Search results for: Deep mixed column
4837 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 884836 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 3754835 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 3954834 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 1364833 Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns -Electrocoagulation Reactor
Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola
Abstract:
A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 35 0C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-35 0C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 35 0C to the vicinity of 28 0C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.8 0C and from 29.8 to 31.9 0C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 28 0C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 35 0C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.Keywords: water temperature, flow column, electrocoagulation
Procedia PDF Downloads 3734832 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius
Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady
Abstract:
Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius
Procedia PDF Downloads 2534831 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.Keywords: integer programming, mixed integer programming, multi-objective optimization, Reliability Redundancy Allocation
Procedia PDF Downloads 1714830 Mixed Convective Heat Transfer of Flow around a Radial Heat Sink
Authors: Benkherbache Souad
Abstract:
This work presents the numerical results of the mixed convective heat transfer of a three-dimensional flow around a radial heat sink composed of horizontal circular base fitted with rectangular fins. The governing equations of mass, momentum, and energy equation are solved by the finite volume method using the commercially available CFD software Fluent 6.3.26. The circular base of the heat sink is subjected to uniform heat generation; the flow enters through the sides of the heat sink around the fins then the heat is transmitted from the base to the fins afterwards the fluid. In this study two fluids are utilized, in the first case, the air for the following Reynolds numbers Re=600,900,1200 and a Grashof number Gr=3.7x10⁶, in the second case a water based nano fluid for which two types of nano particles (Cu and Al₂O₃) are carried out for Re=25 and a Richardson number Ri=2.7(Ri=Gr/Re²). The effect of the number of the fins of the heat sink as well as the type and the volume fraction of nano particles of the nano fluid were investigated. Results have been presented for N=15 and N=20 fins. The effect of the nano particles concentrations and the number of fins on the temperature in the heat sink and the Nusselt number has been studied.Keywords: heat sink, mixed convection, nano fluid, volumetric heat generation
Procedia PDF Downloads 1834829 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness
Procedia PDF Downloads 4204828 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 1684827 Online Creative Writing Courses for Algerian University Students: A Mixed-Methods Study of Benefits, Challenges, and Recommendations
Authors: Wafa Nouari
Abstract:
The paper investigates the advantages and drawbacks of online creative writing courses for Algerian university students, particularly in light of the COVID-19 pandemic. The paper employs a mixed-methods approach, using both quantitative and qualitative data from surveys, interviews, and online course evaluations. The paper examines three online creative writing courses offered by Oxford University, Stanford University, and Coursera. The paper shows that online creative writing courses can improve the student's writing abilities, enthusiasm, and self-confidence, as well as introduce them to various literary forms and cultures. However, the paper also highlights some challenges and obstacles that the students encounter, such as technical problems, language difficulties, cultural gaps, and lack of feedback and interaction. The paper argues that online creative writing courses can be a useful alternative or addition to conventional classroom instruction, especially during the pandemic. The paper also offers some suggestions for enhancing the quality and effectiveness of online creative writing courses, such as giving more direction, support, and feedback to the students, as well as creating a sense of community and cooperation among them.Keywords: online creative writing courses, Algerian university students, mixed methods approach, benefits and chanllenges
Procedia PDF Downloads 1044826 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 744825 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv
Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman
Abstract:
Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals
Procedia PDF Downloads 4324824 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War
Authors: Mehmet Karabekir
Abstract:
Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.Keywords: attack helicopter, conventional warfare, gulf wars
Procedia PDF Downloads 4734823 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 964822 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity
Authors: Muhammad Tariq A. Chaudhary
Abstract:
Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction
Procedia PDF Downloads 2324821 Deepfake Detection for Compressed Media
Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande
Abstract:
The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation
Procedia PDF Downloads 84820 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation
Authors: Li Hui, Riyadh Hindi
Abstract:
In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis
Procedia PDF Downloads 624819 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method
Procedia PDF Downloads 1984818 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements
Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray
Abstract:
Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test
Procedia PDF Downloads 4004817 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape
Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif
Abstract:
The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.Keywords: abundance, diversity, Mediterranean Sea, phytoplankton
Procedia PDF Downloads 1584816 Aflatoxins Characterization in Remedial Plant-Delphinium denudatum by High-Performance Liquid Chromatography–Tandem Mass Spectrometry
Authors: Nadeem A. Siddique, Mohd Mujeeb, Kahkashan
Abstract:
Introduction: The objective of the projected work is to study the occurrence of the aflatoxins B1, B2, G1and G2 in remedial plants, exclusively in Delphinium denudatum. The aflatoxins were analysed by high-performance liquid chromatography–tandem quadrupole mass spectrometry with electrospray ionization (HPLC–MS/MS) and immunoaffinity column chromatography were used for extraction and purification of aflatoxins. PDA media was selected for fungal count. Results: A good quality linear relationship was originated for AFB1, AFB2, AFG1 and AFG2 at 1–10 ppb (r > 0.9995). The analyte precision at three different spiking levels was 88.7–109.1 %, by means of low per cent relative standard deviations in each case. Within 5 to7 min aflatoxins can be separated using an Agilent XDB C18-column. We found that AFB1 and AFB2 were not found in D. denudatum. This was reliable through exceptionally low figures of fungal colonies observed after 6 hr of incubation. The developed analytical method is straightforward, be successfully used to determine the aflatoxins. Conclusion: The developed analytical method is straightforward, simple, accurate, economical and can be successfully used to find out the aflatoxins in remedial plants and consequently to have power over the quality of products. The presence of aflatoxin in the plant extracts was interrelated to the least fungal load in the remedial plants examined.Keywords: aflatoxins, delphinium denudatum, liquid chromatography, mass spectrometry
Procedia PDF Downloads 2124815 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic
Procedia PDF Downloads 7004814 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation
Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa
Abstract:
Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol
Procedia PDF Downloads 1874813 The Effects of the Waste Plastic Modification of the Asphalt Mixture on the Permanent Deformation
Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili
Abstract:
The application of plastic waste for asphalt modification is a sustainable strategy to deal with the enormous plastic waste generated each year and enhance the properties of asphalt. The modification is either practiced by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture, and in the wet process, they are mixed and digested into bitumen. In this article, the effects of plastic inclusion in asphalt mixture, through the dry process, on the permanent deformation of the asphalt are investigated. The main waste plastics that are usually used in asphalt modification are taken into account, which is linear, low-density polyethylene, low-density polyethylene, high-density polyethylene, and polypropylene. Also, to simulate a plastic waste stream, different grades of each virgin plastic are mixed and used. For instance, four different grades of polypropylene are mixed and used as representative of polypropylene. A precisely designed mixing condition is considered to dry-mix the plastics into the mixture such that the polymer was melted and modified by the later introduced binder. In this mixing process, plastics are first added to the hot aggregates and mixed three times in different time intervals, then bitumen is introduced, and the whole mixture is mixed three times in fifteen minutes intervals. Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the effects of modification on the permanent deformation of the asphalt mixture. Dynamic creep is a common repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded, the cumulative, permanent strain is determined and reported as a function of the number of cycles. The results of this study showed that the dry inclusion of the waste plastics is very effective in enhancing the resistance against permanent deformation of the mixture. However, the mixing process must be precisely engineered to melt the plastics, and a homogenous mixture is achieved.Keywords: permanent deformation, waste plastics, low-density polyethene, high-density polyethene, polypropylene, linear low-density polyethene, dry process
Procedia PDF Downloads 884812 Forward Conditional Restricted Boltzmann Machines for the Generation of Music
Authors: Johan Loeckx, Joeri Bultheel
Abstract:
Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)
Procedia PDF Downloads 5224811 Modeling Solute Transport through Porous Media with Scale Dependent Dispersion
Authors: Teodrose Atnafu Abegaze, P. K. Sharma
Abstract:
In this study, an attempt has been made to study the behavior of breakthrough curves in both layered and mixed heterogeneous soil by conducting experiments in long soil columns. Sodium chloride has been used as a conservative tracer in the experiment. Advective dispersive transport equations, including equilibrium sorption and first-order degradation coefficients, are used for solute transport through mobile-immobile porous media. In order to do the governing equation for solute transport, there are explicit and implicit schemes for our condition; we use an implicit scheme to numerically model the solute concentration. Results of experimental breakthrough curves indicate that the behavior of observed breakthrough curves is approximately similar in both cases of layered and mixed soil, while earlier arrival of solute concentration is obtained in the case of mixed soil. It means that the types of heterogeneity of the soil media affect the behavior of solute concentration. Finally, it is also shown that the asymptotic dispersion model simulates the experimental data better than the constant and linear distance-dependent dispersion models.Keywords: numerical method, distance dependant dispersion, reactive transport, experiment
Procedia PDF Downloads 634810 Application of Value Engineering Approach for Improving the Quality and Productivity of Ready-Mixed Concrete Used in Construction and Hydraulic Projects
Authors: Adel Mohamed El-Baghdady, Walid Sayed Abdulgalil, Ahmad Asran, Ibrahim Nosier
Abstract:
This paper studies the effectiveness of applying value engineering to actual concrete mixtures. The study was conducted in the State of Qatar on a number of strategic construction projects with international engineering specifications for the 2022 World Cup projects. The study examined the concrete mixtures of Doha Metro project and the development of KAHRAMAA’s (Qatar Electricity and Water Company) Abu Funtas Strategic Desalination Plant, in order to generally improve the quality and productivity of ready-mixed concrete used in construction and hydraulic projects. The application of value engineering to such concrete mixtures resulted in the following: i) improving the quality of concrete mixtures and increasing the durability of buildings in which they are used; ii) reducing the waste of excess materials of concrete mixture, optimizing the use of resources, and enhancing sustainability; iii) reducing the use of cement, thus reducing CO₂ emissions which ensures the protection of environment and public health; iv) reducing actual costs of concrete mixtures and, in turn, reducing the costs of construction projects; and v) increasing the market share and competitiveness of concrete producers. This research shows that applying the methodology of value engineering to ready-mixed concrete is an effective way to save around 5% of the total cost of concrete mixtures supplied to construction and hydraulic projects, improve the quality according to the technical requirements and as per the standards and specifications for ready-mixed concrete, improve the environmental impact, and promote sustainability.Keywords: value management, cost of concrete, performance, optimization, sustainability, environmental impact
Procedia PDF Downloads 3534809 Quantification and Thermal Behavior of Rice Bran Oil, Sunflower Oil and Their Model Blends
Authors: Harish Kumar Sharma, Garima Sengar
Abstract:
Rice bran oil is considered comparatively nutritionally superior than different fats/oils. Therefore, model blends prepared from pure rice bran oil (RBO) and sunflower oil (SFO) were explored for changes in the different physicochemical parameters. Repeated deep fat frying process was carried out by using dried potato in order to study the thermal behaviour of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil had shown good thermal stability during the repeated deep fat frying cycles. Although, the model blends constituting 60% RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils. The quantification of pure rice bran oil in the blended oils, physically refined rice bran oil (PRBO): SnF (sunflower oil) was carried by different methods. The study revealed that regression equations based on the oryzanol content, palmitic acid composition and iodine value can be used for the quantification. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification.Keywords: rice bran oil, sunflower oil, frying, quantification
Procedia PDF Downloads 3084808 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 48