Search results for: energy performance certificate EPBD
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19386

Search results for: energy performance certificate EPBD

13026 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 328
13025 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems

Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo

Abstract:

Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.

Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation

Procedia PDF Downloads 93
13024 Leading to Attract, Retain, Motivate, Inspire your Employees to Peak Performance

Authors: David Suson

Abstract:

In today's work environment, it becomes harder and harder to attract top talent, motivate them to achieve your goals, create a collaborative work environment and then retain them. It is especially challenging when you have remote employees, manage virtually, have different personalities, ages, work ethics and especially when there is a lure of better opportunities elsewhere. Leaders want results. All the strategies and tactics in the world won't make a difference if your people don't execute and "follow you into battle". The key to better leadership is motivating your teams to want to execute, want to work harder, want to work as a team, all while improving morale. Anyone can force employees by threatening them. This session teaches a 180-degree approach. Objectives/Outcomes: 1. Learn the 3 ways this leadership approach differs from traditional leadership, 2. Use a simple process to increase engagement and loyalty, 3. Implement strategies to drive performance. The approach being taught inspires, motivates, engages, and helps to attract better employees.

Keywords: leadership, success, communication, skills

Procedia PDF Downloads 134
13023 The Impacts of an Adapted Literature Circle Model on Reading Comprehension, Engagement, and Cooperation in an EFL Reading Course

Authors: Tiantian Feng

Abstract:

There is a dearth of research on the literary circle as a teaching strategy in English as a Foreign Language (EFL) classes in Chinese colleges and universities and even fewer empirical studies on its impacts. In this one-quarter, design-based project, the researcher aims to increase students’ engagement, cooperation, and, on top of that, reading comprehension performance by utilizing a researcher-developed, adapted reading circle model in an EFL reading course at a Chinese college. The model also integrated team-based learning and portfolio assessment, with an emphasis on the specialization of individual responsibilities, contributions, and outcomes in reading projects, with the goal of addressing current issues in EFL classes at Chinese colleges, such as passive learning, test orientation, ineffective and uncooperative teamwork, and lack of dynamics. In this quasi-experimental research, two groups of students enrolled in the course were invited to participate in four in-class team projects, with the intervention class following the adapted literature circle model and team members rotating as Leader, Coordinator, Brain trust, and Reporter. The researcher/instructor used a sequential explanatory mixed-methods approach to quantitatively analyze the final grades for the pre-and post-tests, as well as individual scores for team projects and will code students' artifacts in the next step, with the results to be reported in a subsequent paper(s). Initial analysis showed that both groups saw an increase in final grades, but the intervention group enjoyed a more significant boost, suggesting that the adapted reading circle model is effective in improving students’ reading comprehension performance. This research not only closes the empirical research gap of literature circles in college EFL classes in China but also adds to the pool of effective ways to optimize reading comprehension performance and class performance in college EFL classes.

Keywords: literature circle, EFL teaching, college english reading, reading comprehension

Procedia PDF Downloads 100
13022 Mind-Wandering and Attention: Evidence from Behavioral and Subjective Perspective

Authors: Riya Mishra, Trayambak Tiwari, Anju Lata Singh, I. L. Singh, Tara Singh

Abstract:

Decrement in vigilance task performance echoes impediment in effortful attention; here attention fluctuated in the realm of external and internal milieu of a person. To examine this fluctuation across time period, we employed two experiments of vigilance task with variation in thought probing rate, which was embedded in the task. The thought probe varies in terms of <2 minute per thought probe and <4 minute per thought probe during vigilance task. A 2x4 repeated measure factorial design was used. 15 individuals participated in this study with an age range of 20-26 years. It was found that thought probing rate has a negative trend with vigilance task performance whereas the subjective measures of mind-wandering have a positive relation with thought probe rate.

Keywords: criterion response, mental status, mind-wandering, thought probe, vigilance

Procedia PDF Downloads 427
13021 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
13020 Sexual Cognitive Behavioral Therapy: Psychological Performance and Openness to Experience

Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Amin Asadi Hieh, Majid Kazemnezhad

Abstract:

This research was conducted with the aim of determining the effectiveness of sexual cognitive behavioral therapy on psychological performance and openness to experience in women. The type of research was experimental in the form of pre-test-post-test. The statistical population of this research was made up of all working and married women with membership in the researcher's Instagram social network who had problems in marital-sexual relationships (N=900). From the statistical community, which includes working and married women who are members of the researcher's Instagram social network who have problems in marital-sexual relationships, there are 30 people including two groups (15 people in the experimental group and 15 people in the control group) as available sampling and selected randomly. They were placed in two experimental and control groups. The anxiety, stress, and depression scale (DASS) and the Costa and McCree personality questionnaire were used to collect data, and the cognitive behavioral therapy protocol of Dr. Mehrnaz Ali Akbari was used for the treatment sessions. To analyze the data, the covariance test was used in the SPSS22 software environment. The results showed that sexual cognitive behavioral therapy has a positive and significant effect on psychological performance and openness to experience in women. Conclusion: It can be concluded that interventions such as cognitive-behavioral sex can be used to treat marital problems.

Keywords: sexual cognitive behavioral therapy, psychological function, openness to experience, women

Procedia PDF Downloads 78
13019 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia

Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay

Abstract:

Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.

Keywords: AquaCrop model, calibration, validation, simulation

Procedia PDF Downloads 73
13018 Dyeing of Polyester/Cotton Blends with Reverse-Micelle Encapsulated High Energy Disperse/Reactive Dye Mixture

Authors: Chi-Wai Kan, Yanming Wang, Alan Yiu-Lun Tang, Cheng-Hao Lee Lee

Abstract:

Dyeing of polyester/cotton blend fabrics in various polyester/cotton percentages (32/68, 40/60 and 65/35) was investigated using (poly(ethylene glycol), PEG) based reverse-micelle. High energy disperse dyes and warm type reactive dyes were encapsulated and applied on polyester/cotton blend fabrics in a one bath one step dyeing process. Comparison of reverse micellar-based and aqueous-based (water-based) dyeing was conducted in terms of colour reflectance. Experimental findings revealed that the colour shade of the dyed fabrics in reverse micellar non-aqueous dyeing system at a lower dyeing temperature of 98°C is slightly lighter than that of conventional aqueous dyeing system in two-step process (130oC for disperse dyeing and 70°C for reactive dyeing). The exhaustion of dye in polyester-cotton blend fabrics, in terms of colour reflectance, were found to be highly fluctuated at dyeing temperature of 98°C.

Keywords: one-bath dyeing, polyester/cotton blends, disperse/reactive dyes, reverse micelle

Procedia PDF Downloads 151
13017 Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes

Authors: Iris Vural Gursel, Andrea Ramirez

Abstract:

Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising.

Keywords: biorefinery, economic assessment, lignin conversion, process design

Procedia PDF Downloads 262
13016 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection

Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar

Abstract:

Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.

Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic

Procedia PDF Downloads 190
13015 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework

Procedia PDF Downloads 284
13014 Comparison of Bismuth-Based Nanoparticles as Radiosensitization Agents for Radiotherapy

Authors: Merfat Algethami, Anton Blencowe, Bryce Feltis, Stephen Best, Moshi Geso

Abstract:

Nano-materials with high atomic number atoms have been demonstrated to enhance the effective radiation dose and thus potentially could improve therapeutic efficacy in radiotherapy. The optimal nanoparticulate agents require high X-ray absorption coefficients, low toxicity, and should be cost effective. The focus of our research is the development of a nanoparticle therapeutic agent that can be used in radiotherapy to provide optimal enhancement of the radiation effects on the target. In this study, we used bismuth (Bi) nanoparticles coated with starch and bismuth sulphide nanoparticles (Bi2S3) coated with polyvinylpyrrolidone (PVP). These NPs are of low toxicity and are one of the least expensive heavy metal-based nanoparticles. The aims of this study were to synthesise Bi2S3 and Bi NPs, and examine their cytotoxicity to human lung adenocarcinoma epithelial cells (A549). The dose enhancing effects of NPs on A549 cells were examined at both KV and MV energies. The preliminary results revealed that bismuth based nanoparticles show increased radio-sensitisation of cells, displaying dose enhancement with KV X-ray energies and to a lesser degree for the MV energies. We also observed that Bi NPs generated a greater dose enhancement effect than Bi2S3 NPs in irradiated A549 cells. The maximum Dose Enhancement Factor (DEF) was obtained at lower energy KV range when cells treated with Bi NPs (1.5) compared to the DEF of 1.2 when cells treated with Bi2S3NPs. Less radiation dose enhancement was observed when using high energy MV beam with higher DEF value of Bi NPs treatment (1.26) as compared to 1.06 DEF value with Bi2S3 NPs. The greater dose enhancement was achieved at KV energy range, due the effect of the photoelectric effect which is the dominant process of interaction of X-ray. The cytotoxic effect of Bi NPs on enhancing the X-ray dose was higher due to the higher amount of elemental Bismuth present in Bi NPs compared to Bi2S3 NPs. The results suggest that Bismuth based NPs can be considered as valuable dose enhancing agents when used in clinical applications.

Keywords: A549 lung cancer cells, Bi2S3 nanoparticles, dose enhancement effect, radio-sensitising agents

Procedia PDF Downloads 272
13013 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 95
13012 Tips for Effective Intercultural Collaboration on the Evaluation of an International Program

Authors: Athanase Gahungu, Karen Freeman

Abstract:

Different groups of stakeholders expect the evaluation of an international, grant-funded program to inform them of the worth of the program - the funder, the agency operating the program and its community, and the citizens of the country where the program is implemented. This paper summarizes the challenges that intercultural teams of researchers faced as they crisscrossed a host country while evaluating a teaching and learning materials program, and offers useful tips for effective collaboration. Firstly, was recommended that the teams be representative of the cultures involved, and have the required research and program evaluation skills. Secondly, cultures involved must consistently establish and maintain a shared performance system. Thirdly, successful team members must be self-aware, inter-culturally knowledgeable, not just in communication, but in conceptualizing the political and social context of international grant-funded projects.

Keywords: program evaluation, international collaboration, intercultural, shared performance

Procedia PDF Downloads 539
13011 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production

Authors: Jason West

Abstract:

Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.

Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems

Procedia PDF Downloads 77
13010 On Unification of the Electromagnetic, Strong and Weak Interactions

Authors: Hassan Youssef Mohamed

Abstract:

In this paper, we show new wave equations, and by using the equations, we concluded that the strong force and the weak force are not fundamental, but they are quantum effects for electromagnetism. This result is different from the current scientific understanding about strong and weak interactions at all. So, we introduce three evidences for our theory. First, we prove the asymptotic freedom phenomenon in the strong force by using our model. Second, we derive the nuclear shell model as an approximation of our model. Third, we prove that the leptons do not participate in the strong interactions, and we prove the short ranges of weak and strong interactions. So, our model is consistent with the current understanding of physics. Finally, we introduce the electron-positron model as the basic ingredients for protons, neutrons, and all matters, so we can study all particles interactions and nuclear interaction as many-body problems of electrons and positrons. Also, we prove the violation of parity conservation in weak interaction as evidence of our theory in the weak interaction. Also, we calculate the average of the binding energy per nucleon.

Keywords: new wave equations, the strong force, the grand unification theory, hydrogen atom, weak force, the nuclear shell model, the asymptotic freedom, electron-positron model, the violation of parity conservation, the binding energy

Procedia PDF Downloads 187
13009 Mobile Agents-Based Framework for Dynamic Resource Allocation in Cloud Computing

Authors: Safia Rabaaoui, Héla Hachicha, Ezzeddine Zagrouba

Abstract:

Nowadays, cloud computing is becoming the more popular technology to various companies and consumers, which benefit from its increased efficiency, cost optimization, data security, unlimited storage capacity, etc. One of the biggest challenges of cloud computing is resource allocation. Its efficiency directly influences the performance of the whole cloud environment. Finding an effective method to address these critical issues and increase cloud performance was necessary. This paper proposes a mobile agents-based framework for dynamic resource allocation in cloud computing to minimize both the cost of using virtual machines and the makespan. Furthermore, its impact on the best response time and power consumption has been studied. The simulation showed that our method gave better results than here.

Keywords: cloud computing, multi-agent system, mobile agent, dynamic resource allocation, cost, makespan

Procedia PDF Downloads 107
13008 Unleashing the Power of Cerebrospinal System for a Better Computer Architecture

Authors: Lakshmi N. Reddi, Akanksha Varma Sagi

Abstract:

Studies on biomimetics are largely developed, deriving inspiration from natural processes in our objective world to develop novel technologies. Recent studies are diverse in nature, making their categorization quite challenging. Based on an exhaustive survey, we developed categorizations based on either the essential elements of nature - air, water, land, fire, and space, or on form/shape, functionality, and process. Such diverse studies as aircraft wings inspired by bird wings, a self-cleaning coating inspired by a lotus petal, wetsuits inspired by beaver fur, and search algorithms inspired by arboreal ant path networks lend themselves to these categorizations. Our categorizations of biomimetic studies allowed us to define a different dimension of biomimetics. This new dimension is not restricted to inspiration from the objective world. It is based on the premise that the biological processes observed in the objective world find their reflections in our human bodies in a variety of ways. For example, the lungs provide the most efficient example for liquid-gas phase exchange, the heart exemplifies a very efficient pumping and circulatory system, and the kidneys epitomize the most effective cleaning system. The main focus of this paper is to bring out the magnificence of the cerebro-spinal system (CSS) insofar as it relates to our current computer architecture. In particular, the paper uses four key measures to analyze the differences between CSS and human- engineered computational systems. These are adaptability, sustainability, energy efficiency, and resilience. We found that the cerebrospinal system reveals some important challenges in the development and evolution of our current computer architectures. In particular, the myriad ways in which the CSS is integrated with other systems/processes (circulatory, respiration, etc) offer useful insights on how the human-engineered computational systems could be made more sustainable, energy-efficient, resilient, and adaptable. In our paper, we highlight the energy consumption differences between CSS and our current computational designs. Apart from the obvious differences in materials used between the two, the systemic nature of how CSS functions provides clues to enhance life-cycles of our current computational systems. The rapid formation and changes in the physiology of dendritic spines and their synaptic plasticity causing memory changes (ex., long-term potentiation and long-term depression) allowed us to formulate differences in the adaptability and resilience of CSS. In addition, the CSS is sustained by integrative functions of various organs, and its robustness comes from its interdependence with the circulatory system. The paper documents and analyzes quantifiable differences between the two in terms of the four measures. Our analyses point out the possibilities in the development of computational systems that are more adaptable, sustainable, energy efficient, and resilient. It concludes with the potential approaches for technological advancement through creation of more interconnected and interdependent systems to replicate the effective operation of cerebro-spinal system.

Keywords: cerebrospinal system, computer architecture, adaptability, sustainability, resilience, energy efficiency

Procedia PDF Downloads 101
13007 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 154
13006 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 289
13005 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration

Authors: Zohreh Fallah, Edward P. L. Roberts

Abstract:

One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.

Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water

Procedia PDF Downloads 582
13004 Deficits in Perceptual and Musical Memory in Individuals with Major Depressive Disorder

Authors: Toledo-Fernandez Aldebaran

Abstract:

Introduction: One of the least explored cognitive functions in relation with depression is the one related to musical stimuli. Music perception and memory can become impaired as well. The term amusia is used to define a type of agnosia caused by damage to basic processes that creates a general inability to perceive music. Therefore, the main objective is to explore performance-based and self-report deficits in music perception and memory on people with major depressive disorder (MDD). Method: Data was collected through April-October 2021 recruiting people who met the eligibility criteria and using the Montreal Battery of Evaluation of Amusia (MBEA) to evaluate performance-based music perception and memory, along with the module for depression of the Mini International Neuropsychiatric Interview, and the Amusic Dysfunction Inventory (ADI) which evaluates the participants’ self-report concerning their abilities in music perception. Results: 64 participants were evaluated. The main study, referring to analyzing the differences between people with MDD and the control group, only showed one statistical difference on the Interval subtest of the MBEA. No difference was found in the dimensions assessed by the ADI. Conclusion: Deficits in interval perception can be explained by mental fatigue, to which people with depression are more vulnerable, rather than by specific deficits in musical perception and memory associated with depressive disorder. Additionally, significant associations were found between musical deficits as observed by performance-based evidence and music dysfunction according to self-report, which could suggest that some people with depression are capable of detecting these deficits in themselves.

Keywords: depression, amusia, music, perception, memory

Procedia PDF Downloads 65
13003 Traditional Values and Their Adaptation in Social Housing Design: Towards a New Typology and Establishment of 'Airhouse' Standard in Malaysia

Authors: Mohd Firrdhaus Mohd Sahabuddin, Cristina Gonzalez-Longo

Abstract:

Large migration from rural areas to urban areas like Kuala Lumpur has led to some implications for economic, social and cultural development. This high population has placed enormous demand on the existing housing stocks, especially for low-income groups. However, some issues arise, one of which is overheated indoor air temperature. This problem contributes to the high-energy usage that forces huge sums of money to be spent on cooling the house by using mechanical equipment. Therefore, this study focuses on thermal comfort in social housing, and incorporates traditional values into its design to achieve a certain measurement of natural ventilation in a house. From the study, the carbon emission and energy consumption for an air-conditioned house is 67%, 66% higher than a naturally ventilated house. Therefore, this research has come up with a new typology design, which has a large exposed wall area and full-length openings on the opposite walls to increase cross ventilation. At the end of this research, the measurement of thermal comfort for a naturally ventilated building called ‘AirHouse’ has been identified.

Keywords: tropical architecture, natural ventilation, passive design, AirHouse, social housing design

Procedia PDF Downloads 676
13002 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval

Procedia PDF Downloads 203
13001 Analysis of Efficiency Production of Grass Black Jelly (Mesona palustris) in Double Scale

Authors: Irvan Adhin Cholilie, Susinggih Wijana, Yusron Sugiarto

Abstract:

The aim of this research is to compare the results of black grass jelly produced using laboratory scale and double scale. In this research, the production from the laboratory scale is using ingredients of 1 kg black grass jelly added with 5 liters of water, while the double scale is using 5 kg black grass jelly and 75 liters of water. The results of organoleptic tests performed by 30 panelists (general) to the sample gels of grass black powder produced from both of laboratory and double scale are not different significantly in color, odor, flavor, and texture. Proximate test results conducted in both of grass black jelly powder produced in laboratory scale and double scale also have no significant differences in all parameters. Grass black jelly powder from double scale contains water, carbohydrate, crude fiber, and yield in the amount of 12,25 %; 43,7 %; 5,89 %; and 16,28 % respectively. The results of the energy efficiency analysis by boiling, draining, evaporation, drying, and milling processes are 85,11 %; 76,97 %; 99,64 %; 99,99% and 99,39% respectively. The utility needs including water needs for each batch amounted 0.1 m3 and cost Rp 220,5 per batch, the electricity needs for each batch is 20.01 kWh and cost Rp 18569.28 per batch, and LPG needs for each batch is 30 kg costed Rp 234,000.00 so that the total cost spent for the process is Rp 252,789.78 .

Keywords: black grass jelly, powder, mass balance, energy balance, cost

Procedia PDF Downloads 385
13000 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks

Authors: Richard Tanaka, Ying Zhu

Abstract:

This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.

Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks

Procedia PDF Downloads 219
12999 Pupils' and Teachers' Perceptions and Experiences of Welsh Language Instruction

Authors: Mirain Rhys, Kevin Smith

Abstract:

In 2017, the Welsh Government introduced an ambitious, new strategy to increase the number of Welsh speakers in Wales to 1 million by 2050. The Welsh education system is a vitally important feature of this strategy. All children attending state schools in Wales learn Welsh as a second language until the age of 16 and are assessed at General Certificate of Secondary Education (GCSE) level. In 2013, a review of Welsh second language instruction in Key Stages 3 and 4 was completed. The report identified considerable gaps in teachers’ preparation and training for teaching Welsh; poor Welsh language ethos at many schools; and a general lack of resources to support the instruction of Welsh. Recommendations were made across a number of dimensions including curriculum content, pedagogical practice, and teacher assessment, training, and resources. With a new national curriculum currently in development, this study builds on this review and provides unprecedented detail into pupils’ and teachers’ perceptions of Welsh language instruction. The current research built on data taken from an existing capacity building research project on Welsh education, the Wales multi-cohort study (WMS). Quantitative data taken from WMS surveys with over 1200 pupils in schools in Wales indicated that Welsh language lessons were the least enjoyable subject among pupils. The current research aimed to unpick pupil experiences in order to add to the policy development context. To achieve this, forty-four pupils and four teachers in three schools from the larger WMS sample participated in focus groups. Participants from years 9, 11 and 13 who had indicated positive, negative and neutral attitudes towards the Welsh language in a previous WMS survey were selected. Questions were based on previous research exploring issues including, but not limited to pedagogy, policy, assessment, engagement and (teacher) training. A thematic analysis of the focus group recordings revealed that the majority of participants held positive views around keeping the language alive but did not want to take on responsibility for its maintenance. These views were almost entirely based on their experiences of learning Welsh at school, especially in relation to their perceived lack of choice and opinions around particular lesson strategies and assessment. Analysis of teacher interviews highlighted a distinct lack of resources (materials and staff alike) compared to modern foreign languages, which had a negative impact on student motivation and attitudes. Both staff and students indicated a need for more practical, oral language instruction which could lead to Welsh being used outside the classroom. The data corroborate many of the review’s previous findings, but what makes this research distinctive is the way in which pupils poignantly address generally misguided aims for Welsh language instruction, poor pedagogical practice and a general disconnect between Welsh instruction and its daily use in their lives. These findings emphasize the complexity of incorporating the educational sector in strategies for Welsh language maintenance and the complications arising from pedagogical training, support, and resources, as well as teacher and pupil perceptions of, and attitudes towards, teaching and learning Welsh.

Keywords: bilingual education, language maintenance, language revitalisation, minority languages, Wales

Procedia PDF Downloads 112
12998 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 149
12997 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 316