Search results for: charge lane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1005

Search results for: charge lane

345 The Implementation of an E-Government System in Developing Countries: A Case of Taita Taveta County, Kenya

Authors: Tabitha Mberi, Tirus Wanyoike, Joseph Sevilla

Abstract:

The use of Information and Communication Technology (ICT) in Government is gradually becoming a major requirement to transform delivery of services to its stakeholders by improving quality of service and efficiency. In Kenya, the devolvement of government from local authorities to county governments has resulted in many counties adopting online revenue collection systems which can be easily accessed by its stakeholders. Strathmore Research and Consortium Centre (SRCC) implemented a revenue collection system in Taita Taveta, a County in coastal Kenya. It consisted of two systems that are integrated; an online system dubbed “CountyPro” for processing county services such as Business Permit applications, General Billing, Property Rates Payments and any other revenue streams from the county. The second part was a Point of Sale(PoS) system used by the county revenue collectors to charge for market fees and vehicle parking fees. This study assesses the success and challenges in adoption of the integrated system. Qualitative and quantitative data collection methods were used to collect data on the adoption of the system with the researcher using focus groups, interviews, and questionnaires to collect data from various users of the system An analysis was carried out and revealed that 87% of the county revenue officers who are situated in county offices describe the system as efficient and has made their work easier in terms of processing of transactions for customers.

Keywords: e-government, counties, information technology, online system, point of sale

Procedia PDF Downloads 225
344 Carbon Coated Silicon Nanoparticles Embedded MWCNT/Graphene Matrix Anode Material for Li-Ion Batteries

Authors: Ubeyd Toçoğlu, Miraç Alaf, Hatem Akbulut

Abstract:

We present a work which was conducted in order to improve the cycle life of silicon based lithium ion battery anodes by utilizing novel composite structure. In this study, carbon coated nano sized (50-100 nm) silicon particles were embedded into Graphene/MWCNT silicon matrix to produce free standing silicon based electrodes. Also, conventional Si powder anodes were produced from Si powder slurry on copper current collectors in order to make comparison of composite and conventional anode structures. Free –standing composite anodes (binder-free) were produced via vacuum filtration from a well dispersion of Graphene, MWCNT and carbon coated silicon powders. Carbon coating process of silicon powders was carried out via microwave reaction system. The certain amount of silicon powder and glucose was mixed under ultrasonication and then coating was conducted at 200 °C for two hours in Teflon lined autoclave reaction chamber. Graphene which was used in this study was synthesized from well-known Hummers method and hydrazine reduction of graphene oxide. X-Ray diffraction analysis and RAMAN spectroscopy techniques were used for phase characterization of anodes. Scanning electron microscopy analyses were conducted for morphological characterization. The electrochemical performance tests were carried out by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy.

Keywords: graphene, Li-Ion, MWCNT, silicon

Procedia PDF Downloads 232
343 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor

Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin

Abstract:

Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.

Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator

Procedia PDF Downloads 81
342 Towards the Enhancement of Thermoelectric Properties by Controlling the Thermoelectrical Nature of Grain Boundaries in Polycrystalline Materials

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Waste heat occurs in many areas of daily life because world’s energy consumption is inefficient. In general, generating 1 watt of power requires about 3 watt of energy input and involves dumping into the environment the equivalent of about 2 watts of power in the form of heat. Therefore, an attractive and sustainable solution to the energy problem would be the development of highly efficient thermoelectric devices which could help to recover this waste heat. This work presents the influence on the thermoelectric properties of metallic, semiconducting, and dielectric nanoparticles added into the grain boundaries of polycrystalline antimony (Sb) and bismuth (Bi) matrixes in order to obtain p- and n-type thermoelectric materials, respectively, by hot pressing methods. Results show that thermoelectric properties are significantly affected by the electrical and thermal nature as well as concentration of nanoparticles. Nevertheless, by optimizing the amount of the nanoparticles on the grain boundaries, an oscillatory behavior in ZT as function of the concentration of the nanoscale constituents is present. This effect is due to energy filtering mechanism which module the quantity of charge transport in the system and affects thermoelectric properties. Accordingly, a ZTmax can be accomplished through the addition of the appropriate amount of nanoparticles into the grain boundaries region. In this case, till three orders of amelioration on ZT is reached in both systems compared with the reference sample of each one. This approach paves the way to pursuit high performance thermoelectric materials in a simple way and opens a new route towards the enhancement of the thermoelectric figure of merit.

Keywords: energy filtering, grain boundaries, thermoelectric, nanostructured materials

Procedia PDF Downloads 239
341 Work in the Industry of the Future-Investigations of Human-Machine Interactions

Authors: S. Schröder, P. Ennen, T. Langer, S. Müller, M. Shehadeh, M. Haberstroh, F. Hees

Abstract:

Since a bit over a year ago, Festo AG and Co. KG, Festo Didactic SE, robomotion GmbH, the researchers of the Cybernetics-Lab IMA/ZLW and IfU, as well as the Human-Computer Interaction Center at the RWTH Aachen University, have been working together in the focal point of assembly competences to realize different scenarios in the field of human-machine interaction (HMI). In the framework of project ARIZ, questions concerning the future of production within the fourth industrial revolution are dealt with. There are many perspectives of human-robot collaboration that consist Industry 4.0 on an individual, organization and enterprise level, and these will be addressed in ARIZ. The aim of the ARIZ projects is to link AI-Approaches to assembly problems and to implement them as prototypes in demonstrators. To do so, island and flow based production scenarios will be simulated and realized as prototypes. These prototypes will serve as applications of flexible robotics as well as AI-based planning and control of production process. Using the demonstrators, human interaction strategies will be examined with an information system on one hand, and a robotic system on the other. During the tests, prototypes of workspaces that illustrate prospective production work forms will be represented. The human being will remain a central element in future productions and will increasingly be in charge of managerial tasks. Questions thus arise within the overall perspective, primarily concerning the role of humans within these technological revolutions, as well as their ability to act and design respectively to the acceptance of such systems. Roles, such as the 'Trainer' of intelligent systems may become a possibility in such assembly scenarios.

Keywords: human-machine interaction, information technology, island based production, assembly competences

Procedia PDF Downloads 184
340 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy

Authors: Murtada Ahmed Oshi, Jin-Wook Yoo

Abstract:

Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.

Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes

Procedia PDF Downloads 178
339 The Nature of Borrowings into Arabic during Different Historical Periods

Authors: Maria L. Swanson

Abstract:

Language is a system which constantly changes and reflects social and cultural transformations of a speech community. If it is phonetic system, morphological patterns and syntactic arrangements undergo little charge and are not easily transferable from one language to another, the lexicon has a high degree of flexibility. Borrowings in Arabic have always been an interesting and important subject of study to various fields of linguistics, history and culturology, and there is quite number of works devoted to this subject (al-Khalīl, Sībawīḥ, Jeffery, Belkin, al-Maghribii, Holes, Stetkevich, el-Mawlūdī, between many others). At the same time, the history of borrowing has never been described as a process starting from its originating and up to the present time. Most of the researches study lexical and morphological adaptation of borrowed words for specific or several historical periods or delineate this process on the whole. Meanwhile, we have described the whole history of borrowings in Arabic with the brief depicting of lexical and morphological specifics for each historical period using quantitative method through dividing Arabic borrowings into several groups, basing on the specific of their adaptation of new vocabulary which is tightly related to the global transformations in the Arabic history. We explain reasons for borrowings of specific lexical layers for each historical period together with the description of its morphological specifics. We also use qualitative approach through performing statistics about the share of loan vocabulary in Arabic during different periods and the percentage of borrowings from donor languages. The history of a character and amount of borrowings is a good resource for theoretical and practical lexicography and morphology studies. It is also beneficial for researchers in the field of global and specific national, political and social developments, and different types of contacts.

Keywords: anthropological linguistics, borrowings, historical linguistics, sociolinguistics

Procedia PDF Downloads 423
338 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential

Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran

Abstract:

Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.

Keywords: bioavailability, naringenin, nanosuspension, oral delivery

Procedia PDF Downloads 310
337 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)

Procedia PDF Downloads 136
336 Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium

Authors: Neha Parekh, Divya Ladha, Poonam Wadhwani, Nisha Shah

Abstract:

Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen).

Keywords: corrosion, green inhibitor, nanoparticles, zinc

Procedia PDF Downloads 424
335 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-Liclo4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via polymerization method with different NCO/OH ratios and labelled as PU1, PU2, PU3, and PU4. Subsequently, the chemical, thermal properties and ionic conductivity of the films produced were determined. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1 due to the greatest amount of hard segment of polyurethane in PU1 as proven by soxhlet analysis. The structures of polyurethanes were confirmed by 13 nuclear magnetic resonance spectroscopy (13C NMR) and FTIR spectroscopy. Differential scanning calorimetry (DSC) analysis indicates PU 1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) of the PU-LiClO4 shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity (1.19 × 10-7 S.cm-1 at 298 K and 5.01 × 10-5 S.cm-1 at 373 K) and the lowest activation energy, Ea (0.32 eV) due to the greatest amount of hard segment formed in PU 1 induces the coordination between lithium ion and oxygen atom of carbonyl group in polyurethane. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: ionic conductivity, palm kernel oil-based monoester-OH, polyurethane, solid polymer electrolyte

Procedia PDF Downloads 400
334 Heritage Management Planning, Stakeholders and Legal Problematic: The Case of the Archeological Site of Jarash in Jordan

Authors: Abdelkader Ababneh

Abstract:

Heritage management planning is increasingly important throughout the international context, particularly in the developing countries. Jordan has important and unique heritage resources due to its natural topography and climate, but also to its history and old sites. A high number of these archaeological sites are in very good state of preservation. Most natural sites and resources are privately managed while archaeological heritage sites are publicly managed within national legal texts and with some referencing to international legal documents. This study examines the development of cultural heritage management in Jarash, and questions if this heritage has been managed in an appropriate manner. The purpose of this paper is to define and review the stakeholders in charge of the management of the archaeological site of Jarash, the legal texts, laws and documents adopted to apply the site management. Relations and coordination between stakeholders and the challenge of the planning process is also the focus of this paper. A review of pertinent academic, technical studies, reports and projects literature pertaining to the heritage management planning in general and related to the site of Jarash in particular coupled with field study of the site served as the background of the information base for the study. Current context of actors, legislative framework, planning policies and initiatives for the site of Jarash reveal important and continuous challenge for managing the site. Recommendations suggest reviewing and restructuring the entity responsible of the sites management. It is also recommended to review their applied policies and a redevelopment of the legislative frame work.

Keywords: heritage management, stakeholders, legal protection, Jarash

Procedia PDF Downloads 361
333 Assessment of E-Readiness in Libraries of Public Sector Universities Khyber Pakhtunkhwa-Pakistan

Authors: Saeed Ullah Jan

Abstract:

This study has examined the e-readiness in libraries of public sector universities in Khyber Pakhtunkhwa. Efforts were made to evaluate the availability of human resources, electronic infrastructure, and network services and programs in the public sector university libraries. The population of the study was the twenty-seven public sector university libraries of Khyber Pakhtunkhwa. A quantitative approach was adopted, and a questionnaire-based survey was conducted to collect data from the librarian/in charge of public sector university libraries. The collected data were analyzed using Statistical Package for Social Sciences version 22 (SPSS). The mean score of the knowledge component interpreted magnitudes below three which indicates that the respondents are poorly or moderately satisfied regards knowledge of libraries. The satisfaction level of the respondents about the other components, such as electronic infrastructure, network services and programs, and enhancers of the networked world, was rated as average or below. The study suggested that major aspects of existing public-sector university libraries require significant transformation. For this purpose, the government should provide all the required resources and facilities to meet the population's informational and recreational demands. The Information Communication Technology (ICT) infrastructure of public university libraries needs improvement in terms of the availability of computer equipment, databases, network servers, multimedia projectors, digital cameras, uninterruptible power supply, scanners, and backup devices such as hard discs and Digital Video Disc/Compact Disc.

Keywords: ICT-libraries, e-readiness-libraries, e-readiness-university libraries, e-readiness-Pakistan

Procedia PDF Downloads 63
332 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 117
331 Low Influenza Vaccine Coverage Rates among Polish Nurses

Authors: Aneta Nitsch-Osuch, Katarzyna Zycinska, Ewa Gyrczuk, Agnieszka Topczewska-Cabanek, Kazimierz Wardyn

Abstract:

Introduction: Influenza is an important clinical and epidemiological problem and should be considered as a possible nosocomial infection. The aim of the study was to determine the influenza vaccine coverage rates among Polish nurses and to find out drivers and barriers for influenza vaccination among this group of health care workers (HCWs). Material and methods: The self- fulfilled survey with 26 questions about the knowledge, perception, and influenza coverage rates was distributed among 461 nurses. Results: Only 15% of nurses were vaccinated against influenza in the consecutive seasons. The majority (75%) of the regularly vaccinated nurses were ambulatory careworkers. The difference between the number of vaccinated hospitals and ambulatory care nurses was statistically significant (p < 0.05). The main motivating factors for an influenza vaccination were: a fear of the illness and its complications (97%) and a free of charge vaccine available at the workplace (87%). Ambulatory care nurses more often declared that they were vaccinated mainly to protect themselves while hospital care nurses more often declared the will to protect their patients, these differences in the perception and attitudes to an influenza vaccination among hospital and ambulatory care nurses were statistically significant (p < 0.05). The main barriers for an influenza vaccination among the nursing staff were: a lack of reimbursement of the vaccine (95%), a lack of insufficient knowledge about the effectiveness, and safety of the influenza vaccine (54%). The ambulatory care nurses more often found influenza vaccination as the ethical duty compared to hospital care nurses (p < 0.05). Conclusions: The influenza vaccine coverage rates among the Polish nurses are low and must be improved in the future. More educational activities dedicated to HCWs may result in the increased awareness of influenza vaccination benefits for both medical professionals and patients.

Keywords: influenza, vaccination, nurses, ambulatory careworkers

Procedia PDF Downloads 275
330 Enhanced Performance of Perovskite Solar Cells by Modifying Interfacial Properties Using MoS2 Nanoflakes

Authors: Kusum Kumari, Ramesh Banoth, V. S. Reddy Channu

Abstract:

Organic-inorganic perovskite solar cells (PrSCs) have emerged as a promising solar photovoltaic technology in terms of realizing high power conversion efficiency (PCE). However, their limited lifetime and poor device stability limits their commercialization in future. In this regard, interface engineering of the electron transport layer (ETL) using 2D materials have been currently used owing to their high carrier mobility, high thermal stability and tunable work function, which in turn enormously impact the charge carrier dynamics. In this work, we report an easy and effective way of simultaneously enhancing the efficiency of PrSCs along with the long-term stability through interface engineering via the incorporation of 2D-Molybdenum disulfide (2D-MoS₂, few layered nanoflakes) in mesoporous-Titanium dioxide (mp-TiO₂)scaffold electron transport buffer layer, and using poly 3-hexytheophene (P3HT) as hole transport layers. The PSCs were fabricated in ambient air conditions in device configuration, FTO/c-TiO₂/mp-TiO₂:2D-MoS₂/CH3NH3PbI3/P3HT/Au, with an active area of 0.16 cm². The best device using c-TiO₂/mp-TiO₂:2D-MoS₂ (0.5wt.%) ETL exhibited a substantial increase in PCE ~13.04% as compared to PCE ~8.75% realized in reference device fabricated without incorporating MoS₂ in mp-TiO₂ buffer layer. The incorporation of MoS₂ nanoflakes in mp-TiO₂ ETL not only enhances the PCE to ~49% but also leads to better device stability in ambient air conditions without encapsulation (retaining PCE ~86% of its initial value up to 500 hrs), as compared to ETLs without MoS₂.

Keywords: perovskite solar cells, MoS₂, nanoflakes, electron transport layer

Procedia PDF Downloads 52
329 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 54
328 Bench Tests of Two-Stroke Opposed Piston Aircraft Diesel Engine under Propeller Characteristics Conditions

Authors: A. Majczak, G. Baranski, K. Pietrykowski

Abstract:

Due to the growing popularity of light aircraft, it has become necessary to develop aircraft engines for this type of construction. One of engine system, designed to increase efficiency and reduce weight, is the engine with opposed pistons. In such an engine, the combustion chamber is formed by two pistons moving in one cylinder. Therefore, this type of engines run in a two-stroke cycle, so they have many advantages such as high power and torque, high efficiency, or a favorable power-to-weight ratio. Tests of one of the available aircraft engines with opposing piston system fueled with diesel oil were carried out on an engine dynamometer equipped with an eddy current brake and the necessary measuring and testing equipment. In order to get to know the basic parameters of the engine, the tests were carried out under partial load conditions for the following torque values: 40, 60, 80, 100 Nm. The rotational speed was changed from 1600 to 2500 rpm. Measurements were also taken for designated points of propeller characteristics. During the tests, the engine torque, engine power, fuel consumption, intake manifold pressure, and oil pressure were recorded. On the basis of the measurements carried out for particular loads, the power curve, hourly and specific fuel consumption curves were determined. Characteristics of charge pressure as a function of rotational speed as well as power, torque, hourly and specific fuel consumption curves for propeller characteristics were also prepared. The obtained characteristics make it possible to select the optimal points of engine operation.

Keywords: aircraft, diesel, engine testing, opposed piston

Procedia PDF Downloads 136
327 Application of Biopolymer for Adsorption of Methylene Blue Dye from Simulated Effluent: A Green Method for Textile Industry Wastewater Treatment

Authors: Rabiya, Ramkrishna Sen

Abstract:

The textile industry releases huge volume of effluent containing reactive dyes in the nearby water bodies. These effluents are significant source of water pollution since most of the dyes are toxic in nature. Moreover, it scavenges the dissolved oxygen essential to the aquatic species. Therefore, it is necessary to treat the dye effluent before it is discharged in the nearby water bodies. The present study focuses on removing the basic dye methylene blue from simulated wastewater using biopolymer. The biopolymer was partially purified from the culture of Bacillus licheniformis by ultrafiltration. Based on the elution profile of the biopolymer from ion exchange column, it was found to be a negatively charged molecule. Its net anionic nature allows the biopolymer to adsorb positively charged molecule, methylene blue. The major factors which influence the removal of dye by the biopolymer such as incubation time, pH, initial dye concentration were evaluated. The methylene blue uptake by the biopolymer is more (14.84 mg/g) near neutral pH than in acidic pH (12.05mg/g) of the water. At low pH, the lower dissociation of the dye molecule as well as the low negative charge available on the biopolymer reduces the interaction between the biopolymer and dye. The optimum incubation time for maximum removal of dye was found to be 60 min. The entire study was done with 25 mL of dye solution in 100 mL flask at 25 °C with an amount of 11g/L of biopolymer. To study the adsorption isotherm, the dye concentration was varied in the range of 25mg/L to 205mg/L. The dye uptake by the biopolymer against the equilibrium concentration was plotted. The plot indicates that the adsorption of dye by biopolymer follows the Freundlich adsorption isotherm (R-square 0.99). Hence, these studies indicate the potential use of biopolymer for the removal of basic dye from textile wastewater in an ecofriendly and sustainable way.

Keywords: biopolymer, methylene blue dye, textile industry, wastewater

Procedia PDF Downloads 124
326 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 321
325 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater

Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy

Abstract:

Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.

Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater

Procedia PDF Downloads 365
324 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities

Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová

Abstract:

Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.

Keywords: BIM model, urban space, BIM methodology, facility management

Procedia PDF Downloads 108
323 Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft

Authors: Vabya Kumar Pandit, Mudit Mittal, N. Prahlad Rao, Ramnath Babu

Abstract:

TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft.

Keywords: electromagnetic compatibility, electrostatic discharge, electrical distribution systems, grounding schemes, light weight harnessing

Procedia PDF Downloads 278
322 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 102
321 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 210
320 Surfactant-Modified Chitosan Beads: An Efficient and Cost Effective Material for Adsorptive Removal of Lead from Aqueous Solutions

Authors: Preeti Pal, Anjali Pal

Abstract:

Chitosan is an effective sorbent for removal of contaminants from wastewater. However, the ability of pure chitosan is specific because of its cationic charge. It causes repulsion in the removal process of various cationic charged molecules. The present study has been carried out for the successful removal of Pb²⁺ ions from aqueous solution by modified chitosan beads. Surface modification of chitosan (CS) beads was performed by using the anionic surfactant (AS), sodium dodecyl sulfate (SDS). Micelle aggregation property of SDS has been utilized for the formation of bilayer over the CS beads to produce surfactant modified chitosan (SMCS) beads. Prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) in order to find out their composition and surface morphology. SMCS beads, when compared to the pure CS beads, showed three times higher adsorption. This higher adsorption is believed to be due to the adsolubilization of Pb²⁺ ions on SDS bilayer. This bilayer provides more adsorption sites for quick and effective removal of Pb²⁺ ions from the aqueous phase. Moreover, the kinetic and adsorption isotherm models were employed to the obtained data for the description of the lead adsorption processes. It was found that the removal kinetics follows pseudo-second order model. Adsorption isotherm data fits well to the Langmuir model. The maximum adsorption capacity obtained is 100 mg/g at the dosage of 0.675 g/L for 50 mg/L of Pb²⁺. The adsorption capacity is subject to increase with increasing the Pb²⁺ ions concentration in the solution. The results indicated that the prepared hydrogel beads are efficient adsorbent for removal of Pb²⁺ ions from the aqueous medium.

Keywords: adsolubilisation, anionic surfactant, bilayer, chitosan, Pb²⁺

Procedia PDF Downloads 214
319 Train Cross-Cultural Leaders in Higher Education

Authors: Sarah Abi Raad

Abstract:

Nowadays, one of the challenges faced by many institutions is the continuous changing psychosocial environment. This alteration affects the resources, the organizations and defies the leadership and management of people in charge. As a fact, institutions of higher education differ from many organizations, requiring leadership to be a more shared phenomenon than in most profit-centered enterprises. In these colleges, the leadership must be oriented in a way to empower activities. This said, it is important to train students to take on leadership roles in their personal and professional lives. Thus, leadership training in higher education have to manage a cross-cultural environment in order to get the best out of the whole community that works and studies there. The main directions to follow are the building of a professional identity that manages the cross-cultural public while feeling a personal fulfillment in the workplace. In order to do that, this communication proposal has three objectives: - Explain the aspects of the cross-cultural leadership training logic offered to managers and chairs by allowing them to develop a technical leader style of passionate type with a managerial leadership style of compassionate type. - Define the multiple factors on which depends the leadership, which includes the department’s stage of development, the specific management function, the academic discipline and the chair’s own style of leadership. - Emphasize on the complex nature of leadership and the different facets that results from its role in the higher education. However, different situations require a leader with particular characteristics that can be gathered into three categories: “the innovator”, “the implementer” and the “pacifier”. Each category is linked to a problem organizations normally encounter. This leads to conclude with the following question: are the gender, age and culture taken into consideration during a training?

Keywords: benevolent leadership, cross-cultural training, management, unprecedented existential crisis

Procedia PDF Downloads 107
318 Design and Construction of a Device to Facilitate the Stretching of a Plantiflexors Muscles in the Therapy of Rehabilitation for Patients with Spastic Hemiplegia

Authors: Nathalia Andrea Calderon Lesmes, Eduardo Barragan Parada, Diego Fernando Villegas Bermudez

Abstract:

Spasticity in the plantiflexor muscles as a product of stroke (CVA-Cerebrovascular accident) restricts the mobility and independence of the affected people. Commonly, physiotherapists are in charge of manually performing the rehabilitation therapy known as Sustained Mechanical Stretching, rotating the affected foot of the patient in the sagittal plane. However, this causes a physical wear on the professional because it is a fatiguing movement. In this article, a mechanical device is developed to implement this rehabilitation therapy more efficiently. The device consists of a worm-crown mechanism that is driven by a crank to gradually rotate a platform in the sagittal plane of the affected foot, in order to achieve dorsiflexion. The device has a range of sagittal rotation up to 150° and has velcro located on the footplate that secures the foot. The design of this device was modeled by using CAD software and was checked structurally with a general purpose finite element software to be sure that the device is safe for human use. As a measurement system, a goniometer is used in the lateral part of the device and load cells are used to measure the force in order to determine the opposing torque exerted by the muscle. Load cells sensitivity is 1.8 ± 0.002 and has a repeatability of 0.03. Validation of the effectiveness of the device is measured by reducing the opposition torque and increasing mobility for a given patient. In this way, with a more efficient therapy, an improvement in the recovery of the patient's mobility and therefore in their quality of life can be achieved.

Keywords: biomechanics, mechanical device, plantiflexor muscles, rehabilitation, spastic hemiplegia, sustained mechanical stretching

Procedia PDF Downloads 144
317 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles

Authors: Gyati Shilakari Asthana, Abhay Asthana

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 477
316 Planning and Management Options for Pastoral Resource: Case of Mecheria Region, Algeria

Authors: Driss Haddouche

Abstract:

Pastoral crisis in Algeria has its origins in rangeland degradation which are the main factor in any activity in the steppe zones. Indeed, faced with the increasing human and animal population on a living space smaller and smaller, there is an overuse of what remains of the steppe range lands, consequently the not sustainability of biomass production. Knowing the amount of biomass available, the practice of grazing options, taking into account the use of "Use Factor" factor remains an essential method for managing pastoral resources. This factor has three options: at 40% Conservative pasture; at 60 % the beginning of overgrazing; at 80% destructive grazing. Accessibility on the pasture is based on our field observations of a type any flock along a grazing cycle. The main purpose of these observations is to highlight the speed of herd grazing situation. Several individuals from the herd were timed to arrive at an average duration of about 5 seconds to move between two tufts of grass, separated by a distance of one meter. This gives a rate of 5 s/m (0.72 km/h) flat. This speed varies depending on the angle of the slope. Knowing the speed and slope of each pixel of the study area, given by the digital elevation model of Spot Image (MNE) and whose pitch is 15 meters, a map of pasture according to the distances is generated. Knowing the stocking and biomass available, the examination of the common Mécheria at regular distances (8.64 km or 12 hours of grazing, 17.28 km or 24 hours of grazing and 25.92 Km or 36 hours of grazing), offers three different options (conservation grazing resource: utilization at 40%; overgrazing statements for use at 60% and grazing destructive for use by more than 80%) for each distance traveled by sheep from the starting point is the town of Mécheria.

Keywords: pastoral crisis, biomass, animal charge, use factor, Algeria

Procedia PDF Downloads 504