Search results for: microstructure and mechanical properties relationship
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16584

Search results for: microstructure and mechanical properties relationship

9744 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 49
9743 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 95
9742 The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region

Authors: Miroslav Dumbrovsky, Lucie Larisova

Abstract:

The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing.

Keywords: soil crusting processing, unsaturated hydraulic conductivity, cumulative infiltration, bulk density, porosity

Procedia PDF Downloads 226
9741 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications

Authors: Debajyoti Bose

Abstract:

Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.

Keywords: fungi, chitosan, enzyme, nanocapsule

Procedia PDF Downloads 482
9740 Continuance Commitment of Retail Pharmacist in a Labor Shortage: Results from the Questionnaire Survey

Authors: Shigeaki Mishima

Abstract:

Pharmacist labor shortage has become a long-term problem in Japan. This paper discusses the relationship between organizational commitment and pharmacists' organizational behavior in the context of labor shortage. Based on a multidimensional view of organizational commitment, effective commitment and continuous commitment are measured. It is suggested that the continuous commitment has a unique impact on withholding information behavior. We also discuss the impact of labor supply and demand on continuous commitment of retail pharmacist.

Keywords: organizational commitment, pharmacist, labor shortage, professional

Procedia PDF Downloads 394
9739 Designing of Almond Drink with Phytonutrients Assigned for Pro-Health Oriented Consumers

Authors: Gramza-Michalowska Anna, Skrety Joanna, Kobus-Cisowska Joanna, Kmiecik Dominik, Korczak Jozef, Anna Zywica

Abstract:

Background: Recent research presented many evidences confirming that food besides its basic nutritional function, possess significant therapeutic and prophylactic potential. Conscious consumer is aware of diet habits and well being lifestyle influencing a proper functioning that is why there is a need of new pro-health products. Objective: Proposition of the technology of unsweetened almond drinks enriched with plant extracts for pro-health oriented individuals. Research investigated the influence of selected plant extracts addition on antioxidative activity and consumer’s acceptance of drinks as all day diet product representatives. Methods: The analysis of the basic composition and antioxidant properties of the almond drink was conducted. Research included analysis of basic composition (protein, lipids and fiber content) and antioxidant capacity of drink (DPPH, ABTS, ORAC value, and FRAP). Proposed drink was also characterized with sensory analysis, including color, aroma, taste, consistency, and overall acceptance. Results: Results showed that addition of plant extracts into an almond drink allowed to improve its antioxidant capacity and sensory value of the drinks. Profitable composition and pro-health properties of designed drink permits offering healthy product for all day consumption. Conclusion: Designed almond drink would be a significant supplement for pro-healthy life style of the consumers. Results showed that plant extracts enriched almond drink would be a good source of antioxidants and accepted by the consumers.

Keywords: phytonutrients, pro-health, almond, wellbeing, antioxidant potential, sensory value

Procedia PDF Downloads 461
9738 Active Part of the Burnishing Tool Effect on the Physico-Geometric Aspect of the Superficial Layer of 100C6 and 16NC6 Steels

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

Burnishing is a mechanical surface treatment that combines several beneficial effects on the two steel grades studied. The application of burnishing to the ball or to the tip favors a better roughness compared to turning. In addition, it allows the consolidation of the surface layers through work hardening phenomena. The optimal effects are closely related to the treatment parameters and the active part of the device. With an improvement of 78% on the roughness, burnishing can be defined as a finishing operation in the machining range. With a 44% gain in consolidation rate, this treatment is an effective process for material consolidation. These effects are affected by several factors. The factors V, f, P, r, and i have the most significant effects on both roughness and hardness. Ball or tip burnishing leads to the consolidation of the surface layers of both grades 100C6 and 16NC6 steels by work hardening. For each steel grade and its mechanical treatment, the rational tensile curve has been drawn. Lüdwick's law is used to better plot the work hardening curve. For both grades, a material hardening law is established. For 100C6 steel, these results show a work hardening coefficient and a consolidation rate of 0.513 and 44, respectively, compared to the surface layers processed by turning. When 16NC6 steel is processed, the work hardening coefficient is about 0.29. Hardness tests characterize well the burnished depth. The layer affected by work hardening can reach up to 0.4 mm. Simulation of the tests is of great importance to provide the details at the local scale of the material. Conventional tensile curves provide a satisfactory indication of the toughness of 100C6 and 16NC6 materials. A simulation of the tensile curves revealed good agreement between the experimental and simulation results for both steels.

Keywords: 100C6 steel, 16NC6 steel, burnishing, work hardening, roughness, hardness

Procedia PDF Downloads 152
9737 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects

Authors: Rabea Sefrin, Christian Glock, Juergen Schnell

Abstract:

The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.

Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation

Procedia PDF Downloads 101
9736 A Study of Female Casino Dealers' Job Stress and Job Satisfaction: The Case of Macau

Authors: Xinrong Zong, Tao Zhang

Abstract:

Macau is known as the Oriental Monte Carlo and its economy depends on gambling heavily. The dealer is the key position of the gambling industry, at the end of the fourth quarter of 2015, there were over 24,000 dealers among the 56,000 full-time employees in gambling industry. More than half of dealers were female. The dealer is also called 'Croupier', the main responsibilities of them are shuffling, dealing, processing chips, rolling dice game and inspecting play. Due to the limited land and small population of Macao, the government has not allowed hiring foreign domestic dealers since Macao developed temporary gambling industry. Therefore, local dealers enjoy special advantages but also bear the high stresses from work. From the middle of last year, with the reduced income of gambling, and the decline of mainland gamblers as well as VIP lounges, the working time of dealers increased greatly. Thus, many problems occurred in this condition, such as the rise of working pressures, psychological pressures and family-responsibility pressures, which may affect job satisfaction as well. Because of the less research of dealer satisfaction, and a lack of standing on feminine perspective to analyze female dealers, this study will focus on investigating the relationship between working pressure and job satisfaction from feminine view. Several issues will be discussed specifically: firstly, to understand current situation of the working pressures and job satisfactions of female dealers in different ages; secondly, to research if there is any relevance between working pressures and job satisfactions of female dealers in different ages; thirdly, to find out the relationship between dealers' working pressures and job satisfactions in different ages. This paper combined qualitative approach with quantitative approach selected samples by convenient sampling. The research showed the female dealers from diverse ages have different kinds of working pressures; second, job satisfactions of the female dealers in different ages are dissimilar; moreover, there is negative correlation between working pressure and job satisfaction of female dealer in different ages' groups; last but not the least, working pressure has a significant negative impact on job satisfaction. The research result will provide a reference value for the Macau gambling business. It is a pattern to improve dealers' working environment, to increase employees' job satisfaction, as well as to offer tourists a better service, which can help to attract more and more visitors from a good image of Macau gaming and tourism.

Keywords: female dealers, job satisfaction, working pressure, Macau

Procedia PDF Downloads 289
9735 Sustainable Development Change within Our Environs

Authors: Akinwale Adeyinka

Abstract:

Critical natural resources such as clean ground water, fertile topsoil, and biodiversity are diminishing at an exponential rate, orders of magnitude above that at which they can be regenerated. Based on news on world population record, over 6 billion people on earth, and almost a quarter million added each day, the scale of human activity and environmental impact is unprecedented. Soaring human population growth over the past century has created a visible challenge to earth’s life support systems. In addition, the world faces an onslaught of other environmental threats including degenerated global climate change, global warming, intensified acid rain, stratospheric ozone depletion and health threatening pollution. Overpopulation and the use of deleterious technologies combine to increase the scale of human activities to a level that underlies these entire problems. These intensifying trends cannot continue indefinitely, hopefully, through increased understanding and valuation of ecosystems and their services, earth’s basic life-support system will be protected for the future.To say the fact, human civilization is now the dominant cause of change in the global environment. Now that our relationship to the earth has change so utterly, we have to see that change and understand its implication. These are actually 2 aspects to the challenges which we should believe. The first is to realize that our power to harm the earth can indeed have global and even permanent effects. Second is to realize that the only way to understand our new role as a co-architect of nature is to see ourselves as part of a complex system that does operate according to the same simple rules of cause and effect we are used to. So understanding the physical/biological dimension of earth system is an important precondition for making sensible policy to protect our environment. Because we believe Sustainable Development Is a matter of reconciling respect for the environment, social equity and economic profitability. Also, we strongly believe that environmental protection is naturally about reducing air and water pollution, but it also includes the improvement of the environmental performance of existing process. That is why we should always have it at the heart of our business that the environmental problem is not our effect on the environment so much as our relationship with the environment. We should always think of being environmental friendly in our operation.

Keywords: Stratospheric ozone depletion ion , Climate Change, global warming, social equity and economic profitability

Procedia PDF Downloads 329
9734 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 249
9733 The Effect of Colloidal Metals Nanoparticles on Quarantine Bacterium - Clavibacter michiganensis Ssp. sepedonicus

Authors: Włodzimierz Przewodowski, Agnieszka Przewodowska

Abstract:

Colloidal metal nanoparticles have drawn increasing attention in the field of phytopathology because of their unique properties and possibilities of applications. Their antibacterial activity, no induction of the development of pathogen resistance and the ability to penetrate most of biological barriers make them potentially useful in the fighting against dangerous pathogens. These properties are very important in the case of protection of strategic crops in the world, like potato - fourth crop in the world - which is host to numerous pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. One of the most important and difficult to reduce pathogen of potato plant is quarantine bacterium Clavibacter michiganensis ssp. sepedonicus (Cms) responsible for ring rot disease. Control and detection of these pathogens is very complicated. Application of healthy, certified seed material as well as hygiene in potato production and storage are the most efficient ways of preventing of ring rot disease. Currently used disinfectants and pesticides, have many disadvantages, such as toxicity, low efficiency, selectivity, corrosiveness, and the inability to eliminate the pathogens in potato tissue. In this situation, it becomes important to search for new formulations based on components harmful to health, yet efficient, stable during prolonged period of time and a with wide range of biocide activity. Such capabilities are offered by the latest generation of biocidal nanoparticles such as colloidal metals. Therefore the aim of the presented research was to develop newly antibacterial preparation based on colloidal metal nanoparticles and checking their influence on the Cms bacteria. Our preliminary results confirmed high efficacy of the nano-colloids in controlling the this selected pathogen.

Keywords: clavibacter michiganensis ssp. sepedonicus, colloidal metal nanoparticles, phytopathology, bacteria

Procedia PDF Downloads 259
9732 Motivators and Barriers to High-Tech Entrepreneurship in the Israeli-Arab Community

Authors: Vered Holzmann, Ramzi Halabi

Abstract:

The current research investigates motivators and barriers to high-tech entrepreneurship in the Israeli-Arab Community. With the aim to exploit the capacity of Israel as a 'start-up nation', we identify the most important aspects to promote integration of Israeli-Arab entrepreneurs in high-tech startups and business companies, thus impact the socio-economic status of the Arab community in Israel. We reviewed the literature on the role of high-tech and entrepreneurship in the Israeli economy, the profile of the Israeli-Arab community with regard to education and employability, and the characteristics of minority entrepreneurship to understand entrepreneurs' intentions, their incentives to choose the entrepreneurial route on one hand and the obstacles that they face on the other hand. Based on the literature review, we conducted an integrated study that included a survey among 73 Israeli-Arabs involved in high-tech entrepreneurship and 16 semi-structured interviews with Israeli-Arab and Jewish entrepreneurs and leaders in the high-tech industry. We analyzed the data to explore personal and social motivating factors to entrepreneurship as well as educational and socio-economical barriers for entrepreneurship. Three major elements were found to be the most influential on Arab high-tech entrepreneurship in Israel: education, financial resources, and strategic-institutional support. The relationship between education and employability that is well-known with regard to general education, requires two additional aspects in the field of high-tech entrepreneurship: education of technology and engineering, and education of business and entrepreneurship. The study findings reveal that the main motivation factors for entrepreneurship are development of creative ideas and improvement of the socio-economic status, while financial-related factors and lack of institutional and governmental support are perceived as impediments to entrepreneurial activities. Financing difficulties are mainly derived from discriminating financial environment and lack of professional networking. The relationship between entrepreneurship and economic growth seems to be clear and simple; thus it is a national interest to encourage entrepreneurship among the Arab community, and especially high-tech entrepreneurship which has a significant role in the economic growth of Israel.

Keywords: high-tech industry, innovation management, Israeli-Arab community, minority entrepreneurship, motivating factors and barriers

Procedia PDF Downloads 205
9731 Effect of Variety and Fibre Type on Functional and organoleptic Properties of Plantain Flour Intended for Food "Fufu"

Authors: C. C. Okafor

Abstract:

The effect of different varieties of plantain (Horn, false horn and French) and fibre types (soy bean residue, cassava sievette and rice bran) on functional and organoleptic properties of plantain-based flour was assessed. Horn, false horn french were processed by washing, peeling with knife, slicing into 3mm thickness and steam blanched at 80℃ for 5minutes, oven dried at 65℃ for 48 hours and milled into flours with attrition mill, sieved with 60 mesh sieve, separately. Fibre sources were processed, milled and fractionated into 60, 40 & 20 mesh sizes. Both flours were blended as 80:20, 70:30 and 60:40. Results obtained indicated that water absorption capacity is highest (2.68) in French plantain variety irrespective of the fibre type used. And in all variety tested the swelling capacity is highest (2.93) when the plantain flour is blended with soy residue (SR) and lowest (1.25) when blended with rice brain (RB). The results show that there is significant variety and fibre type interaction effect at (P < : 0.05). Again the results showed that texture mold ability and overall acceptability were best (7.00) when soy residue was used where as addition of rice bran into plantain flour resulted in fufu with poor texture. This trend was observed in all the verities of plantain tested and in all of the particle size of flour. Using cassava serviette also yield fufu similar to that produced with soy residue in all the parameter tested (mold ability, texture and overall acceptability. Generally, plantain flours from french and false horn yielded better quality fufu in terms of texture mold ability, overall acceptability, irrespective of the fibre type used.

Keywords: functional, organoleptic, particle size, sieve mesh, variety

Procedia PDF Downloads 394
9730 Enzyme Treatment of Sorghum Dough: Modifications of Rheological Properties and Product Characteristics

Authors: G. K. Sruthi, Sila Bhattacharya

Abstract:

Sorghum is an important food crop in the dry tropical areas of the world, and possesses significant levels of phytochemicals and dietary fiber to offer health benefits. However, the absence of gluten is a limitation for converting the sorghum dough into sheeted/flattened/rolled products. Chapathi/roti (flat unleavened bread prepared conventionally from whole wheat flour dough) was attempted from sorghum as wheat gluten causes allergic reactions leading to celiac disease. Dynamic oscillatory rheology of sorghum flour dough (control sample) and enzyme treated sorghum doughs were studied and linked to the attributes of the finished ready-to-eat product. Enzymes like amylase, xylanase, and a mix of amylase and xylanase treated dough affected drastically the rheological behaviour causing a lowering of dough consistency. In the case of amylase treated dough, marked decrease of the storage modulus (G') values from 85513 Pa to 23041 Pa and loss modulus (G") values from 8304 Pa to 7370 Pa was noticed while the phase angle (δ) increased from 5.6 to 10.1o for treated doughs. There was a 2 and 3 fold increase in the total sugar content after α-amylase and xylanase treatment, respectively, with simultaneous changes in the structure of the dough and finished product. Scanning electron microscopy exhibited enhanced extent of changes in starch granules. Amylase and mixed enzyme treatment produced a sticky dough which was difficult to roll/flatten. The dough handling properties were improved by the use of xylanase and quality attributes of the chapath/roti. It is concluded that enzyme treatment can offer improved rheological status of gluten free doughs and products.

Keywords: sorghum dough, amylase, xylanase, dynamic oscillatory rheology, sensory assessment

Procedia PDF Downloads 383
9729 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories

Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika

Abstract:

Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.

Keywords: active films, cassava starch, plasticizer, characterization

Procedia PDF Downloads 60
9728 Discuss the Relationship Between Floor Movement and the Mental and Physical Health - Case Study on Movement Flow

Authors: Joyce Chieh Hsin Lo

Abstract:

In the forthcoming paper, we aim to comprehensively investigate the relation between floor movement and the health condition. We embark on an extensive exploration of the innovative Movement Flow system, a contemporary paradigm that is reshaping the landscape of physical fitness and well-being. Our primary aim is to dissect the profound potential of this groundbreaking approach, not only as a means to enhance our physical fitness but also as a transformative tool for nurturing mental health. Within the scope of this comprehensive analysis, we will delve into the multifaceted aspects of Movement Flow, highlighting its versatility and adaptability to various individuals' needs and objectives.

Keywords: prehab, floor movement, proprioception, movement flow

Procedia PDF Downloads 59
9727 Materials and Techniques of Anonymous Egyptian Polychrome Cartonnage Mummy Mask: A Multiple Analytical Study

Authors: Hanaa A. Al-Gaoudi, Hassan Ebeid

Abstract:

The research investigates the materials and processes used in the manufacturing of an Egyptian polychrome cartonnage mummy mask with the aim of dating this object and establishing trade patterns of certain materials that were used and available at the time of ancient Egypt. This anonymous-source object was held in the basement storage of the Egyptian Museum in Cairo (EMC) and has never been on display. Furthermore, there is no information available regarding its owner, provenance, date, and even the time of its possession by the museum. Moreover, the object is in a very poor condition where almost two-thirds of the mask was bent and has never received any previous conservation treatment. This research has utilized well-established multi-analytical methods to identify the considerable diversity of materials that have been used in the manufacturing of this object. These methods include Computed Tomography Scan (CT scan) to acquire detailed pictures of the inside physical structure and condition of the bended layers. Dino-Lite portable digital microscope, scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX), and the non-invasive imaging technique of multispectral imaging (MSI) to obtain information about the physical characteristics and condition of the painted layers and to examine the microstructure of the materials. Portable XRF Spectrometer (PXRF) and X-Ray powder diffraction (XRD) to identify mineral phases and the bulk element composition in the gilded layer, ground, and pigments; Fourier-transform infrared (FTIR) to identify organic compounds and their molecular characterization; accelerator mass spectrometry (AMS 14C) to date the object. Preliminary results suggest that there are no human remains inside the object, and the textile support is linen fibres with tabby weave 1/1 and these fibres are in a very bad condition. Several pigments have been identified, such as Egyptian blue, Magnetite, Egyptian green frit, Hematite, Calcite, and Cinnabar; moreover, the gilded layers are pure gold and the binding media in the pigments is Arabic gum and animal glue in the textile support layer.

Keywords: analytical methods, Egyptian museum, mummy mask, pigments, textile

Procedia PDF Downloads 113
9726 Interoception and Its Role in Connecting Empathy, Bodily Perception and Conceptual Representations: A Cross-Cultural Online Study

Authors: Fabio Marson, Revital Naor-Ziv, Patrizio Paoletti, Joseph Glicksohn, Filippo Carducci, Tal Dotan Ben-Soussan

Abstract:

According to embodied cognition theories, higher-order cognitive functions and complex behaviors seems to be affected by bodily states. For example, the polyvagal theory suggests that the human autonomic nervous system evolved to support social interactions. Accordingly, integration and perception of information related to the physiological state arising from the peripherical nervous system (i.e., interoception) play a role in the regulation of social interaction by modulating emotional responses and prosocial behaviors. Moreover, recent studies showed that interoception is involved in the representations of conceptual knowledge, suggesting that the bodily information carried by the interoceptive system provides a perceptual basis for the embodiment of abstract concepts, especially those related to social and emotional domains. However, to the best of our knowledge, no studies explored the relationship between interoception, prosocial behaviors, and conceptual representations. Considering the privileged position of interoception in mediating higher-order cognition and social interaction, we designed a cross-cultural study to explore the relationship between interoception, the sensitivity of bodily functions, and empathy. We recruited Italian, English, and Hebrew participants, and we asked them to fill in a questionnaire about empathy (Empathy Quotient), a questionnaire about bodily perception (Body Perception Questionnaire), and to rate different concrete and abstract concepts for the extent such concepts can be experienced through vision, hearing, taste, smell, touch, and interoception. We observed that in all languages, interoception ratings for abstract concepts were greater than for concrete concepts. Importantly, interoception ratings for abstract concepts were positively correlated with empathy and sensitivity of bodily functions. Our results suggest that participants with higher empathy and sensitivity of bodily functions show also a greater embodiment of abstract concepts in interoception, providing further evidence for the importance of the interoceptive system in regulating prosocial behaviors and integrating conceptual representations.

Keywords: conceptual representations, embodiment, empathy, empathy quotient, interoception, prosocial behaviors

Procedia PDF Downloads 133
9725 Electrochemical Study of Prepared Cubic Fluorite Structured Titanium Doped Lanthanum Gallium Cerate Electrolyte for Low Temperature Solid Oxide Fuel Cell

Authors: Rida Batool, Faizah Altaf, Saba Nadeem, Afifa Aslam, Faisal Alamgir, Ghazanfar Abbas

Abstract:

Today, the need of the hour is to find out alternative renewable energy resources in order to reduce the burden on fossil fuels and prevent alarming environmental degradation. Solid oxide fuel cell (SOFC) is considered a good alternative energy conversion device because it is environmentally benign and supplies energy on demand. The only drawback associated with SOFC is its high operating temperature. In order to reduce operating temperature, different types of composite material are prepared. In this work, titanium doped lanthanum gallium cerate (LGCT) composite is prepared through the co-precipitation method as electrolyte and examined for low temperature SOFCs (LTSOFCs). The structural properties are analyzed by X-Ray Diffractometry (XRD) and Fourier Transform Infrared (FTIR) Spectrometry. The surface properties are investigated by Scanning Electron Microscopy (SEM). The electrolyte LGCT has the formula LGCTO₃ because it showed two phases La.GaO and Ti.CeO₂. The average particle size is found to be (32 ± 0.9311) nm. The ionic conductivity is achieved to be 0.073S/cm at 650°C. Arrhenius plots are drawn to calculate activation energy and found 2.96 eV. The maximum power density and current density are achieved at 68.25mW/cm² and 357mA/cm², respectively, at 650°C with hydrogen. The prepared material shows excellent ionic conductivity at comparatively low temperature, that makes it a potentially good candidate for LTSOFCs.

Keywords: solid oxide fuel cell, LGCTO₃, cerium composite oxide, ionic conductivity, low temperature electrolyte

Procedia PDF Downloads 96
9724 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 311
9723 Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles

Authors: Kyung Hwa Hong

Abstract:

The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria.

Keywords: spent coffee grounds, cotton, natural finishing agent, antioxidant activity, antimicrobial activity

Procedia PDF Downloads 149
9722 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo

Abstract:

As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.

Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating

Procedia PDF Downloads 218
9721 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics

Authors: María Teresa Baquero, Ester Higueras

Abstract:

One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.

Keywords: healthy ageing, older adults, outdoor public space, thermal perception

Procedia PDF Downloads 119
9720 A Rational Intelligent Agent to Promote Metacognition a Situation of Text Comprehension

Authors: Anass Hsissi, Hakim Allali, Abdelmajid Hajami

Abstract:

This article presents the results of a doctoral research which aims to integrate metacognitive dimension in the design of human learning computing environments (ILE). We conducted a detailed study on the relationship between metacognitive processes and learning, specifically their positive impact on the performance of learners in the area of reading comprehension. Our contribution is to implement methods, using an intelligent agent based on BDI paradigm to ensure intelligent and reliable support for low readers, in order to encourage regulation and a conscious and rational use of their metacognitive abilities.

Keywords: metacognition, text comprehension EIAH, autoregulation, BDI agent

Procedia PDF Downloads 308
9719 The Lasting Legacy of Six-Day War: How Six Days Changed the Life of Palestinians, Israelis and Their Relationship

Authors: Ziling Chen

Abstract:

Within six days in June 1967, Israeli armies defeated the combined forces of Egypt, Syria, and Jordan. This war was later named the Six-Day War, or Third Arab-Israeli War. This paper examines the lasting legacy of the Six-Day War in the life of Palestinians and Israelis economically, politically, and religiously. The long-term Israeli occupation resulted in Palestinian displacement, impeded the development of the Palestinian economy, as well as a created division within Israeli society. Although the war ended, the conflicts persist, most notably in the Old City of Jerusalem. Due to its sacred nature, the Old City became the center of religious conflicts after the Six-Day War.

Keywords: Israelis, Jerusalem, Palestinians, Six-Day War

Procedia PDF Downloads 104
9718 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan

Authors: Kandi Sridhar, Charles Albert Linton

Abstract:

Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.

Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics

Procedia PDF Downloads 168
9717 Adsorption Behavior and Mechanism of Illite Surface under the Action of Different Surfactants

Authors: Xiuxia Sun, Yan Jin, Zilong Liu, Shiming Wei

Abstract:

As a critical mineral component of shale, illite is essential in oil exploration and development due to its surface hydration characteristics and action mechanism. This paper, starting from the perspective of the molecular structure of organic matter, uses molecular dynamics simulation technology to deeply explore the interaction mechanism between organic molecules and the illite surface. In the study, we thoroughly considered the forces such as van der Waals force, electrostatic force, and steric hindrance and constructed an illite crystal model covering C8-C18 modifiers. Subsequently, we systematically analyzed surfactants' adsorption behavior and hydration characteristics with different alkyl chain numbers, lengths, and concentrations on the illite surface. The simulation results show that surfactant molecules with shorter alkyl chains present a lateral monolayer or inclined double-layer arrangement on the illite surface, and these two arrangements may coexist under different concentration conditions. In addition, with the increase in the number of alkyl chains, the interlayer spacing of illite increases significantly. In contrast, the change in alkyl chain length has a limited effect on surface properties. It is worth noting that the change in functional group structure has a particularly significant effect on the wettability of the illite surface, and its influence even exceeds the change in the alkyl chain structure. This discovery gives us a new perspective on understanding and regulating the wetting properties. The results obtained are consistent with the XRD analysis and wettability experimental data in this paper, further confirming the reliability of the research conclusions. This study deepened our understanding of illite's hydration characteristics and mechanism. We provided new ideas and directions for the molecular design and application development of oilfield chemicals.

Keywords: illite, surfactant, hydration, wettability, adsorption

Procedia PDF Downloads 22
9716 Classification of Attacks Over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed, Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: cloud computing, classification, risk, security

Procedia PDF Downloads 528
9715 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method

Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao

Abstract:

In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.

Keywords: defect levels, nanorods, photoluminescence, Raman modes

Procedia PDF Downloads 227