recorded when RDT was used. In both facilities, error rates were higher when RDT was used than with microscopy. Sensitivity and specificity were higher when microscopy was used (95% and 84% in SSH; 94% in UHC) than when RDT was used (72% and 76% in SSH; 78% and 81% in UHC). It could be feasible to implement an integrated QA model for MP microscopy and RDT using modified LQAS in Malaria Control Programmes in Low and Middle Income Countries that might have resource constrain for parasite-base diagnosis of malaria to justify ACT treatment.

Keywords: malaria, microscopy, quality assurance, RDT

Procedia PDF Downloads 196
1833 Mesoporous Material Nanofibers by Electrospinning

Authors: Sh. Sohrabnezhad, A. Jafarzadeh

Abstract:

In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.

Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques

Procedia PDF Downloads 220
1832 Combined Optical Coherence Microscopy and Spectrally Resolved Multiphoton Microscopy

Authors: Bjorn-Ole Meyer, Dominik Marti, Peter E. Andersen

Abstract:

A multimodal imaging system, combining spectrally resolved multiphoton microscopy (MPM) and optical coherence microscopy (OCM) is demonstrated. MPM and OCM are commonly integrated into multimodal imaging platforms to combine functional and morphological information. The MPM signals, such as two-photon fluorescence emission (TPFE) and signals created by second harmonic generation (SHG) are biomarkers which exhibit information on functional biological features such as the ratio of pyridine nucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) in the classification of cancerous tissue. While the spectrally resolved imaging allows for the study of biomarkers, using a spectrometer as a detector limits the imaging speed of the system significantly. To overcome those limitations, an OCM setup was added to the system, which allows for fast acquisition of structural information. Thus, after rapid imaging of larger specimens, navigation within the sample is possible. Subsequently, distinct features can be selected for further investigation using MPM. Additionally, by probing a different contrast, complementary information is obtained, and different biomarkers can be investigated. OCM images of tissue and cell samples are obtained, and distinctive features are evaluated using MPM to illustrate the benefits of the system.

Keywords: optical coherence microscopy, multiphoton microscopy, multimodal imaging, two-photon fluorescence emission

Procedia PDF Downloads 479
1831 Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene

Authors: Kostandinos Katsamangas, Fawad Inam

Abstract:

Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on de-wrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has a significant effect on de-wrinkling whereas SDS had minimal effect on the de-wrinkling of graphene.

Keywords: Graphene, de-wrinkling, dispersion, surfactants, scanning electronic microscopy

Procedia PDF Downloads 428
1830 Scanning Electrochemical Microscopy Studies of Magnesium-Iron Galvanic Couple

Authors: Akram Alfantazi, Tirdad Nickchi

Abstract:

Magnesium galvanic corrosion plays an important role in the commercialization of Mg alloys in the automobile industry. This study aims at visualizing the electrochemical activity of the magnesium surface being coupled with pure iron in sulfate-chloride solutions. Scanning electrochemical microscopy was used to monitor the chemical activity of the surface and the data was compared with the conventional corrosion results such as potentiodynamic polarization, linear polarization, and immersion tests. The SECM results showed that the chemical reactivity of Mg is higher than phosphate-permanganate-coated Mg. Regions in the vicinity of the galvanic couple boundary are very active in the magnesium phase and fully protected in the iron phase. Scanning electrochemical microscopy results showed that the conversion coating provided good corrosion resistance for magnesium in the short-term but fails at long-term testing.

Keywords: corrosion, galvanic corrosion, magnesium, scanning electrochemical microscopy

Procedia PDF Downloads 247
1829 Electrochemical Radiofrequency Scanning Tunneling Microscopy Measurements for Fingerprinting Single Electron Transfer Processes

Authors: Abhishek Kumar, Mohamed Awadein, Georg Gramse, Luyang Song, He Sun, Wolfgang Schofberger, Stefan Müllegger

Abstract:

Electron transfer is a crucial part of chemical reactions which drive everyday processes. With the help of an electro-chemical radio frequency scanning tunneling microscopy (EC-RF-STM) setup, we are observing single electron mediated oxidation-reduction processes in molecules like ferrocene and transition metal corroles. Combining the techniques of scanning microwave microscopy and cyclic voltammetry allows us to monitor such processes with attoampere sensitivity. A systematic study of such phenomena would be critical to understanding the nano-scale behavior of catalysts, molecular sensors, and batteries relevant to the development of novel material and energy applications.

Keywords: radiofrequency, STM, cyclic voltammetry, ferrocene

Procedia PDF Downloads 438
1828 Chromia-Carbon Nanocomposite Materials for Energy Storage Devices

Authors: Muhammad A. Nadeem, Shaheed Ullah

Abstract:

The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis.

Keywords: nanocomposites, transmission electron microscopy, non-faradic process

Procedia PDF Downloads 407
1827 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: crystallinity, glow discharge, nitriding, sputtering

Procedia PDF Downloads 384
1826 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 212
1825 Atomic Force Microscopy Studies of DNA Binding Properties of the Archaeal Mini Chromosome Maintenance Complex

Authors: Amna Abdalla Mohammed Khalid, Pietro Parisse, Silvia Onesti, Loredana Casalis

Abstract:

Basic cellular processes as DNA replication are crucial to cell life. Understanding at the molecular level the mechanisms that govern DNA replication in proliferating cells is fundamental to understand disease connected to genomic instabilities, as a genetic disease and cancer. A key step for DNA replication to take place, is unwinding the DNA double helix and this carried out by proteins called helicases. The archaeal MCM (minichromosome maintenance) complex from Methanothermobacter thermautotrophicus have being studied using Atomic Force Microscopy (AFM), imaging in air and liquid (Physiological environment). The accurate analysis of AFM topographic images allowed to understand the static conformations as well the interaction dynamic of MCM and DNA double helix in the present of ATP.

Keywords: DNA, protein-DNA interaction, MCM (mini chromosome manteinance) complex, atomic force microscopy (AFM)

Procedia PDF Downloads 279
1824 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes

Authors: Ozan Kahraman, Hao Feng

Abstract:

Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.

Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7

Procedia PDF Downloads 247
1823 Hybrid Bimodal Magnetic Force Microscopy

Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan

Abstract:

Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.

Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM

Procedia PDF Downloads 41
1822 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique

Authors: Hiroyuki Aoki

Abstract:

The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.

Keywords: polymer materials, single molecule, super-resolution techniques, conformation

Procedia PDF Downloads 276
1821 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles

Authors: Huseyin Kavas

Abstract:

Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.

Keywords: magnetic materials, nanostructures, self-assembly, FMR

Procedia PDF Downloads 76
1820 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles

Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan

Abstract:

We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.

Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques

Procedia PDF Downloads 368
1819 New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections

Authors: Lise Paule Labéjof, Raíza Sales Pereira Bizerra, Galileu Barbosa Costa, Thaísa Barros dos Santos

Abstract:

Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic.

Keywords: image quality, microscopy research, staining technique, ultra thin section

Procedia PDF Downloads 401
1818 Rapid Biosynthesis of Silver-Montmorillonite Nanocomposite Using Water Extract of Satureja hortensis L. and Evaluation of the Antibacterial Capacities

Authors: Sajjad Sedaghat

Abstract:

In this work, facile and green biosynthesis and characterization of silver–montmorillonite (MMT) nanocomposite is reported at room temperature. Silver nanoparticles (Ag–NPs) were synthesized into the interlamellar space of (MMT) by using water extract of Satureja hortensis L as reducing agent. The MMT was suspended in the aqueous AgNO₃ solution, and after the absorption of silver ions, Ag⁺ was reduced using water extract of Satureja hortensis L to Ag°. Evaluation of the antibacterial properties are also reported. The nanocomposite was characterized by ultraviolet-visible spectroscopy (UV–Vis), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM study showed the formation of nanocomposite using water extract of Satureja hortensis L in the 4.88 – 26.70 nm range and average particles size were 15.79 nm also the XRD study showed that the particles have a face-centered cubic (fcc) structure. The nanocomposite showed the antibacterial properties against Gram-positive and Gram-negative bacteria.

Keywords: antibacterial effects, montmorillonite, Satureja hortensis l, transmission electron microscopy, nanocomposite

Procedia PDF Downloads 133
1817 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling

Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil

Abstract:

The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.

Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody

Procedia PDF Downloads 376
1816 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion

Procedia PDF Downloads 186
1815 Annealing of the Contact between Graphene and Metal: Electrical and Raman Study

Authors: A. Sakavičius, A. Lukša, V. Nargelienė, V. Bukauskas, G. Astromskas, A. Šetkus

Abstract:

We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au.

Keywords: Au/Graphene contacts, graphene, Kelvin force probe microscopy, NiC/Graphene contacts, Ni/Graphene contacts, Raman spectroscopy

Procedia PDF Downloads 270
1814 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources

Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov

Abstract:

The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.

Keywords: cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources

Procedia PDF Downloads 318
1813 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy

Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu

Abstract:

Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.

Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy

Procedia PDF Downloads 229
1812 Structural and Morphological Study of Europium Doped ZnO

Authors: Abdelhak Nouri

Abstract:

Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.

Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO

Procedia PDF Downloads 147
1811 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant

Authors: Uma Shanker, Vidhisha Jassal

Abstract:

A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.

Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles

Procedia PDF Downloads 494
1810 Characterization of Nano Coefficient of Friction through Lfm of Superhydrophobic/Oleophobic Coatings Applied on 316l Ss

Authors: Hamza Shams, Sajid Saleem, Bilal A. Siddiqui

Abstract:

This paper investigates the coefficient of friction at nano-levels of commercially available superhydrophobic/oleophobic coatings when applied over 316L SS. 316L Stainless Steel or Marine Stainless Steel has been selected for its widespread uses in structures, marine and biomedical applications. The coatings were investigated in harsh sand-storm and sea water environments. The particle size of the sand during the procedure was carefully selected to simulate sand-storm conditions. Sand speed during the procedure was carefully modulated to simulate actual wind speed during a sand-storm. Sample preparation was carried out using prescribed methodology by the coating manufacturer. The coating’s adhesion and thickness was verified before and after the experiment with the use of Scanning Electron Microscopy (SEM). The value for nano-level coefficient of friction has been determined using Lateral Force Microscopy (LFM). The analysis has been used to formulate a value of friction coefficient which in turn is associative of the amount of wear the coating can bear before the exposure of the base substrate to the harsh environment. The analysis aims to validate the coefficient of friction value as marketed by the coating manufacturers and more importantly test the coating in real-life applications to justify its use. It is expected that the coating would resist exposure to the harsh environment for a considerable amount of time. Further, it would prevent the sample from getting corroded in the process.

Keywords: 316L SS, scanning electron microscopy, lateral force microscopy, marine stainless steel, oleophobic coating, superhydrophobic coating

Procedia PDF Downloads 460
1809 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry

Authors: M. A. Deyab

Abstract:

The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.

Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion

Procedia PDF Downloads 139
1808 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis, tensile tests in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery

Procedia PDF Downloads 35
1807 Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation

Authors: Zhang Haitao

Abstract:

The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke.

Keywords: nanoparticle mordenite, carbonylation, dimethyl ether, methyl acetate

Procedia PDF Downloads 107