Search results for: prediction fatigue life
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9904

Search results for: prediction fatigue life

9274 Prediction of Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 340
9273 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate

Procedia PDF Downloads 193
9272 Uncommon Presentation of Iscahemic Heart Disease with Sheehan’s Syndrome at Mid-Level Private Hospital of Bangladesh and Its Management- A Case Report

Authors: Nazmul Haque, Syeda Tasnuva Maria

Abstract:

Sheehan's Syndrome (SS), also known as postpartum hypopituitarism, is a rare but potentially serious condition resulting from ischemic necrosis of the pituitary gland, often occurring during or after childbirth. This syndrome is characterized by hypopituitarism, leading to deficiencies in various hormones produced by the pituitary gland. The primary cause is typically severe postpartum hemorrhage, leading to inadequate blood supply and subsequent necrosis of the pituitary tissue. This chronic hypopituitarism sometimes plays the role of premature atherosclerosis, which may lead to cardiovascular disease. This abstract provides a comprehensive overview of Sheehan's Syndrome with ischaemic heart disease, encompassing its pathophysiology, clinical manifestations, and current management strategies. The disorder presents a wide spectrum of symptoms, including chest pain, fatigue, amenorrhea, lactation failure, hypothyroidism, and adrenal insufficiency. Timely diagnosis is crucial, as delayed recognition can lead to complications and long-term health consequences. We herein report a patient complaining of chronic fatigue symptoms, aggressiveness, chest pain, and breathlessness with repeated LOC that were diagnosed with SS with IHD. The patient was treated with antiplatelet, antianginal, steroids, and hormone replacement with marked improvement in his overall condition.

Keywords: ischaemic heart disease, Sheehan's syndrome, post-partum haemorrhage, pituitary gland

Procedia PDF Downloads 62
9271 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 221
9270 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 117
9269 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 287
9268 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie

Abstract:

In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 488
9267 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 150
9266 The Impact of Physical Activity for Recovering Cancer Patients

Authors: Martyn Queen, Diane Crone, Andrew Parker, Saul Bloxham

Abstract:

Rationale: There is a growing body of evidence that supports the use of physical activity during and after cancer treatment. However, activity levels for patients remain low. As more cancer patients are treated successfully, and treatment costs continue to escalate, physical activity may be a promising adjunct to a person-centred healthcare approach to recovery. Aim: The aim was to further understand how physical activity may enhance the recovery process for a group of mixed-site cancer patients. Objectives: The research investigated longitudinal changes in physical activity and perceived the quality of life between two and six month’s post-exercise interventions. It also investigated support systems that enabled patients to sustain these perceived changes. Method: The respondent cohort comprised 14 mixed-site cancer patients aged 43-70 (11 women, 3 men), who participated in a two-phase physical activity intervention that took place at a university in the South West of England. Phase 1 consisted of an eight-week structured physical activity programme; Phase 2 consisted of four months of non-supervised physical activity. Semi-structured interviews took place three times over six months with each participant. Grounded theory informed the data collection and analysis which, in turn, facilitated theoretical development. Findings: Our findings propose three theories on the impact of physical activity for recovering cancer patients: 1) Knowledge gained through a structured exercise programme can enable recovering cancer patients to independently sustain physical activity to four-month follow-up. 2) Sustaining physical activity for six months promotes positive changes in the quality of life indicators of chronic fatigue, self-efficacy, the ability to self-manage and energy levels. 3) Peer support from patients facilitates adherence to a structured exercise programme and support from a spouse, or life partner facilitates independently sustained physical activity to four-month follow-up. Conclusions: This study demonstrates that qualitative research can provide an evidence base that could be used to support future care plans for cancer patients. Findings also demonstrate that a physical activity intervention can be effective at helping cancer patients recover from the side effects of their treatment, and recommends that physical activity should become an adjunct therapy alongside traditional cancer treatments.

Keywords: physical activity, health, cancer recovery, quality of life, support systems, qualitative, grounded theory, person-centred healthcare

Procedia PDF Downloads 296
9265 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim Fares Zaidi

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: ARSDS, HTK, HMM, MFCC, PLP

Procedia PDF Downloads 115
9264 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: call center agents, fatigue, skin color detection, face recognition

Procedia PDF Downloads 298
9263 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 146
9262 Analysis of the Effects of Vibrations on Tractor Drivers by Measurements With Wearable Sensors

Authors: Gubiani Rino, Nicola Zucchiatti, Da Broi Ugo, Bietresato Marco

Abstract:

The problem of vibrations in agriculture is very important due to the different types of machinery used for the different types of soil in which work is carried out. One of the most commonly used machines is the tractor, where the phenomenon has been studied for a long time by measuring the whole body and placing the sensor on the seat. However, this measurement system does not take into account the characteristics of the drivers, such as their body index (BMI), their gender (male, female) or the muscle fatigue they are subjected to, which is highly dependent on their age for example. The aim of the research was therefore to place sensors not only on the seat but along the spinal column to check the transmission of vibration on drivers with different BMI on different tractors and at different travel speeds and of different genders. The test was also done using wearable sensors such as a dynamometer applied to the muscles, the data of which was correlated with the vibrations produced by the tractor. Initial data show that even on new tractors with pneumatic seats, the vibrations attenuate little and are still correlated with the roughness of the track travelled and the forward speed. Another important piece of data are the root-mean square values referred to 8 hours (A(8)x,y,z) and the maximum transient vibration values (MTVVx,y,z) and, the latter, the MTVVz values were problematic (limiting factor in most cases) and always aggravated by the speed. The MTVVx values can be lowered by having a tyre-pressure adjustment system, able to properly adjust the tire pressure according to the specific situation (ground, speed) in which a tractor is operating.

Keywords: fatigue, effect vibration on health, tractor driver vibrations, vibration, muscle skeleton disorders

Procedia PDF Downloads 76
9261 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 155
9260 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 105
9259 Quality of Life of the Beneficiaries of the Government’s Bolsa Família Program: A Case Study in Mateiros/TO/Brazil

Authors: Mary L. G. S. Senna, Afonso R. Aquino, Veruska C. Dutra, Carlos H. C. Tolentino

Abstract:

The quality of life index, despite elucidating many discussions, the conceptual subjectivity of the term does not show precision, and consequently, many researchers seek to develop methods aiming to measure this concept, bringing it to a more concrete approach. In this study, the quality of life index method was used to analyze the population of Mateiros, Tocantins, Brazil for quality of life. After data collection, it was compared the quality of life index between the population and the group of beneficiaries of the Brazilian government assistance program Bolsa Família (Family Allowance). Some of the people interviewed receive financial aid from the federal government program Bolsa Família (22%). Comparisons were made among the final score of the quality of life index of the Mateiros population and the following factors: Gender, age, education, those working or not with tourism and those who receive or do not receive the Bolsa Família. It was observed that only the factor, Bolsa Família (p-score 0.0138), shows an association with quality of life improvement, noticing that those who have financial aid had a higher quality of life improvement than the rest of the population. It was concluded that, government assistance has shown a decisive element on the enhancement of Mateiros population quality of life, indicating that similar actions should be maintained.

Keywords: quality of life index, government aid to families, sustainable tourism, Bolsa Familia

Procedia PDF Downloads 308
9258 Quality of Life of Mothers of Adolescents with Attention-Deficit/Hyperactivity Disorder Based on Lazarus-Folkman's Coping

Authors: Simin Hosseinian, Roghieh Nooripour

Abstract:

Introduction: Attention-deficit/hyperactivity disorder (ADHD) is a major neuropsychiatric disorder diagnosis in children, adolescents. This study was aimed to investigate the quality of life of mothers of adolescents with ADHD based on Lazarus-Folkman's coping. Method: Due to this purpose, 120 mothers were selected with convenience sampling method that referred to counseling centers with their adolescents with ADHD for treatment of their adolescents and then they completed Iranian Quality of Life Questionnaire and The Ways of Coping Questionnaire (WCQ). Data were analyzed by the Pearson correlation and stepwise regression methods with SPSS-19. Results: The result showed that there was a positive significant relationship between quality of life and self-controlling and also a negative relationship between quality of life and accepting responsibility (p < 0.05). Conclusion: According to these findings, we can suggest suitable intervention for mothers who have adolescents with ADHD and enhance their quality of life.

Keywords: ADHD, mother, adolescent, quality of life, Lazarus-Folkman

Procedia PDF Downloads 183
9257 Work Life Balance Strategies and Retention of Medical Professionals

Authors: Naseem M. Twaissi

Abstract:

Medical professionals play an important role in society, and in general, they care more about their patients than about their personal well-being. They need to take a professional approach to maintain a work-life balance. Through a collection of primary data from 1020 medical professionals and the application of relevant statistical tools, this paper explores the pressures on medical professionals with reference to their work-life balance. This study highlights how hospital management, in addition to economic reasons, needs to identify variables to enhance the work-life balance of medical professionals so that quality healthcare facilities may be provided to the citizens of Jordan. Results indicate that formulation and implementation of policies for enhancing work-life balance together with career and retention plans for medical professionals would enhance the performance of hospitals and the quality of health care in Jordan, leading to greater societal well-being.

Keywords: work life balance, job environment, job satisfaction, employee well-being, stress, hospital industry

Procedia PDF Downloads 145
9256 Life Imprisonment: European Convention on Human Rights Standards and the New Serbian Criminal Code

Authors: Veljko Turanjanin

Abstract:

In this article, an author deals with the issue of life imprisonment. Life imprisonment represents a new sentence in the Serbian legislature, in addition to the standard one, imprisonment. The author elaborated on judgments of the European Court of Human Rights (ECtHR), imposing the possibility of parole for the person sentenced to life imprisonment, emphasizing rehabilitation as the primary goal of penalties. According to the ECtHR, life imprisonment without parole is not permitted. The right to rehabilitation is very strictly set in the ECtHR jurisprudence. Life imprisonment represents a new sentence in the Serbian legislature, in addition to the standard one, imprisonment. The legislator provided the possibility of parole for most criminal offenses after 27 years in prison, while for some of them, a possibility of parole is explicitly prohibited. The author points out the shortcomings of the legal solution that exists in Serbia, which flagrantly threatens to violate the human rights of the offenders.

Keywords: European Court of Human Rights, life imprisonment, parole, rehabilitation

Procedia PDF Downloads 106
9255 A Social Care Intervention for Improving the Quality of Life of People Living with HIV/AIDS in Ghana

Authors: Tina Abrefa-Gyan

Abstract:

Background: In Ghana and the rest of sub-Saharan Africa, HIV/AIDS is a public health threat and also causes medical crises for many who are infected with the virus. Objective: This study tested a social care intervention developed to help improve the quality of life of those living with HIV/AIDS in Ghana. Method: Adult respondents (N = 248) were assigned to receive the intervention or usual care for six weeks. Results: Results of the study revealed significant differences between the treatment and control groups in their reports of quality of life. Respondents reported better quality of life upon receiving the intervention. Implication: This study sheds light on the positive relationship between the intervention and quality of life among those living with HIV/AIDS in Ghana. Conclusion: The intervention is innovative and novel in the setting. It will, therefore, help to reduce the risks such as depression, low cognitive functioning, and low physical functioning associated with low quality of life among people living with HIV/AIDS in Ghana in specific, and in sub-Saharan Africa in general.

Keywords: social care intervention, HIV/AIDS, Ghana, quality of life

Procedia PDF Downloads 476
9254 Prediction of Coronary Heart Disease Using Fuzzy Logic

Authors: Elda Maraj, Shkelqim Kuka

Abstract:

Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.

Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model

Procedia PDF Downloads 166
9253 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets

Authors: Abdullah Al Faruque, Ram Balachandar

Abstract:

Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.

Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time

Procedia PDF Downloads 443
9252 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 856
9251 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 129
9250 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 150
9249 Study of Slum Redevelopment Initiatives for Dharavi Slum, Mumbai and Its Effectiveness in Implementation in Other Cities

Authors: Anurag Jha

Abstract:

Dharavi is the largest slum in Asia, for which many redevelopment projects have been put forth, to improve the housing conditions of the locals. And yet, these projects are met with much-unexpected resistance from the locals. The research analyses the why and the how of the resistances these projects face and analyses these programs and points out the flaws and benefits of such projects, by predicting its impact on the regulars of Dharavi. The research aims to analyze various aspects of Dharavi, which affect its socio-cultural backdrops, such as its history, and eventual growth into a mega slum. Through various surveys, the research aims to analyze the life of a slum dweller, the street life, and the effect of such settlement on the urban fabric. Various development projects such as Dharavi Museum Movement, are analyzed, and a feasibility and efficiency analysis of the proposals for redevelopment of Dharavi Slums has been theorized. Flaws and benefits of such projects, by predicting its impact on the regulars of Dharavi has been the major approach to the research. Also, prediction the implementation of these projects in another prominent slum area, Anand Nagar, Bhopal, with the use of generated hypothetical model has been done. The research provides a basic framework for a comparative analysis of various redevelopment projects and the effect of implementation of such projects on the general populace. Secondly, it proposes a hypothetical model for feasibility of such projects in certain slum areas.

Keywords: Anand Nagar, Bhopal slums, Dharavi, slum redevelopment programmes

Procedia PDF Downloads 336
9248 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets

Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.

Abstract:

The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.

Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction

Procedia PDF Downloads 123
9247 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar

Authors: Yasir E. Mohieldeen

Abstract:

Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.

Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination

Procedia PDF Downloads 112
9246 Natural Gas Production Forecasts Using Diffusion Models

Authors: Md. Abud Darda

Abstract:

Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.

Keywords: diffusion models, energy forecast, natural gas, nonlinear production

Procedia PDF Downloads 230
9245 Impact of Design Choices on the Life Cycle Energy of Modern Buildings

Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno

Abstract:

Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.

Keywords: building life cycle energy, embodied energy, energy design measures, low energy buildings

Procedia PDF Downloads 774