Search results for: chemical aging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5154

Search results for: chemical aging

4494 Comparative Analysis of Chemical Composition of Two Ecotypes of Achillea wilhelmsii in Iran

Authors: L. Amjad, M. Torki, F. Yazdani

Abstract:

The genus Achillea belongs to Asteraceae family. This plant is widely found in different regions of Iran and used for treatment of different diseases. The aim of this study was to evaluate the chemical composition of Achillea wilhelmsii in Iran. The aerial parts of A. wilhelmsii collected from Shahrekord and Mazandaran Province, Iran and they were analyzed by using GC/MS. The 23, 13 compounds were identified in dried aerial parts of A. wilhelmsii from Shahrekord and Mazandaran, respectively. The major components in Shahrekord were: 1,8-Cineole (35.532%), α-pinene (22.885%), Camphor (12.238%), Camphene (8.691%), Piperitol (3.748%), Ethanone (2.274%) and The major components in Mazandaran were: 1,8-Cineole (52.951%), α-pinene (13.985%), Camphor (11.824%), Camphene (8.531%), Terpineol (2.533%), α-Thujone (2.330%). According to the results, difference in essential oil components of Achillea species in different regions may be due to the several factors that leads to change in compositions of plant.

Keywords: achillea wilhelmsii, essential oils, GC/MS

Procedia PDF Downloads 367
4493 Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy

Authors: Hina Verma, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff, Yunlin Jacques Zheng, Philippe Jonnard

Abstract:

To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively.

Keywords: buried interfaces, hard X-ray emission spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy

Procedia PDF Downloads 143
4492 Concrete Compressive Strengths of Major Existing Buildings in Kuwait

Authors: Zafer Sakka, Husain Al-Khaiat

Abstract:

Due to social and economic considerations, owners all over the world desire to keep and use existing structures, including aging ones. However, these structures, especially those that are dear, need accurate condition assessment, and proper safety evaluation. More than half of the budget spent on construction activities in developed countries is related to the repair and maintenance of these reinforced concrete (R/C) structures. Also, periodical evaluation and assessment of relatively old concrete structures are vital and imperative. If the evaluation and assessment of structural components of a particular aging R/C structure reveal that repairs are essential for these components, these repairs should not be delayed. Delaying the repairs has the potential of losing serviceability of the whole structure and/or causing total failure and collapse of the structure. In addition, if repairs are delayed, the cost of maintenance will skyrocket as well. It can also be concluded from the above that the assessment of existing needs to receive more consideration and thought from the structural engineering societies and professionals. Ten major existing structures in Kuwait city that were constructed in the 1970s were assessed for structural reliability and integrity. Numerous concrete samples were extracted from the structural systems of the investigated buildings. This paper presents the results of the compressive strength tests that were conducted on the extracted cores. The results are compared for the buildings’ columns and beams elements and compared with the design strengths. The collected data were statistically analyzed. The average compressive strengths of the concrete cores that were extracted from the ten buildings had a large variation. The lowest average compressive strength for one of the buildings was 158 kg/cm². This building was deemed unsafe and economically unfeasible to be repaired; accordingly, it was demolished. The other buildings had an average compressive strengths fall in the range 215-317 kg/cm². Poor construction practices were the main cause for the strengths. Although most of the drawings and information for these buildings were lost during the invasion of Kuwait in 1990, however, information gathered indicated that the design strengths of the beams and columns for most of these buildings were in the range of 280-400 kg/cm². Following the study, measures were taken to rehabilitate the buildings for safety. The mean compressive strength for all cores taken from beams and columns of the ten buildings was 256.7 kg/cm². The values range was 139 to 394 kg/cm². For columns, the mean was 250.4 kg/cm², and the values ranged from 137 to 394 kg/cm². However, the mean compressive strength for the beams was higher than that of columns. It was 285.9 kg/cm², and the range was 181 to 383 kg/cm². In addition to the concrete cores that were extracted from the ten buildings, the 28-day compressive strengths of more than 24,660 concrete cubes were collected from a major ready-mixed concrete supplier in Kuwait. The data represented four different grades of ready-mix concrete (250, 300, 350, and 400 kg/cm²) manufactured between the year 2003 and 2018. The average concrete compressive strength for the different concrete grades (250, 300, 350 and 400 kg/cm²) was found to be 318, 382, 453 and 504 kg/cm², respectively, and the coefficients of variations were found to be 0.138, 0.140, 0.157 and 0.131, respectively.

Keywords: concrete compressive strength, concrete structures, existing building, statistical analysis.

Procedia PDF Downloads 116
4491 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 300
4490 Assessment of Aminopolyether on 18F-FDG Samples

Authors: Renata L. C. Leão, João E. Nascimento, Natalia C. E. S. Nascimento, Elaine S. Vasconcelos, Mércia L. Oliveira

Abstract:

The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (18F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in 18F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of 18F-FDG.

Keywords: chemical purity, Kryptofix 222, thin layer chromatography, validation

Procedia PDF Downloads 202
4489 Guidelines to Designing Generic Protocol for Responding to Chemical, Biological, Radiological and Nuclear Incidents

Authors: Mohammad H. Yarmohammadian, Mehdi Nasr Isfahani, Elham Anbari

Abstract:

Introduction: The awareness of using chemical, biological, and nuclear agents in everyday industrial and non-industrial incidents has increased recently; release of these materials can be accidental or intentional. Since hospitals are the forefronts of confronting Chemical, Biological, Radiological and Nuclear( CBRN) incidents, the goal of the present research was to provide a generic protocol for CBRN incidents through a comparative review of CBRN protocols and guidelines of different countries and reviewing various books, handbooks and papers. Method: The integrative approach or research synthesis was adopted in this study. First a simple narrative review of programs, books, handbooks, and papers about response to CBRN incidents in different countries was carried out. Then the most important and functional information was discussed in the form of a generic protocol in focus group sessions and subsequently confirmed. Results: Findings indicated that most of the countries had various protocols, guidelines, and handbooks for hazardous materials or CBRN incidents. The final outcome of the research synthesis was a 50 page generic protocol whose main topics included introduction, definition and classification of CBRN agents, four major phases of incident and disaster management cycle, hospital response management plan, equipment, and recommended supplies and antidotes for decontamination (radiological/nuclear, chemical, biological); each of these also had subtopics. Conclusion: In the majority of international protocols, guidelines, handbooks and also international and Iranian books and papers, there is an emphasis on the importance of incident command system, determining the safety degree of decontamination zones, maps of decontamination zones, decontamination process, triage classifications, personal protective equipment, and supplies and antidotes for decontamination; these are the least requirements for such incidents and also consistent with the provided generic protocol.

Keywords: hospital, CBRN, decontamination, generic protocol, CBRN Incidents

Procedia PDF Downloads 297
4488 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 323
4487 Designing an Operational Control System for the Continuous Cycle of Industrial Technological Processes Using Fuzzy Logic

Authors: Teimuraz Manjapharashvili, Ketevani Manjaparashvili

Abstract:

Fuzzy logic is a modeling method for complex or ill-defined systems and is a relatively new mathematical approach. Its basis is to consider overlapping cases of parameter values and define operations to manipulate these cases. Fuzzy logic can successfully create operative automatic management or appropriate advisory systems. Fuzzy logic techniques in various operational control technologies have grown rapidly in the last few years. Fuzzy logic is used in many areas of human technological activity. In recent years, fuzzy logic has proven its great potential, especially in the automation of industrial process control, where it allows to form of a control design based on the experience of experts and the results of experiments. The engineering of chemical technological processes uses fuzzy logic in optimal management, and it is also used in process control, including the operational control of continuous cycle chemical industrial, technological processes, where special features appear due to the continuous cycle and correct management acquires special importance. This paper discusses how intelligent systems can be developed, in particular, how fuzzy logic can be used to build knowledge-based expert systems in chemical process engineering. The implemented projects reveal that the use of fuzzy logic in technological process control has already given us better solutions than standard control techniques. Fuzzy logic makes it possible to develop an advisory system for decision-making based on the historical experience of the managing operator and experienced experts. The present paper deals with operational control and management systems of continuous cycle chemical technological processes, including advisory systems. Because of the continuous cycle, many features are introduced in them compared to the operational control of other chemical technological processes. Among them, there is a greater risk of transitioning to emergency mode; the return from emergency mode to normal mode must be done very quickly due to the impossibility of stopping the technological process due to the release of defective products during this period (i.e., receiving a loss), accordingly, due to the need for high qualification of the operator managing the process, etc. For these reasons, operational control systems of continuous cycle chemical technological processes have been specifically discussed, as they are different systems. Special features of such systems in control and management were brought out, which determine the characteristics of the construction of control and management systems. To verify the findings, the development of an advisory decision-making information system for operational control of a lime kiln using fuzzy logic, based on the creation of a relevant expert-targeted knowledge base, was discussed. The control system has been implemented in a real lime production plant with a lime burn kiln, which has shown that suitable and intelligent automation improves operational management, reduces the risks of releasing defective products, and, therefore, reduces costs. The special advisory system was successfully used in the said plant both for the improvement of operational management and, if necessary, for the training of new operators due to the lack of an appropriate training institution.

Keywords: chemical process control systems, continuous cycle industrial technological processes, fuzzy logic, lime kiln

Procedia PDF Downloads 30
4486 Landfill Leachate Wastewater Treatment by Fenton Process

Authors: Rewadee Anuwattana, Pattamaphorn Phuangngamphan, Narumon Soparatana, Supinya Sutthima, Worapong Pattayawan, Saroj Klangkongsub, Songkiat Roddang, Pluek Wongpanich

Abstract:

The leachate wastewater is high contaminant water; hence it needs to be treated. The objective of this research was to determine the Chemical Oxygen Demand (COD) concentration, Phosphate (PO₄³⁻), Ammonia (NH₃) and color in leachate wastewater in the landfill area. The experiments were carried out in the optimum condition by pH, the Fenton reagent dosage (concentration of dosing Fe²⁺ and H₂O₂). The optimum pH is 3, the optimum [Fe²⁺]/[COD] and [H₂O₂]/[COD₀] = 0.03 and 0.03, respectively. The Biochemical Oxygen Demand (BOD₅)/Chemical Oxygen Demand (COD) ratio can be adjusted to 1 for landfill leachate wastewater (BOD₅/COD = 0.11). From the results, the Fenton process shall be investigated further to achieve the removal of phosphates in addition to COD and color.

Keywords: landfill leachate treatment, open dumpsite, Fenton process, wastewater treatment

Procedia PDF Downloads 264
4485 Study the Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5 wt% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, acid value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the cured films were observed by scanning electron microscopy. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: alkyd resin, nano-coatings, dehydration, palm oil

Procedia PDF Downloads 310
4484 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 433
4483 Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling

Authors: Thandeka Y. S. Jwara, Paul Musonge

Abstract:

Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study.

Keywords: chemical oxygen demand, COD fractionation, wastewater modelling, wastewater optimization

Procedia PDF Downloads 143
4482 Micropollutant Carbamazepine: Its Occurrences, Toxicological Effects, and Possible Degradation Methods (Review)

Authors: Azad Khalid, Sifa Dogan

Abstract:

Because of its persistence in conventional treatment plants and broad prevalence in water bodies, the pharmaceutical chemical carbamazepine (CBZ) has been suggested as an anthropogenic marker to evaluate water quality. This study provides a thorough examination of the origins and occurrences of CBZ in water bodies, as well as the drug's toxicological effects and laws. Given CBZ's well-documented negative consequences on the human body when used medicinally, cautious monitoring in water is advised. CBZ residues in drinking water may enter embryos and newborns via intrauterine exposure or breast-feeding, causing congenital abnormalities and/or neurodevelopmental issues over time. The insufficiency of solo solutions was shown after an in-depth technical study of traditional and sophisticated treatment technologies. Nanofiltration and reverse osmosis membranes are more successful at removing CBZ than traditional activated sludge and membrane bioreactor techniques. Recent research has shown that severe chemical cleaning, which is essential to prevent membrane fouling, may lower long-term removal efficiency. Furthermore, despite the efficacy of activated carbon adsorption and advanced oxidation processes, a few issues such as chemical cost and activated carbon renewal must be carefully examined. Individual technology constraints lead to the benefits of combined and hybrid systems, namely the heterogeneous advanced oxidation process.

Keywords: carbamazepine, occurrence, toxicity, conventical treatment, advanced oxidation process (AOPs)

Procedia PDF Downloads 96
4481 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 401
4480 Functionalization and Dispersion of Multiwall Carbon Nanotubes in Waterborne Polyurethane

Authors: Shahla Hajializadeh, Maryam Hamedanlou

Abstract:

Multiwall carbon nanotubes were chemically modified with amide groups for the purpose of enhancing their chemical affinity with waterborne polyurethane. In this study, a thermoplastic nanocomposite containing functionalized multiwall carbon nanotube/waterborne polyurethane (WBPU/MWNT) via in situ polymerization has been prepared. The impacts of MWNT addition on the morphology and electrical properties of nanocomposites were investigated. Micrographs of Scanning Electron Microscopy (SEM) prove that functionalized CNT can be effectively dispersed in WBPU matrix. The electrical conductivity of nanocomposites increased with the CNT contents in as such the nanocomposites containing 1 wt% of MWNT exhibited a conductivity nearly five orders of magnitude higher than the WBPU film.

Keywords: chemical functionalization, electrical properties, in situ polymerization, morphology, multiwall carbon nanotubes, waterborne polyurethane

Procedia PDF Downloads 266
4479 "At 60 – Old Age, at 70 – the Hoary Head": The Perceived Meaning of Bringing a Foreign Caregiver into the Home in the Haredi Society – Challenges and Barriers to Culturally-Sensitive Intervention

Authors: Amit Zriker, Anat Freund

Abstract:

The aim of the study was to conduct a thorough examination into the multiple complexities of bringing a foreign caregiver into the home to care for older adults in the Haredi society, by relating to the perspectives of the older adult and his family members. Research questions were: What is the meaning of bringing a foreign caregiver into the home in Haredi society, from the point of view of the older adult’s family members, and what are the implications of these meanings in the context of developing social policies and interventions? The current study was a qualitative-phenomenological study, which relates to “the lived experience” of those involved in the studied phenomenon. In the framework of the study, the participants included 15 adult Haredi sons and daughters of elderly impaired parents who receive homecare from a foreign caregiver. Data collection was carried out using in-depth, semi-structured interviews; the interview guidelines are comprised of the following content worlds: the meanings of aging in Haredi families; the decision-making process in relation to providing home care assistance for elderly impaired parents; making decisions regarding bringing a foreign caregiver into the home to care for an elderly parent; the daily routine after bringing in a foreign caregiver; bringing in a foreign caregiver vs. the society and vs. the Haredi establishment; and more. The issue of bringing a foreign caregiver into the home in the context of a faith-based society has received only scant and partial research attention to date. Nevertheless, in light of the growing elderly population in the Haredi society in Israel, and in closed, faith-based societies, in general; there is a growing need to bring foreign caregivers into the home as a possible solution to the “aging-in-place” problem in these societies. The separatist nature, and the collectivist and faith-based lifestyle of the Haredi society present unique challenges and needs in the process of employing a foreign caregiver. Moreover, the foreign caregiver also brings his/her own cultural world to the encounter, meaning, this process involves the elderly impaired individual, his/her family members, as well as the foreign caregiver. Therefore, it is important to understand their attitudes, perceptions and interactions, in order to create a good fit among all involved parties. The innovation and uniqueness of the current study is in its in-depth exploration of a phenomenon through an emotional-cultural lens. The study findings also contribute to the creation of social policy in the field of nursing, which will be adapted and culturally sensitive to Haredi society, and other faith-based societies.

Keywords: culturally-sensitive intervention, faith-based society, foreign caregiver, Haredi society

Procedia PDF Downloads 197
4478 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel

Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul

Abstract:

Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.

Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel

Procedia PDF Downloads 171
4477 Chemical Sensing Properties of Self-Assembled Film Based on an Amphiphilic Ambipolar Triple-Decker (Phthalocyaninato) (Porphyrinato) Europium Semiconductor

Authors: Kiran Abdullah, Yanli Chen

Abstract:

An amphiphilic mixed (phthalocyaninato) (porphyrinato) europium triple-decker complex Eu₂(Pc)₂(TPyP) has been synthesized and characterized. Introducing electron-withdrawing pyridyl substituents onto the meso-position of porphyrin ring in the triple-decker to ensure the sufficient hydrophilicity and suitable HOMO and LUMO energy levels and thus successfully realize amphiphilic ambipolar organic semiconductor. Importantly, high sensitive, reproducible p-type and n-type responses towards NH₃ andNO₂ respectively, based on the self-assembled film of the Eu₂(Pc)₂(TPyP) fabricated by a simple solution-based Quasi–Langmuir–Shäfer (QLS) method, have been first revealed. The good conductivity and crystallinity for the QLS film of Eu₂(Pc)₂(TPyP) render it excellent sensing property. This complex is sensitive to both electron-donating NH₃ gas in 5–30 ppm range and electron-accepting NO₂ gas 400–900 ppb range. Due to uniform nano particles there exist effective intermolecular interaction between triple decker molecules. This is the best result of Phthalocyanine–based chemical sensors at room temperature. Furthermore, the responses of the QLS film are all linearly correlated to both NH₃ and NO₂ with excellent sensitivity of 0.04% ppm⁻¹ and 31.9 % ppm⁻¹, respectively, indicating the great potential of semiconducting tetrapyrrole rare earth triple-decker compounds in the field of chemical sensors.

Keywords: ambipolar semiconductor, gas sensing, mixed (phthalocyaninato) (porphyrinato) rare earth complex, Self-assemblies

Procedia PDF Downloads 198
4476 Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium

Authors: Dharmana Pradeep, Chandan Kumar Patnaikuni, N. V. S. Venugopal

Abstract:

Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages.

Keywords: rice husk ash, compressive strength, sodium phosphate, curing

Procedia PDF Downloads 346
4475 Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline

Authors: Iman Adnan Annon, Kadhim F. Alsultan

Abstract:

This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor.

Keywords: corrosion in pipeline, inhibitors, crude oil, carbon steel, types of solvent

Procedia PDF Downloads 140
4474 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 293
4473 Hydro-Geochemistry and Groundwater Quality Assessment of Rajshahi City in Bangladesh

Authors: M. G. Mostafa, S. M. Helal Uddin, A. B. M. H. Haque, M. R. Hasan

Abstract:

The study was carried out to understand the hydro-geochemistry and ground water quality in Rajshahi City of Bangladesh. 240 groundwater (shallow and deep tubewell) samples were collected during the year 2009-2010 covering pre-monsoon, monsoon and post-monsoon seasons and analyzed for various physico-chemical parameters including major ions. The results reveal that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under hard to very hard category. The concentration of calcium, iron, manganese, arsenic and lead ions were found far above the permissible limit in most of the shallow tubewells water samples. The analysis results show that the mean concentrations of cations and anions were observed in the order: Ca > Mg > Na > K > Fe > Mn > Pb > Zn > Cu > As (total) > Cd and HCO3-> Cl-> SO42-> NO3-, respectively. The concentrations of TH, TDS, HCO3-, NO3-, Ca, Fe, Zn, Cu, Pb, and As (total) were found to be higher during post-monsoon compare to pre-monsoon, whilst K, Mg, Cd, and Cl were found higher during pre-monsoon and monsoon. Ca-HCO3 was identified as the major hydro chemical facie using piper trilinear diagram. Higher concentration of toxic metals including Fe, Mn, As and Pb were found indicating various health hazards. The results also illustrate that the rock water interaction was the major geochemical process controlling the chemistry of groundwater in the study area.

Keywords: physio-chemical parameters, groundwater, geochemistry, Rajshahi city

Procedia PDF Downloads 314
4472 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense

Authors: Abdullah Al-Nassri, Ahmed Al-Alawi

Abstract:

Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.

Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR

Procedia PDF Downloads 70
4471 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications

Authors: S. V. N. Pammi, Soon-Gil Yoon

Abstract:

In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.

Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics

Procedia PDF Downloads 308
4470 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)

Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala

Abstract:

Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.

Keywords: bio-activity, bio-pesticides, maize, mycotoxin

Procedia PDF Downloads 73
4469 The Effects of Salts Concentration into Microbiological, Physio-Chemical and Sensory Properties of Tempoyak (Indonesian Fermented Durian Flesh)

Authors: Addion Nizori, Mursalin, Dharia Renathe, Lavlinesia, Fitry Tafzi

Abstract:

Tempoyak was made from fermented durian flesh, which very popular among Jambi people Indonesia. This study aims to isolate and identification of bacteria developed during fermentations, determine physical-chemical properties of Tempoyak as the effect of adding salts at various concentration and the sensory evaluations of Tempoyak produced is also evaluated. The predominant microorganisms present in Tempoyak were Lactobacillus bacteria. The results also showed that the level of salts concentration has a significant effect on pH, lactic acid content, however, not has a significant impact on sensory evaluations. The best results were 3% of adding salts with the product properties of pH 3.64, lactic acid content 3.11% and overall acceptance score is 3.41.

Keywords: Tempoyak, fermented foods, salts, sensory

Procedia PDF Downloads 200
4468 Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Abstract—High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreased, tensile strength increased rapidly and reached up to 13 MPa at 1100oC. Elongation also increased from 18 to 80% with temperature decreased from 1200oC to 1100oC. Microstructure observation revealed that M23C6 carbide was precipitated along the grain boundary and within the matrix.

Keywords: 20 Cr-5Al ferritic stainless, high temperature deformation, aging treatment, microstructure, mechanical properties

Procedia PDF Downloads 449
4467 Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd

Authors: Ji Sun Kim, Jae Ho Baek, Kyeong Ho Kim, Ji Hae Ha, Seong Soo Hong, Jung-Wook Park, Man Sig Lee

Abstract:

Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/.

Keywords: carbon, dispersion, Pd/C, specific are, support

Procedia PDF Downloads 352
4466 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 116
4465 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 379