Search results for: accuracy assessment.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9152

Search results for: accuracy assessment.

8522 An MrPPG Method for Face Anti-Spoofing

Authors: Lan Zhang, Cailing Zhang

Abstract:

In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.

Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG

Procedia PDF Downloads 177
8521 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus

Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti

Abstract:

Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.

Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel

Procedia PDF Downloads 192
8520 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 144
8519 TomoTherapy® System Repositioning Accuracy According to Treatment Localization

Authors: Veronica Sorgato, Jeremy Belhassen, Philippe Chartier, Roddy Sihanath, Nicolas Docquiere, Jean-Yves Giraud

Abstract:

We analyzed the image-guided radiotherapy method used by the TomoTherapy® System (Accuray Corp.) for patient repositioning in clinical routine. The TomoTherapy® System computes X, Y, Z and roll displacements to match the reference CT, on which the dosimetry has been performed, with the pre-treatment MV CT. The accuracy of the repositioning method has been studied according to the treatment localization. For this, a database of 18774 treatment sessions, performed during 2 consecutive years (2016-2017 period) has been used. The database includes the X, Y, Z and roll displacements proposed by TomoTherapy® System as well as the manual correction of these proposals applied by the radiation therapist. This manual correction aims to further improve the repositioning based on the clinical situation and depends on the structures surrounding the target tumor tissue. The statistical analysis performed on the database aims to define repositioning limits to be used as security and guiding tool for the manual adjustment implemented by the radiation therapist. This tool will participate not only to notify potential repositioning errors but also to further improve patient positioning for optimal treatment.

Keywords: accuracy, IGRT MVCT, image-guided radiotherapy megavoltage computed tomography, statistical analysis, tomotherapy, localization

Procedia PDF Downloads 225
8518 Use of Telehealth for Facilitating the Diagnostic Assessment of Autism Spectrum Disorder: A Scoping Review

Authors: Manahil Alfuraydan, Jodie Croxall, Lisa Hurt, Mike Kerr, Sinead Brophy

Abstract:

Autism Spectrum Disorder (ASD) is a developmental condition characterised by impairment in terms of social communication, social interaction, and a repetitive or restricted pattern of interest, behaviour, and activity. There is a significant delay between seeking help and a confirmed diagnosis of ASD. This may result in delay in receiving early intervention services, which are critical for positive outcomes. The long wait times also cause stress for the individuals and their families. Telehealth potentially offers a way of improving the diagnostic pathway for ASD. This review of the literature aims to examine which telehealth approaches have been used in the diagnosis and assessment of autism in children and adults, whether they are feasible and acceptable, and how they compare with face-to-face diagnosis and assessment methods. A comprehensive search of following databases- MEDLINE, CINAHL Plus with Full text, Business Sources Complete, Web of Science, Scopus, PsycINFO and trail and systematic review databases including Cochrane Library, Health Technology Assessment, Database of Abstracts and Reviews of Effectiveness and NHS Economic Evaluation was conducted, combining the terms of autism and telehealth from 2000 to 2018. A total of 10 studies were identified for inclusion in the review. This review of the literature found there to be two methods of using telehealth: (a) video conferencing to enable teams in different areas to consult with the families and to assess the child/adult in real time and (b) a video upload to a web portal that enables the clinical assessment of behaviours in the family home. The findings were positive, finding there to be high agreement in terms of the diagnosis between remote methods and face to face methods and with high levels of satisfaction among the families and clinicians. This field is in the very early stages, and so only studies with small sample size were identified, but the findings suggest that there is potential for telehealth methods to improve assessment and diagnosis of autism used in conjunction with existing methods, especially for those with clear autism traits and adults with autism. Larger randomised controlled trials of this technology are warranted.

Keywords: assessment, autism spectrum disorder, diagnosis, telehealth

Procedia PDF Downloads 127
8517 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 241
8516 Explainable MRI-Based Diagnosis of Diverse Brain Conditions Using Ensemble Learning

Authors: Nighat Bibi, Jane Courtney, Kathleen M. Curran

Abstract:

Magnetic Resonance Imaging (MRI) is essential for the differential diagnosis of brain diseases, with deep learning methods showing promise for enhancing diagnostic accuracy. This study develops an ensemble learning model incorporating DenseNet121, EfficientNetB1, and ResNet50 architectures for the accurate classification of diverse brain conditions, including glioma, meningioma, pituitary tumors, and multiple sclerosis (MS). The model is trained on publicly available MRI datasets, utilizing Gradient-weighted Class Activation Mapping (Grad-CAM) to increase interpretability by highlighting crucial image regions, thereby enhancing transparency in AI-assisted diagnostics. The ensemble model achieved a notable classification accuracy of 99.84%, demonstrating its reliability in distinguishing multiple brain conditions. Grad-CAM visualizations further support the model’s decision-making, fostering trust in clinical applications. This approach offers a valuable tool for MRI-based diagnosis, emphasizing both accuracy and interpretability in neuroimaging. Future research will expand to larger, diverse datasets to ensure robustness across varied clinical settings.

Keywords: brain tumor, ensemble learning, explainability, grad-cam, glioma, interpretability, meningioma, multiple sclerosis, pituitary, XAI

Procedia PDF Downloads 5
8515 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 146
8514 Physiotherapy Assessment of People with Neurological Conditions in Australia: A National Survey of Clinical Practice

Authors: Jill Garner, Belinda Lange, Sheila Lennon, Maayken van den Berg

Abstract:

Currently, there are approximately one billion people worldwide affected by a neurological condition. Many of whom are assessed and treated by a physiotherapist in a variety of settings. There is a lack of consensus in the literature related to what is clinically assessed by physiotherapists in people with neurological conditions. This study aimed to explore assessment in people with neurological conditions, including how health care setting, experience, and therapeutic approach, may influence neurological assessment. A national survey targeted Australian physiotherapists who assess adults with neurological conditions as part of their clinical practice. The survey consisted of 39 questions and was distributed to physiotherapists through the Australian Physiotherapy Association, and Chief Allied Health Officers across Australia and advertised on the National Neurological Physiotherapy Facebook page. In total, 395 respondents consented to the survey from all states within Australia. Most respondents were female (85.4%) with a mean (SD) age of 35.7 years. Respondents reported working clinically in acute, community, outpatients, and community settings. Stroke was the most assessed condition (58.0%). There is variability in domains assessed by Australian physiotherapists, with common inclusions of balance, muscle strength, gait, falls and safety, function, goal setting, range of movement, pain, coordination, activity tolerance, postural alignment and symmetry and upper limb. There is little evidence to support what physiotherapists assess in practice, in different settings, and in different states within Australia and not enough information to develop a decision tree regarding what is important for assessment in different settings. Further research is needed to explore this area and develop a consensus around best practices.

Keywords: physiotherapy, neurological, assessment, domains

Procedia PDF Downloads 91
8513 Cumulative Pressure Hotspot Assessment in the Red Sea and Arabian Gulf

Authors: Schröde C., Rodriguez D., Sánchez A., Abdul Malak, Churchill J., Boksmati T., Alharbi, Alsulmi H., Maghrabi S., Mowalad, Mutwalli R., Abualnaja Y.

Abstract:

Formulating a strategy for sustainable development of the Kingdom of Saudi Arabia’s coastal and marine environment is at the core of the “Marine and Coastal Protection Assessment Study for the Kingdom of Saudi Arabia Coastline (MCEP)”; that was set up in the context of the Vision 2030 by the Saudi Arabian government and aimed at providing a first comprehensive ‘Status Quo Assessment’ of the Kingdom’s marine environment to inform a sustainable development strategy and serve as a baseline assessment for future monitoring activities. This baseline assessment relied on scientific evidence of the drivers, pressures and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressure hotspot analysis developed for both national waters of the Kingdom following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. The ultimate goals of the analysis were to map and assess the main hotspots of environmental pressures, and identify priority areas for further field surveillance and for urgent management actions. The study identified maritime transport, fisheries, aquaculture, oil, gas, energy, coastal industry, coastal and maritime tourism, and urban development as the main drivers of pollution in the Saudi Arabian marine waters. For each of these drivers, pressure indicators were defined to spatially assess the potential influence of the drivers on the coastal and marine environment. A list of hotspots of 90 locations could be identified based on the assessment. Spatially grouped the list could be reduced to come up with of 10 hotspot areas, two in the Arabian Gulf, 8 in the Red Sea. The hotspot mapping revealed clear spatial patterns of drivers, pressures and hotspots within the marine environment of waters under KSA’s maritime jurisdiction in the Red Sea and Arabian Gulf. The cascading assessment approach based on the DPSIR framework ensured that the root causes of the hotspot patterns, i.e. the human activities and other drivers, can be identified. The adapted CPIA methodology allowed for the combination of the available data to spatially assess the cumulative pressure in a consistent manner, and to identify the most critical hotspots by determining the overlap of cumulative pressure with areas of sensitive biodiversity. Further improvements are expected by enhancing the data sources of drivers and pressure indicators, fine-tuning the decay factors and distances of the pressure indicators, as well as including trans-boundary pressures across the regional seas.

Keywords: Arabian Gulf, DPSIR, hotspot, red sea

Procedia PDF Downloads 138
8512 A Study of EFL Learners with Different Goal Orientations in Response to Cognitive Diagnostic Reading Feedback

Authors: Yuxuan Tang

Abstract:

Cognitive diagnostic assessment has received much attention in second language education, and assessment for it can provide pedagogically useful feedback for language learners. However, there is a lack of research on how students interpret and use cognitive diagnostic feedback. Thus the present study aims to adopt a mixed-method approach mainly to explore the relationship between the goal-orientation and students' response to cognitive diagnostic feedback. Almost 200 Chinese undergraduates from two universities in Xi'an, China, will be invited to do a cognitive diagnostic reading test, and each student will receive specialized cognitive diagnostic feedback, comprising of students' reading attributes mastery level generated by applying a well-selected cognitive diagnostic model, students' perceived reading ability assessed by a self-assessing questionnaire and students’ level position in the whole class. And a goal-orientation questionnaire and a self-generated questionnaire on the perception of feedback will be given to students the moment they receive feedback. In addition, interviews of students will be conducted on their future plans to see whether they have awareness of carrying out studying plans. The study aims to find a new perspective towards how students use and interpret cognitive diagnostic feedback in terms of their different goal-orientation (self-based, task-based, and other-based goals) by applying the newest goal orientation model, which is an important construct of motivation in psychology, seldom researched under language learning area. And the study is expected to provide evidence on how diagnostic feedback promotes students' learning under the educational belief of assessment for learning. Practically speaking, according to the personalized diagnostic feedback, students can take remedial self-learning more purposefully, and teachers can target students' weaknesses to adjust teaching methods and carry out tailored teaching.

Keywords: assessment for learning, cognitive diagnostic assessment, goal-orientation, personalized feedback

Procedia PDF Downloads 130
8511 Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation

Authors: Youtao Gao, Bingyu Jin, Tanran Zhao, Bo Xu

Abstract:

The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent.

Keywords: extended Kalman filter, autonomous orbit determination, unscented Kalman filter, navigation constellation

Procedia PDF Downloads 282
8510 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 96
8509 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation

Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping

Abstract:

In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.

Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula

Procedia PDF Downloads 498
8508 Climate Change Vulnerability and Capacity Assessment in Coastal Areas of Sindh Pakistan and Its Impact on Water Resources

Authors: Falak Nawaz

Abstract:

The Climate Change Vulnerability and Capacity Assessment carried out in the coastal regions of Thatta and Malir districts underscore the potential risks and challenges associated with climate change affecting water resources. This study was conducted by the author using participatory rural appraisal tools, with a greater focus on conducting focus group discussions, direct observations, key informant interviews, and other PRA tools. The assessment delves into the specific impacts of climate change along the coastal belt, concentrating on aspects such as rising sea levels, depletion of freshwater, alterations in precipitation patterns, fluctuations in water table levels, and the intrusion of saltwater into rivers. These factors have significant consequences for the availability and quality of water resources in coastal areas, manifesting in frequent migration and alterations in agriculture-based livelihood practices. Furthermore, the assessment assesses the adaptive capacity of communities and organizations in these coastal regions to effectively confront and alleviate the effects of climate change on water resources. It considers various measures, including infrastructure enhancements, water management practices, adjustments in agricultural approaches, and disaster preparedness, aiming to bolster adaptive capacity. The study's findings emphasize the necessity for prompt actions to address identified vulnerabilities and fortify the adaptive capacities of Sindh's coastal areas. This calls for comprehensive strategies and policies promoting sustainable water resource management, integrating climate change considerations, and providing essential resources and support to vulnerable communities.

Keywords: climate, climate change adaptation, disaster reselience, vulnerability, capacity, assessment

Procedia PDF Downloads 57
8507 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment

Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha

Abstract:

When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.

Keywords: contract risk assessment, NLP, transfer learning, question answering

Procedia PDF Downloads 128
8506 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 136
8505 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters

Authors: Tridipa Biswas, Kamal Pandey

Abstract:

A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.

Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters

Procedia PDF Downloads 306
8504 Monitoring the Rate of Expansion of Agricultural Fields in Mwekera Forest Reserve Using Remote Sensing and Geographic Information Systems

Authors: K. Kanja, M. Mweemba, K. Malungwa

Abstract:

Due to the rampant population growth coupled with retrenchments currently going on in the Copper mines in Zambia, a number of people are resorting to land clearing for agriculture, illegal settlements as well as charcoal production among other vices. This study aims at assessing the rate of expansion of agricultural fields and illegal settlements in protected areas using remote sensing and Geographic Information System. Zambia’s Mwekera National Forest Reserve was used as a case study. Iterative Self-Organizing Data Analysis Technique (ISODATA), as well as maximum likelihood, supervised classification on four Landsat images as well as an accuracy assessment of the classifications was performed. Over the period under observation, results indicate annual percentage changes to be -0.03, -0.49 and 1.26 for agriculture, forests and settlement respectively indicating a higher conversion of forests into human settlements and agriculture.

Keywords: geographic information system, land cover change, Landsat TM and ETM+, Mwekera forest reserve, remote sensing

Procedia PDF Downloads 141
8503 Sustainable Urban Waterfronts Using Sustainability Assessment Rating System

Authors: R. M. R. Hussein

Abstract:

Sustainable urban waterfront development is one of the most interesting phenomena of urban renewal in the last decades. However, there are still many cities whose visual image is compromised due to the lack of a sustainable urban waterfront development, which consequently affects the place of those cities globally. This paper aims to reimagine the role of waterfront areas in city design, with a particular focus on Egypt, so that they provide attractive, sustainable urban environments while promoting the continued aesthetic development of the city overall. This aim will be achieved by determining the main principles of a sustainable urban waterfront and its applications. This paper concentrates on sustainability assessment rating systems. A number of international case-studies, wherein a city has applied the basic principles for a sustainable urban waterfront and have made use of sustainability assessment rating systems, have been selected as examples which can be applied to the urban waterfronts in Egypt. This paper establishes the importance of developing the design of urban environments in Egypt, as well as identifying the methods of sustainability application for urban waterfronts.

Keywords: sustainable urban waterfront, green infrastructure, energy efficient, Cairo

Procedia PDF Downloads 468
8502 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy

Authors: Wenhao Lan, Ning Li, Qiang Tong

Abstract:

To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.

Keywords: mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB

Procedia PDF Downloads 148
8501 Student Feedback of a Major Curricular Reform Based on Course Integration and Continuous Assessment in Electrical Engineering

Authors: Heikki Valmu, Eero Kupila, Raisa Vartia

Abstract:

A major curricular reform was implemented in Metropolia UAS in 2014. The teaching was to be based on larger course entities and collaborative pedagogy. The most thorough reform was conducted in the department of electrical engineering and automation technology. It has been already shown that the reform has been extremely successful with respect to student progression and drop-out rate. The improvement of the results has been much more significant in this department compared to the other engineering departments making only minor pedagogical changes. In the beginning of the spring term of 2017, a thorough student feedback project was conducted in the department. The study consisted of thirty questions about the implementation of the curriculum, the student workload and other matters related to student satisfaction. The reply rate was more than 40%. The students were divided to four different categories: first year students [cat.1] and students of all the three different majors [categories 2-4]. These categories were found valid since all the students have the same course structure in the first two semesters after which they may freely select the major. All staff members are divided into four teams respectively. The curriculum consists of consecutive 15 credit (ECTS) courses each taught by a group of teachers (3-5). There are to be no end exams and continuous assessment is to be employed. In 2014 the different teacher groups were encouraged to employ innovatively different assessment methods within the given specs. One of these methods has been since used in categories 1 and 2. These students have to complete a number of compulsory tasks each week to pass the course and the actual grade is defined by a smaller number of tests throughout the course. The tasks vary from homework assignments, reports and laboratory exercises to larger projects and the actual smaller tests are usually organized during the regular lecture hours. The teachers of the other two majors have been pedagogically more conservative. The student progression has been better in categories 1 and 2 compared to categories 3 and 4. One of the main goals of this survey was to analyze the reasons for the difference and the assessment methods in detail besides the general student satisfaction. The results show that in the categories following more strictly the specified assessment model much more versatile assessment methods are used and the basic spirit of the new pedagogy is followed. Also, the student satisfaction is significantly better in categories 1 and 2. It may be clearly stated that continuous assessment and teacher cooperation improve the learning outcomes, student progression as well as student satisfaction. Too much academic freedom seems to lead to worse results [cat 3 and 4]. A standardized assessment model is launched for all students in autumn 2017. This model is different from the one used so far in categories 1 and 2 allowing more flexibility to teacher groups, but it will force all the teacher groups to follow the general rules in order to improve the results and the student satisfaction further.

Keywords: continuous assessment, course integration, curricular reform, student feedback

Procedia PDF Downloads 202
8500 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process

Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani

Abstract:

Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.

Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture

Procedia PDF Downloads 62
8499 Knowledge Loss Risk Assessment for Departing Employees: An Exploratory Study

Authors: Muhammad Saleem Ullah Khan Sumbal, Eric Tsui, Ricky Cheong, Eric See To

Abstract:

Organizations are posed to a threat of valuable knowledge loss when employees leave either due to retirement, resignation, job change or because of disabilities e.g. death, etc. Due to changing economic conditions, globalization, and aging workforce, organizations are facing challenges regarding retention of valuable knowledge. On the one hand, large number of employees are going to retire in the organizations whereas on the other hand, younger generation does not want to work in a company for a long time and there is an increasing trend of frequent job change among the new generation. Because of these factors, organizations need to make sure that they capture the knowledge of employee before (s)he walks out of the door. The first step in this process is to know what type of knowledge employee possesses and whether this knowledge is important for the organization. Researchers reveal in the literature that despite the serious consequences of knowledge loss in terms of organizational productivity and competitive advantage, there has not been much work done in the area of knowledge loss assessment of departing employees. An important step in the knowledge retention process is to determine the critical ‘at risk’ knowledge. Thus, knowledge loss risk assessment is a process by which organizations can gauge the importance of knowledge of the departing employee. The purpose of this study is to explore this topic of knowledge loss risk assessment by conducting a qualitative study in oil and gas sector. By engaging in dialogues with managers and executives of the organizations through in-depth interviews and adopting a grounded methodology approach, the research will explore; i) Are there any measures adopted by organizations to assess the risk of knowledge loss from departing employees? ii) Which factors are crucial for knowledge loss assessment in the organizations? iii) How can we prioritize the employees for knowledge retention according to their criticality? Grounded theory approach is used when there is not much knowledge available in the area under research and thus new knowledge is generated about the topic through an in-depth exploration of the topic by using methods such as interviews and using a systematic approach to analyze the data. The outcome of the study will generate a model for the risk of knowledge loss through factors such as the likelihood of knowledge loss, the consequence/impact of knowledge loss and quality of the knowledge loss of departing employees. Initial results show that knowledge loss assessment is quite crucial for the organizations and it helps in determining what types of knowledge employees possess e.g. organizations knowledge, subject matter expertise or relationships knowledge. Based on that, it can be assessed which employee is more important for the organizations and how to prioritize the knowledge retention process for departing employees.

Keywords: knowledge loss, risk assessment, departing employees, Hong Kong organizations

Procedia PDF Downloads 406
8498 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines

Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.

Abstract:

Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.

Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition

Procedia PDF Downloads 574
8497 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 131
8496 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions

Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev

Abstract:

Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.

Keywords: air-electronic, geometrical parameters, improvement, measurement systems

Procedia PDF Downloads 224
8495 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 40
8494 The Impact of Grammatical Differences on English-Mandarin Chinese Simultaneous Interpreting

Authors: Miao Sabrina Wang

Abstract:

This paper examines the impact of grammatical differences on simultaneous interpreting from English into Mandarin Chinese by drawing upon an empirical study of professional and student interpreters. The research focuses on the effects of three grammatical categories including passives, adverbial components and noun phrases on simultaneous interpreting. For each category, interpretations of instances in which the grammatical structures are the same across the two languages are compared with interpretations of instances in which the grammatical structures differ across the two languages in terms of content accuracy and delivery appropriateness. The results indicate that grammatical differences have a significant impact on the interpreting performance of both professionals and students.

Keywords: content accuracy, delivery appropriateness, grammatical differences, simultaneous interpreting

Procedia PDF Downloads 538
8493 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 325