Search results for: plant classification
4979 Application of Fuzzy Clustering on Classification Agile Supply Chain
Authors: Hamidreza Fallah Lajimi , Elham Karami, Fatemeh Ali nasab, Mostafa Mahdavikia
Abstract:
Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with four validations functional determine automatically the optimal number of clusters.Keywords: agile supply chain, clustering, fuzzy clustering
Procedia PDF Downloads 4744978 Effect of Chemical Mutagen on Seeds Germination of Lima Bean
Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva
Abstract:
Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)
Procedia PDF Downloads 1984977 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1334976 Qualitative Phytochemical Screening and Antibacterial Evaluation of Sohphlang: Flemingia Vestita
Authors: J. K. D. M. P. Madara, R. B. L. Dharmawickreme, Linu John, Ivee Boiss
Abstract:
Flemingia vestita, commonly known as ‘Sohphlang’ is an important medicinal plant found in the North-Eastern region of India, which is traditionally recognized for its anthelmintic properties. This study was aimed to evaluate the phytochemical constituents and antibacterial activity of the tuber skin extracts of the plant species. Methanol, acetone, and water were used to obtain the solvent extractions of the skin peel extracts. Concentrated extracts of skin peel were tested using previously established qualitative phytochemical assays. The antibacterial efficacy of methanol tuber skin extract was tested against Gram-negative and positive microorganisms, namely, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Mycobacterium tuberculosis strains. Agar well diffusion method was employed to determine the zone of inhibition of the plant extracts. Obtained data were statistically analyzed. Methanol extracts of Flemingia vestita were found to be effective against Bacillus subtilis and Mycobacterium tuberculosis at concentrations of 0.5 mg/ml. The reported zone of inhibition for the two strains was 13.3mm ± 0.57 and 16.3mm ± 4.9, respectively. However Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were resistant to the plant extracts with no zone of inhibition. Alkaloids, glycosides, and phenols were found to be present in aqueous, methanol, and acetone extracts of the plant in qualitative phytochemical analysis.Keywords: flemingia vestita, antibacterial activity, phytochemical screening, well diffusion method
Procedia PDF Downloads 1094975 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 154974 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2624973 Media Manipulations and the Culture of Beneficial Endophytic Fungi in the Leaves and Stem Bark of Grewia lasiocarpa E. Mey. Ex Harv
Authors: Akwu A. Nneka, Naidoo, Yougasphree
Abstract:
A significantly high number of microbes exist in higher plants; these microbes include bacteria, fungi, and actinomycetes. There are reports on the benefits of endophytic fungi and their products of metabolism to the host plant and man, consequently, it is expedient to explore the changes that could arise as a result of manipulating their growth media. Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is an indigenous Southern African plant, that belongs to a genus with known medicinal properties. Three media were used to culture the endophytic fungi viz., Potato Dextrose Agar (PDA), Malt Extract Agar (MEA), and Bacteriological Agar (BA) were used singly, and supplemented with three dilutions of the leaves and stem bark extracts. The manipulated growth media composition had a significant effect on the diversity of the isolated fungal populations. Several endophytic fungi were isolated; their distribution and diversity revealed a significant relatedness with the manipulated media. The media supplemented with the plant extracts was observed to give a significant increase in the growth rate and yield of the endophytes. To the best of our knowledge, this is the first study describing the endophytic fungi present in the leaves and stem bark of G. lasiocarpa E. Mey. ex Harv.Keywords: Grewia lasiocarpa, plant-based extracts, endophytic fungi, Malvaceae
Procedia PDF Downloads 1554972 Hydrographic Mapping Based on the Concept of Fluvial-Geomorphological Auto-Classification
Authors: Jesús Horacio, Alfredo Ollero, Víctor Bouzas-Blanco, Augusto Pérez-Alberti
Abstract:
Rivers have traditionally been classified, assessed and managed in terms of hydrological, chemical and / or biological criteria. Geomorphological classifications had in the past a secondary role, although proposals like River Styles Framework, Catchment Baseline Survey or Stroud Rural Sustainable Drainage Project did incorporate geomorphology for management decision-making. In recent years many studies have been attracted to the geomorphological component. The geomorphological processes and their associated forms determine the structure of a river system. Understanding these processes and forms is a critical component of the sustainable rehabilitation of aquatic ecosystems. The fluvial auto-classification approach suggests that a river is a self-built natural system, with processes and forms designed to effectively preserve their ecological function (hydrologic, sedimentological and biological regime). Fluvial systems are formed by a wide range of elements with multiple non-linear interactions on different spatial and temporal scales. Besides, the fluvial auto-classification concept is built using data from the river itself, so that each classification developed is peculiar to the river studied. The variables used in the classification are specific stream power and mean grain size. A discriminant analysis showed that these variables are the best characterized processes and forms. The statistical technique applied allows to get an individual discriminant equation for each geomorphological type. The geomorphological classification was developed using sites with high naturalness. Each site is a control point of high ecological and geomorphological quality. The changes in the conditions of the control points will be quickly recognizable, and easy to apply a right management measures to recover the geomorphological type. The study focused on Galicia (NW Spain) and the mapping was made analyzing 122 control points (sites) distributed over eight river basins. In sum, this study provides a method for fluvial geomorphological classification that works as an open and flexible tool underlying the fluvial auto-classification concept. The hydrographic mapping is the visual expression of the results, such that each river has a particular map according to its geomorphological characteristics. Each geomorphological type is represented by a particular type of hydraulic geometry (channel width, width-depth ratio, hydraulic radius, etc.). An alteration of this geometry is indicative of a geomorphological disturbance (whether natural or anthropogenic). Hydrographic mapping is also dynamic because its meaning changes if there is a modification in the specific stream power and/or the mean grain size, that is, in the value of their equations. The researcher has to check annually some of the control points. This procedure allows to monitor the geomorphology quality of the rivers and to see if there are any alterations. The maps are useful to researchers and managers, especially for conservation work and river restoration.Keywords: fluvial auto-classification concept, mapping, geomorphology, river
Procedia PDF Downloads 3674971 Growth, Yield, and Quality of Onion (Allium-cepl.) as Influenced by Intra-row Spacing and Nitrogen Fertilizer Levels in Gashua Sahel Savanna Region of Nigeria
Authors: Muazu A.
Abstract:
Haphazard and inappropriate plant spacing and poor soilfertility management practice are among the major factorsconstraining onion production in Gashua, Bade Locale Government Yobe State.Field experiments were conducted in 2023 dry season ar Federal University, Gashua university farm assess the influence of intra-row spacing (2.5, 5, 7.5, 10 and 12.5 cm) and nitrogen fertilizerrate (0, 41, 82 and 123kg Nha-1) growth, bulb yield and quality of onion. The experiment was laid out in a randomized complete block design (RCBD) with three replications. The main effects of nitrogen rate and intra-row spacing influenced only the plant height stand count significantly obtained from 7.5cm and 82kg Nha-1 intra-row spacing and nitrogen fertilizer respectively. The highest yield was obtained from the application of 82kg Nha-1 and plant spacing of 5.0cm and 7.5cm respectively.Keywords: onion, intra-row spacing, nitrogen fertilizer, yield
Procedia PDF Downloads 284970 Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network
Authors: Ferydon Salehifar, Hassan Safarikia, Hossein Boromandfar
Abstract:
Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined.Keywords: Karkheh power, frequency control system, active power, efficiency
Procedia PDF Downloads 6204969 Analysis of Endogenous Sirevirus in Germinating Barley (Hordeum vulgare L.)
Authors: Nermin Gozukirmizi, Buket Cakmak, Sevgi Marakli
Abstract:
Sireviruses are genera of copia LTR retrotransposons with a unique genome structure among retrotransposons. Barley (Hordeum vulgare L.) is an economically important plant and has been studied as a model plant regarding its short annual life cycle and seven chromosome pairs. In this study, we used mature barley embryos, 10-day-old roots and 10-day-old leaves derived from the same barley plant to investigate SIRE1 retrotransposon movements by Inter-Retrotransposon Amplified Polymorphism (IRAP) technique. We found polymorphism rates between 0-64% among embryos, roots and leaves. Polymorphism rates were detected to be 0-27% among embryos, 8-60% among roots, and 11-50% among leaves. Polymorphisms were observed not only among the parts of different individuals, but also on the parts of the same plant (23-64%). The internal domains of SIRE1 (gag, env and rt) were also analyzed in the embryos, roots and leaves. Analysis of band profiles showed no polymorphism for gag, however, different band patterns were observed among samples for rt and env. The sequencing of SIRE1 gag, env and rt domains revealed 79% similarity for gag, 95% for env and 84% for rt to Ty1-copia retrotransposons. SIRE1 retrotransposon was identified in the soybean genome and has been studied on other plants (maize, rice, tomatoe etc.). This study is the first detailed investigation of SIRE1 in barley genome. The obtained findings are expected to contribute to the comprehension of SIRE1 retrotransposon and its role in barley genome.Keywords: barley, polymorphism, retrotransposon, SIRE1 virus
Procedia PDF Downloads 3084968 Conservation of Rare, Endangered and Threaten Medicinal Plants: Participatory Approach
Authors: G. Raviraja Shetty, K. G. Poojitha, Pranay Kumar
Abstract:
Biodiversity refers to the numbers, variety and variability of living organisms and ecosystem. The climatic and altitudinal variations, coupled with varied ecological habitats of this country, have contributed to the development of immensely rich vegetation with a unique diversity in medicinal plants which provides an important source of medicinal raw materials for traditional medicine systems as well as for pharmaceutical industries in the country and abroad. World Health Organization has listed over 21000 plant species used around the world for medicinal purpose. In India, about 2500 plant species are being used in indigenous system of medicine. The red data book lists 427 Indian Medicinal plant entries on endangered species, of which 28 are considered extinct, 124 endangered, 81 rare, and 34 insufficiently known. It is abundantly clear from the experience of all govt agencies that on their own they cannot efficiently conserve the biodiversity. Participatory Approach with the involvement of local people in conservation is found to be more effective these days. Involvement of local people reduces the cost involved in conservation. Local communities have long tradition of resource use in particular area, hold in depth knowledge and experience of plant which can be invaluable for conservation efforts.Medicinal plants occupy a vital sector of health care system in India and represent a major national resource.There is an immense need for conservation of diversity of medicinal plant wealth for the present and fore coming generations, by adapting the suitable strategy with most appropriate method of conservation.Keywords: conservation, biodiversity, participatory, medicinal plants
Procedia PDF Downloads 4814967 Effect of Arsenic Treatment on Element Contents of Sunflower, Growing in Nutrient Solution
Authors: Szilvia Várallyay, Szilvia Veres, Éva Bódi, Farzaneh Garousi, Béla Kovács
Abstract:
The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic. Consequences of arsenic toxicity in the plant organism is decreases the weight of the roots, and causes discoloration and necrosis of leaves. The toxicity of arsenic depends on the quality and quantity of the arsenic specialization. The arsenic in the soil and in the plant presents as a most hazardous specialization. A dicotyledon plant were chosen for the experiment, namely sunflower. The sunflower plants were grown in nutrient solution in different As(III) levels. The content of As, P, Fe were measured from experimental plants, using by ICP-MS.Negative correlation was observed between the higher concentration of As(V) and As(III) in the nutrition solution and the content of P in the sunflower tissue. The amount of Fe was decreasing if we used a higher concentration of arsenic (30 mg kg-1). We can tell the conclusion that the arsenic had a negative effect on the sunflower tissue P and Fe content.Keywords: arsenic, sunflower, ICP-MS, toxicity
Procedia PDF Downloads 6464966 The Diverse and Flexible Coping Strategies Simulation for Maanshan Nuclear Power Plant
Authors: Chin-Hsien Yeh, Shao-Wen Chen, Wen-Shu Huang, Chun-Fu Huang, Jong-Rong Wang, Jung-Hua Yang, Yuh-Ming Ferng, Chunkuan Shih
Abstract:
In this research, a Fukushima-like conditions is simulated with TRACE and RELAP5. Fukushima Daiichi Nuclear Power Plant (NPP) occurred the disaster which caused by the earthquake and tsunami. This disaster caused extended loss of all AC power (ELAP). Hence, loss of ultimate heat sink (LUHS) happened finally. In order to handle Fukushima-like conditions, Taiwan Atomic Energy Council (AEC) commanded that Taiwan Power Company should propose strategies to ensure the nuclear power plant safety. One of the diverse and flexible coping strategies (FLEX) is a different water injection strategy. It can execute core injection at 20 Kg/cm2 without depressurization. In this study, TRACE and RELAP5 were used to simulate Maanshan nuclear power plant, which is a three loops PWR in Taiwan, under Fukushima-like conditions and make sure the success criteria of FLEX. Reducing core cooling ability is due to failure of emergency core cooling system (ECCS) in extended loss of all AC power situation. The core water level continues to decline because of the seal leakage, and then FLEX is used to save the core water level and make fuel rods covered by water. The result shows that this mitigation strategy can cool the reactor pressure vessel (RPV) as soon as possible under Fukushima-like conditions, and keep the core water level higher than Top of Active Fuel (TAF). The FLEX can ensure the peak cladding temperature (PCT) below than the criteria 1088.7 K. Finally, the FLEX can provide protection for nuclear power plant and make plant safety.Keywords: TRACE, RELAP5/MOD3.3, ELAP, FLEX
Procedia PDF Downloads 2504965 Shipboard Power Plant Design as Senior Design Project
Authors: Hesham Shaalan
Abstract:
Senior design projects teach students many important skills. One of the major goals is to prepare students to apply effective problem-solving techniques to a problem that represents a real-world situation. This includes the ability to define the problem, compare alternative solutions, identify the best solution, and design the system. This paper describes the design of a shipboard power plant as a senior project in the Marine Engineering program at the U.S. Merchant Marine Academy. The design project was supervised by faculty members who guided a multidisciplinary group of seniors. The research project was sponsored by the Office of Naval Research. Each group of seniors focused on one of the main design aspects of the project, including the electric power system, nuclear power plant, ship hull design, and economics.Keywords: senior design project, shipboard power system, engineering education, marine engineering
Procedia PDF Downloads 834964 Effects of Soil Erosion on Vegetation Development
Authors: Josephine Wanja Nyatia
Abstract:
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity, and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problemsKeywords: soil erosion, vegetation, development, seed availability
Procedia PDF Downloads 854963 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3324962 Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk
Authors: A. Deswal, N. S. Deora, H. N. Mishra
Abstract:
The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyse spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), discriminant factorial analysis (DFA) and soft independent modelling by class analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable counts showed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20 hours and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.Keywords: electronic-nose, bacteriological, shelf-life, classification
Procedia PDF Downloads 2584961 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information
Authors: Babar Khan, Wang Zhijie
Abstract:
Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel
Procedia PDF Downloads 4844960 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts
Authors: Reza Shakoori
Abstract:
This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.Keywords: Arabic, chain code normalization, OCR systems, image processing
Procedia PDF Downloads 4044959 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2184958 Evaluation of Raw Diatomaceous Earth and Plant Powders in the Control of Callosobruchus subinnotatus (Pic.) on Stored Bambara Groundnut (Vigna subterranea (L.) (Verdc.) Seeds
Authors: Ibrahim Nasiru Dole, Audu Abdullahi, Dike Michiel Chidozie, Lawal Mansur
Abstract:
Bambara groundnut is an important grain legume and the seeds in storage suffer infestation by Callosobruchus subinnotatus. Laboratory study was conducted to evaluate the efficacy of raw diatomaceous earth (RDE) and plant powders (Jatropha curcas (L.), Eucalyptus camaldulensis (Dehnh.) and Melia azedarach (L.) against C. subinnotatus infesting stored bambara groundnut seeds. Rearing of the insects and the experiments were conducted in Agricultural Biology Laboratory of the Usmanu Danfodiyo University, Sokoto - Nigeria under ambient conditions (29-33oC and a relative humidity of 44-56%). Four treatments at three levels: RDE at 0.5, 1.0 and 1.5 g while plant powders at 0.5, 1.0 and 2.0 g, standard/check (2.0 g of Actellic dust), and a control. These were separately admixed with 100 g of sterilized seeds in glass jars. Each jar was later infested with thirty, 1-2-days old C. subinnotatus of mixed sexes. Adult mortality was assessed 24, 48, 72 and 96 hours, F1 and F2 progenies, seed damage, weight loss and viability were also assessed after 90 days. Eighty-nine (89%) percent adult mortality was recorded in the highest dose of RDE after 96 hours of exposure. These treatments significantly (P < 0.05) suppressed F1 and F2 progenies emergence in relation to the control. The control suffered significantly (P < 0.05) higher seed damage (51.0 %) and weight loss (40.8%) thereby recording lower seed germination. Therefore, RDE and plant powders could be used against C. subinnotatus on stored bambara groundnut seeds.Keywords: bambara, callosobruchus subinnotatus, plant powders, raw diatomaceous earth,
Procedia PDF Downloads 4264957 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 4904956 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target
Authors: S. Rajeswari
Abstract:
Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.Keywords: euphorbiaceae, antimicrobial activity, Ricinus communis, Staphylococcus aureus
Procedia PDF Downloads 4794955 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 714954 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 764953 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1254952 Assessment of Procurement-Demand of Milk Plant Using Quality Control Tools: A Case Study
Authors: Jagdeep Singh, Prem Singh
Abstract:
Milk is considered as an essential and complete food. The present study was conducted at Milk Plant Mohali especially in reference to the procurement section where the cash inflow was maximum, with the objective to achieve higher productivity and reduce wastage of milk. In milk plant it was observed that during the month of Jan-2014 to March-2014 the average procurement of milk was Rs. 4, 19, 361 liter per month and cost of procurement of milk is Rs 35/- per liter. The total cost of procurement thereby equal to Rs. 1crore 46 lakh per month, but there was mismatch in procurement-production of milk, which leads to an average loss of Rs. 12, 94, 405 per month. To solve the procurement-production problem Quality Control Tools like brainstorming, Flow Chart, Cause effect diagram and Pareto analysis are applied wherever applicable. With the successful implementation of Quality Control tools an average saving of Rs. 4, 59, 445 per month is done.Keywords: milk, procurement-demand, quality control tools,
Procedia PDF Downloads 5324951 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3604950 Reservoir Fluids: Occurrence, Classification, and Modeling
Authors: Ahmed El-Banbi
Abstract:
Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.Keywords: PVT models, fluid types, PVT properties, fluids classification
Procedia PDF Downloads 72