Search results for: mechanical stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7068

Search results for: mechanical stress

6408 Effectiveness of Shock Wave Therapy Versus Intermittent Mechanical Traction on Mechanical Low Back Pain and Disabilities

Authors: Ahmed Assem Abd El Rahim

Abstract:

Background: Mechanical low back pain is serious physical and social health problem. Purpose: To examine impact of shock wave therapy versus intermittent mechanical traction on mechanical LBP, and disabilities. Subjects: 60 mechanical LBP male studied cases years old 20-35 years were assigned randomly into 3 groups, Picked up from Sohag university orthopedic hospital outpatient clinic. Methods: (Study Group) A: 20 studied cases underwent shock wave therapy plus conventional physical therapy. (Study Group) B: twenty studied cases underwent intermittent mechanical traction plus conventional physical therapy. (Control Group) C: 20 patients underwent conventional physical therapy alone. Three sessions were applied weekly for four weeks. Pain was quantified using McGill Pain Questionnaire, Roland Morris Disability Questionnaire was used for measuring disability, and the ROM was evaluated by (BROM) device pre- & post-therapy. Results: Groups (A, B & C) found a reduction in pain & disability & rise in their in flexion and extension ROM after end of 4 weeks of program. Mean values of pain scale after therapy were 15.3, 9.47, and 23.07 in groups A, B, & C. mean values of Disability scale after therapy were 8.44, 4.87, 11.8in groups A, B & C. mean values of ROM of flexion were 25.53, 29.06, & 23.9 in groups A, B & C. mean values of ROM of extension were 11.73, 15.53 & 9.85 in groups A, B & C. studied cases who received intermittent mechanical traction & conventional physical therapy (group B), found reduction in pain & disability & improvement in ROM of flexion & extension value (P<0.001) after therapy program. Conclusion: Shock wave therapy and intermittent mechanical traction, as well as conventional physical treatment, can be beneficial in studied cases with mechanical LBP.

Keywords: mechanical low back pain, shock wave, mechanical, low back pain

Procedia PDF Downloads 51
6407 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation

Authors: Ahmed M. Eltohamy

Abstract:

In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.

Keywords: geogrid reinforcement, prestress, strip footing, bearing capacity

Procedia PDF Downloads 302
6406 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression

Procedia PDF Downloads 370
6405 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 62
6404 Evaluation on Heat and Drought Tolerance Capacity of Chickpea

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions.

Keywords: irrigation, rainfed, stress susceptibility, tolerance indice

Procedia PDF Downloads 236
6403 The Effectiveness of Intensive Short-Term Dynamic Psychotherapy on Ambiguity Tolerance, Emotional Intelligence and Stress Coping Strategies in Financial Market Traders

Authors: Ahmadreza Jabalameli, Mohammad Ebrahimpour Borujeni

Abstract:

This study aims to evaluate the effectiveness of intensive short-term dynamic psychotherapy (ISTDP) on ambiguity tolerance, emotional intelligence and stress coping strategies in financial market traders. The methodology of this study was quasi-experimental, pre-test and post-test with control group. The statistical population of this study includes all students at Jabalameli Information Technology Academy in 2022. Among them, 30 people were selected by voluntary sampling through interviews, and were randomly divided into two experimental and control groups of 51 people. And the components were measured according to McLain Ambiguity Tolerance Questionnaire, Bar-On Emotional Intelligence and Lazarus Stress Coping Strategies. The data were obtained by SPSS software and were analyzed by using multivariate analysis of covariance. The results indicate that intensive short-term dynamic psychotherapy influences the emotional intelligence as well as the ambiguity tolerance of traders.

Keywords: ISTDP, ambiguity tolerance, trading, emotional intelligence, stress

Procedia PDF Downloads 78
6402 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model

Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche

Abstract:

Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.

Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins

Procedia PDF Downloads 290
6401 Elevated Temperature Shot Peening for M50 Steel

Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang

Abstract:

As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.

Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature

Procedia PDF Downloads 451
6400 Hydrogen Storage in Salt Caverns: Rock Mechanical Design

Authors: Dirk Zapf, Bastian Leuger

Abstract:

For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns.

Keywords: cavern design, hydrogen, rock salt, thermomechanical coupled calculations

Procedia PDF Downloads 116
6399 Quality of Life among Mothers of Children with Autism Spectrum Disorder in Saudi Arabia

Authors: Asma Alsaleh, Kara Makara

Abstract:

Autistic spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and interaction. Besides presenting challenges for the ASD individual, the condition can entail negative outcomes for those who care for them, most often mothers. While this issue has been studied substantially in Western society, less is known about how mothers in the Arab world are affected by raising an ASD child. This study sought to gain insights into this area by assessing quality of life and stress in mothers with (n = 25) and without (n = 25) ASD children in Riyadh (Saudi Arabia) by using, respectively, the World Health Organization Quality of Life Assessment-BREF (WHOQOL-BREF) and the Parenting Stress Index-Short Form (PSI-SF). Data pertaining to income and education were also attained to investigate how socioeconomic factors interact with the above-mentioned variables. The analysis revealed that total stress scores and scores on the individual subscales of the PSI-SF were significantly higher for the mothers with an ASD child compared to those without an ASD child, though the opposite was true of quality of life scores. Moreover, increased income was associated with increased quality of life and decreased stress. While there were not main effects of education, there were interactions between education, whether children were ASD or non-ASD, and the outcome variables. These results suggest that mothers of ASD children in an Arab culture are at increased risk of negative outcomes relative to mothers of typically developing children, and, therefore, this study may act as a foundation for the delivery of interventions to assist mothers in this position.

Keywords: autism, education, income, mothers, quality of life, stress

Procedia PDF Downloads 274
6398 Prediction of Index-Mechanical Properties of Pyroclastic Rock Utilizing Electrical Resistivity Method

Authors: İsmail İnce

Abstract:

The aim of this study is to determine index and mechanical properties of pyroclastic rock in a practical way by means of electrical resistivity method. For this purpose, electrical resistivity, uniaxial compressive strength, point load strength, P-wave velocity, density and porosity values of 10 different pyroclastic rocks were measured in the laboratory. A simple regression analysis was made among the index-mechanical properties of the samples compatible with electrical resistivity values. A strong exponentially relation was found between index-mechanical properties and electrical resistivity values. The electrical resistivity method can be used to assess the engineering properties of the rock from which it is difficult to obtain regular shaped samples as a non-destructive method.

Keywords: electrical resistivity, index-mechanical properties, pyroclastic rocks, regression analysis

Procedia PDF Downloads 468
6397 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation

Authors: Sherif D. El Wakil, John Rice

Abstract:

The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.

Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity

Procedia PDF Downloads 316
6396 Low Plastic Deformation Energy to Induce High Superficial Strain on AZ31 Magnesium Alloy Sheet

Authors: Emigdio Mendoza, Patricia Fernandez, Cristian Gomez

Abstract:

Magnesium alloys have generated great interest for several industrial applications because their high specific strength and low density make them a very attractive alternative for the manufacture of various components; however, these alloys present a limitation with their hexagonal crystal structure that limits the deformation mechanisms at room temperature likewise the molding components alternatives, it is for this reason that severe plastic deformation processes have taken a huge relevance recently because these, allow high deformation rates to be applied that induce microstructural changes where the deficiency in the sliding systems is compensated with crystallographic grains reorientations or crystal twinning. The present study reports a statistical analysis of process temperature, number of passes and shear angle with respect to the shear stress in severe plastic deformation process denominated 'Equal Channel Angular Sheet Drawing (ECASD)' applied to the magnesium alloy AZ31B through Python Statsmodels libraries, additionally a Post-Hoc range test is performed using the Tukey statistical test. Statistical results show that each variable has a p-value lower than 0.05, which allows comparing the average values of shear stresses obtained, which are in the range of 7.37 MPa to 12.23 MPa, lower values in comparison to others severe plastic deformation processes reported in the literature, considering a value of 157.53 MPa as the average creep stress for AZ31B alloy. However, a higher stress level is required when the sheets are processed using a shear angle of 150°, due to a higher level of adjustment applied for the shear die of 150°. Temperature and shear passes are important variables as well, but there is no significant impact on the level of stress applied during the ECASD process. In the processing of AZ31B magnesium alloy sheets, ECASD technique is evidenced as a viable alternative in the modification of the elasto-plastic properties of this alloy, promoting the weakening of the basal texture, which means, a better response to deformation, whereby, during the manufacture of parts by drawing or stamping processes the formation of cracks on the surface can be reduced, presenting an adequate mechanical performance.

Keywords: plastic deformation, strain, sheet drawing, magnesium

Procedia PDF Downloads 107
6395 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites

Authors: Hesham Moustafa, Ahmed M. Youssef

Abstract:

The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.

Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability

Procedia PDF Downloads 80
6394 A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected.

Keywords: roller-bending, static-bending, stress-conditions, analytical-modeling

Procedia PDF Downloads 246
6393 Examining the Relationship Between Job Stress And Burnout Among Academic Staff During The Covid-19 Pandemic; The Importance Of Emotional Intelligence

Authors: Parisa Gharibi Khoshkar

Abstract:

The global outbreak of Covid-19 forced a swift shift in the education sector, transitioning from traditional in-person settings to remote online setups in a short period. This abrupt change, coupled with health risks and other stressors such as the lack of social interaction, has had a negative impact on academic staff, leading to increased job-related stress and psychological pressures that can result in burnout. To address this, the current research aims to investigate the relationship between job stress and burnout among academic staff in Hebron, Palestine. Furthermore, this study examines the moderating role of emotional intelligence to gain a deeper understanding of its effects in reducing burnout among academic staff and teachers. This research posits that emotional intelligence plays a vital role in helping individuals manage job-related stress and anxiety, thereby preventing burnout. Using a self-administered questionnaire, the study gathered data from 185 samples comprising teachers and administrative staff from two universities in Hebron. The data was analyzed using moderated regression analysis, ANOVA model, and interaction plots. The findings indicate that work-related stress has a direct and significant influence on burnout. Moreover, the current results highlight that emotional intelligence serves as a key determinant in managing the negative effects of the pandemic-induced stress that can lead to burnout among individuals. Given the high-demand nature of the education sector, this research strongly recommends that school authorities take proactive measures to provide much-needed support to academic staff, enabling them to better cope with job stress and fostering an environment that prioritizes individuals' wellbeing. The results of this study hold practical implications for both scholars and practitioners, as they highlight the importance of emotional intelligence in managing stress and anxiety effectively. Understanding the significance of emotional intelligence can aid in implementing targeted interventions and support systems to promote the well-being and resilience of academic staff amidst challenging circumstances.

Keywords: job stress, burnout, employee wellbeing, emotional intelligence, industrial organizational psychology, human resource management, organizational psychology

Procedia PDF Downloads 67
6392 Fracture And Fatigue Crack Growth Analysis and Modeling

Authors: Volkmar Nolting

Abstract:

Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.

Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring

Procedia PDF Downloads 42
6391 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 313
6390 Sustainability Modelling and Sustainability Evaluation of a Mechanical System in a Concurrent Engineering Environment: A Digraph and Matrix Approach

Authors: Anand Ankush, Wani Mohammed Farooq

Abstract:

A procedure based on digraph and matrix method is developed for modelling and evaluation of sustainability of Mechanical System in a concurrent engineering environment.The sustainability parameters of a Mechanical System are identified and are called sustainability attributes. Consideration of attributes and their interrelations is rudiment in modeling and evaluation of sustainability index. Sustainability attributes of a Mechanical System are modelled in termsof sustainability digraph. The graph is represented by a one-to-one matrix for sustainability expression which is based on sustainability attributes. A variable sustainability relationship permanent matrix is defined to develop sustainability expression(VPF-t) which is also useful in comparing two systems in a concurrent environment. The sustainability index of Mechanical System is obtained from permanent of matrix by substituting the numerical values of attributes and their interrelations. A higher value of index implies better sustainability of system.The ideal value of index is obtained from matrix expression which is useful in assessing relative sustainability of a Mechanical System in a concurrent engineering environment. The procedure is not only useful for evaluation of sustainability of a Mechanical System at conceptual design stage but can also be used for design and development of systems at system design stage. A step-by-step procedure for evaluation of sustainability index is also suggested and is illustrated by means of an example.

Keywords: digraph, matrix method, mechanical system, sustainability

Procedia PDF Downloads 358
6389 Application of Arbuscular Mycorrhizal Fungi as Biologically Based Strategy for Mitigation of Adverse Impact of Salt Stress on Wheat

Authors: Abeer Hashem, Khalid F. Almutairi, Ulkar Ibrahimova, Elsayed Fathi Abdallah

Abstract:

Salinity poses a significant challenge to wheat production, necessitating the exploration of strategies to mitigate its adverse effects. The present investigation aims to study the impact of arbuscular mycorrhizal fungi (AMF) application to improve plant tolerance in terms of growth, carbohydrate, photosynthetic characteristics, and antioxidant enzyme activities under salt stress conditions. So, a randomized complete block design with five replications was employed comprising various treatments of AMF application under salinity stress (200mM), and control samples were used for each treatment. The obtained results demonstrated significantly that AMF used in this study showed beneficial impacts in all parameters used as sensitive monitor for relation of plant-salt microbe interaction. The root colonization by AMF showed the highest plant growth criteria, relative water content, soluble sugar, starch, and total non-structural carbohydrates under both control and salinity stress conditions. Moreover, the application of AMF-treated plants showed the highest soluble protein concentration and activity in leaves and antioxidant enzymes (catalase, superoxide dismutase, guaiacol peroxidase). These findings highlight the potential impact of AMF application as a biologically based strategy to manage the mitigation of salt stress on wheat, which increases the availability of many salt marsh habitats for sustainable agriculture of such strategy crops.

Keywords: arbuscular mycorrhizal fungi, salt stress, plant growth criteria, soluble protein, antioxidant enzymes, wheat plant

Procedia PDF Downloads 41
6388 Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material

Authors: Moudar H. A. Zgoul, Amin Al Zamer

Abstract:

Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service.

Keywords: adhesive materials, analysis, hybrid adhesives, mechanical properties, simulation

Procedia PDF Downloads 414
6387 The Effect of Vanadium Addition on the Mechanical Properties and Microstructure of A319 Aluminum Alloy

Authors: Musbah Mahfoud, Ibtisam Mustafa

Abstract:

The present work highlights some of our up-to-date findings on the effect of vanadium addition on the mechanical properties and microstructure of one of the most versatile aluminum-silicon alloys, i.e., A319. In terms of microstructure, it was found that in addition to its ability to refine some of the constituent phases, vanadium also helps in retarding the formation of some of the detrimental intermetallic compounds, such as those involving Al-Fe-Si. Preliminary studies of the effect of vanadium on the mechanical properties of A319 have shown that vanadium additions up to 0.4% cause slight increase in the yield and tensile strength. However, the vanadium addition did not show a significant effect on the hardness of the alloy.

Keywords: aluminium, vanadium, intermetallic, microstructure, mechanical properties

Procedia PDF Downloads 629
6386 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow

Authors: Kirti Singh, Kesheo Prasad

Abstract:

A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.

Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress

Procedia PDF Downloads 97
6385 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin

Authors: F. Siahmed, A. Lounis, L. Faghi

Abstract:

The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).

Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin

Procedia PDF Downloads 442
6384 Evaluation of Relationship between Job Stress Dimensions with Occupational Accidents in Industrial Factories in Southwest of Iran

Authors: Ali Ahmadi, Maryam Abbasi, Mohammad Mehdi Parsaei

Abstract:

Background: Stress in the workplace today is one of the most important public health concerns and a serious threat to the health of the workforce worldwide. Occupational stress can cause occupational events and reduce quality of life. As a result, it has a very undesirable impact on the performance of organizations, companies, and their human resources. This study aimed to evaluate the relationship between job stress dimensions and occupational accidents in industrial factories in Southwest Iran. Materials and Methods: This cross-sectional study was conducted among 200 workers in the summer of 2023 in the Southwest of Iran. To select participants, we used a convenience sampling method. The research tools in this study were the Health and Safety Executive (HSE) stress questionnaire with 35 questions and 7 dimensions and demographic information. A high score on this questionnaire indicates that there is low job stress and pressure. All workers completed the informed consent form. Univariate analysis was performed using chi-square and T-test. Multiple regression analysis was used to estimate the odds ratios (OR) and 95% confidence interval (CI) for the association of stress-related factors with job accidents in participants. Stata 14.0 software was used for analysis. Results: The mean age of the participants was 39.81(6.36) years. The prevalence of job accidents was 28.0% (95%CI: 21.0, 34.0). Based on the results of the multiple logistic regression with the adjustment of the effect of the confounding variables, one increase in the score of the demand dimension had a protective impact on the risk of job accidents(aOR=0.91,95%CI:0.85-0.95). Additionally, an increase in one of the scores of the managerial support (aOR=0.89, 95% CI: 0.83-0.95) and peer support (aOR=0.76, 95%CI: 0.67-87) dimensions was associated with a lower number of job accidents. Among dimensions, an increase in the score of relationship (aOR=0.89, 95%CI: 0.80-0.98) and change (aOR=0.86, 95%CI: 0.74-0.96) reduced the odds of the accident's occurrence among the workers by 11% and 16%, respectively. However, there was no significant association between role and control dimensions and the job accident (p>0.05). Conclusions: The results show that the prevalence of job accidents was alarmingly high. Our results suggested that an increase in scores of dimensions HSE questioners is significantly associated with a decrease the accident occurrence in the workplace. Therefore, planning to address stressful factors in the workplace seems necessary to prevent occupational accidents.

Keywords: HSE, Iran, job stress occupational accident, safety, occupational health

Procedia PDF Downloads 65
6383 The Role of Physical Activities in Improving the Psychological State, Reducing Stress and Anxiety Resulting from the Corona (Covid-19) Pandemic

Authors: Saidia Houari

Abstract:

The current coronavirus pandemic (COVID-19) is a special and unusual reality. It can affect people physically, but also psychologically. Indeed, in such a context, many people will experience reactions of stress, anxiety and depression, and Sports is known to be a great in improving the effectiveness of the nervous system and mental health. Professor Ango Frubuze“many studies proved that sports play an important role in fighting psychological tension and some other psychological problems, such as depression and sleep difficulties, but on condition of practicing them properly,choosing the kind that generates comfort and happiness for man “ .The sports university professor in the German city of Cologne added that the effort exerted during the exercise works on restoring balance to the stress hormones like cortisol.The case report provides an insight into the COVID-19 current situation and represents a picture of the current state of mental health and an overview of novel coronavirus (Covid-19) outbreaks in some countries of the world. Some procedures taken to combat the coronavirus. We proposed the practice of physical activities during the quarantine period, and we showed their importance and their positive effects.

Keywords: COVID-19, psycholiqical impacts, stress, physical activities

Procedia PDF Downloads 72
6382 Railway Composite Flooring Design: Numerical Simulation and Experimental Studies

Authors: O. Lopez, F. Pedro, A. Tadeu, J. Antonio, A. Coelho

Abstract:

The future of the railway industry lies in the innovation of lighter, more efficient and more sustainable trains. Weight optimizations in railway vehicles allow reducing power consumption and CO₂ emissions, increasing the efficiency of the engines and the maximum speed reached. Additionally, they reduce wear of wheels and rails, increase the space available for passengers, etc. Among the various systems that integrate railway interiors, the flooring system is one which has greater impact both on passenger safety and comfort, as well as on the weight of the interior systems. Due to the high weight saving potential, relative high mechanical resistance, good acoustic and thermal performance, ease of modular design, cost-effectiveness and long life, the use of new sustainable composite materials and panels provide the latest innovations for competitive solutions in the development of flooring systems. However, one of the main drawbacks of the flooring systems is their relatively poor resistance to point loads. Point loads in railway interiors can be caused by passengers or by components fixed to the flooring system, such as seats and restraint systems, handrails, etc. In this way, they can originate higher fatigue solicitations under service loads or zones with high stress concentrations under exceptional loads (higher longitudinal, transverse and vertical accelerations), thus reducing its useful life. Therefore, to verify all the mechanical and functional requirements of the flooring systems, many physical prototypes would be created during the design phase, with all of the high costs associated with it. Nowadays, the use of virtual prototyping methods by computer-aided design (CAD) and computer-aided engineering (CAE) softwares allow validating a product before committing to making physical test prototypes. The scope of this work was to current computer tools and integrate the processes of innovation, development, and manufacturing to reduce the time from design to finished product and optimise the development of the product for higher levels of performance and reliability. In this case, the mechanical response of several sandwich panels with different cores, polystyrene foams, and composite corks, were assessed, to optimise the weight and the mechanical performance of a flooring solution for railways. Sandwich panels with aluminum face sheets were tested to characterise its mechanical performance and determine the polystyrene foam and cork properties when used as inner cores. Then, a railway flooring solution was fully modelled (including the elastomer pads to provide the required vibration isolation from the car body) and perform structural simulations using FEM analysis to comply all the technical product specifications for the supply of a flooring system. Zones with high stress concentrations are studied and tested. The influence of vibration modes on the comfort level and stability is discussed. The information obtained with the computer tools was then completed with several mechanical tests performed on some solutions, and on specific components. The results of the numerical simulations and experimental campaign carried out are presented in this paper. This research work was performed as part of the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through COMPETE 2020.

Keywords: cork agglomerate core, mechanical performance, numerical simulation, railway flooring system

Procedia PDF Downloads 177
6381 Co-Existence of Central Serous Retinopathy and Diabetic Retinopathy: A Diagnostic Dilemma

Authors: Avantika Verma

Abstract:

Diabetic retinopathy (DR) and Central serous retinopathy (CSR) are 2 distinct entities, with difference in age of presentation, eitiopathogenesis and clinical features, but when occurring together, can be a diagnostic dilemma and requires careful evaluation. Case study of 3 patients with long standing diabetes (>15yrs) and features of Central serous retinopathy was done at Bangalore West Lions Superspeciality Eye Hospital, Bangalore, India in 2013. Even though diabetic retinopathy and CSR have different pathologies, they can coexist. The reason for coexistence could be the following: A patient with CSR as a young adult could develop DR in later years. Stress could be the contributing factor in older patient with diabetes.Stress could be a common factor for both, as it is one of the important factors in the pathogenesis of Maturity Onset Diabetes Miletus (MODY). In any situation, a careful evaluation is necessary to differentiate the cause of fundus picture, as treatment differs for the two diseases.

Keywords: central serous retinopathy, diabetic retinopathy, existence, stress

Procedia PDF Downloads 223
6380 The Impact of Alkaline Water Supplemented with Sodium Ascorbate on Glucose and Cortisol Levels in the Blood Serum During Acute Hyperthermic Exposure of White Laboratory Rats

Authors: Valdrina Ajeti, Icko Gjorgoski

Abstract:

Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in organisms. Because of its antioxidant effect, alkaline water (AW) is the focus of scientific interest. Adding AW and co-treatment with sodium ascorbate (SA) is expected for the organism to act preventively to hyperthermic stress. To investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, white female Wistar laboratory rats, divided into three groups of 10 individuals, were exposed to heat for 80 min, for 21 days. Acute hyperthermic exposure at 41˚C was a cause for oxidative stress. The first group is the control group, the second group is treated with AW, and the third group with AW and SA. Plasma glucose levels were determined by colorimetric method and cortisol was measured using the enzyme-linked immunosorbent assay method. The comparison of the means was made using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results show that levels of glucose and cortisol have been increased in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA significantly increased the levels of glucose and cortisol on the 21st day after treatment showing a synergistic effect. The individual action of AW, as well as synergism with SA, caused a high protective effect on oxidative damage.

Keywords: alkaline water, sodium ascorbate, hyperthermic stress, glucose, cortisol

Procedia PDF Downloads 125
6379 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and micro fractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by a different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with the higher ratio of steel scrap in the charge.

Keywords: nodular cast iron, silicon carbide, microstructure, mechanical properties

Procedia PDF Downloads 578